• Aucun résultat trouvé

Predicting soil water and mineral nitrogen contents with the STICS model for estimating nitrate leaching under agricultural fields

N/A
N/A
Protected

Academic year: 2021

Partager "Predicting soil water and mineral nitrogen contents with the STICS model for estimating nitrate leaching under agricultural fields"

Copied!
13
0
0

Texte intégral

(1)

To link to this article:

DOI:10.1016/j.agwat.2012.01.007

http://dx.doi.org/10.1016/j.agwat.2012.01.007

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 5702

To cite this version: Jégo, G. and Sanchez-Pérez, José-Miguel and Justes, Eric

Predicting soil water and mineral nitrogen contents with the STICS model for

estimating nitrate leaching under agricultural fields. (2012) Agricultural Water

Management, vol. 107 . pp. 54-65. ISSN 0378-3774

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

(2)

Predicting

soil

water

and

mineral

nitrogen

contents

with

the

STICS

model

for

estimating

nitrate

leaching

under

agricultural

fields

G.

Jégo

a,b,1

,

J.M.

Sánchez-Pérez

c,a,∗

,

E.

Justes

b

aUniversitédeToulouse,LaboratoireÉcologieFonctionnelleetEnvironnement(ECOLAB),ÉcoleNationaleSupérieureAgronomiquedeToulouse(ENSAT),avenuedel’Agrobiopole,BP 32607,AuzevilleTolosane,31326Castanet-TolosanCedex,France

bINRA,UMRAGIR(AgrosystèmesetAgricultures,Gestionderessources,InnovationetRuralité),INRA-INP-ENSAT,BP52627,31326Castanet-TolosanCedex,France

cCNRS,LaboratoireÉcologieFonctionnelleetEnvironnement(ECOLAB),ÉcoleNationaleSupérieureAgronomiquedeToulouse(ENSAT),avenuedel’Agrobiopole,BP32607,Auzeville Tolosane,31326Castanet-TolosanCedex,France

a

r

t

i

c

l

e

i

n

f

o

Keywords: Soilwatercontent Soilnitratecontent Simulateddrainage Simulatednitrateleaching STICSmodel

Agriculturalpractices Alluvialplain Groundwater

a

b

s

t

r

a

c

t

TheperformanceoftheSTICSsoil-cropmodelforthedynamicpredictionofsoilwatercontent(SWC)and soilmineralnitrogen(SMN)intherootzone(120cm)ofsevenagriculturalfieldswasevaluatedusing fieldmeasurementsinacoarse-grainedalluvialaquiferoftheGaronneRiverfloodplain(southwestern France)from2005to2007.TheSTICSmodelwasusedtosimulatedrainageandnitrateconcentration indrainagewaterinalltheagriculturalfieldsofthestudyarea,inordertoquantifyandassessthe temporalandspatialvariabilityofnitrateleachingintogroundwater.SimulationsofSWCandSMNin thesevenmonitoredfieldswerefoundtobesatisfactoryasindicatedbyrootmeansquareerror(RMSE) andmodelefficiencybeing6.8and0.84%forSWCand22.8and0.92%forSMN,respectively.Onaverage, SWCwasslightlyoverestimatedbyameandifferenceof10mm(3%)andtherewasalmostnobiasin SMNestimations(<0.5%).ThesesatisfactoryresultsdemonstratethepotentialforusingtheSTICSmodel toaccuratelysimulatenitrateleaching.

Acrossthestudyarea,simulateddrainageandnitrateconcentrationwereextremelyvariablefromone fieldtoanother.Forsomefields,simulatedmeanannualnitrateconcentrationindrainagewaterexceeded 300mgNO3−L−1andpredictednitrateleachingwascloseto100kgNha−1,whileotherfieldshadvery lownitratelosses.About15%ofthefarmers’fieldswereresponsiblefor60–70%ofnitrateleaching.The SMNinlateautumn,beforewinterdrainage,wasfoundthemaindeterminingfactorexplainingthis variability.Thissituationmaybeattributedtounsatisfactorycumulativenitrogenmanagementoverthe mediumterm.Ineffectivenitrogenmanagementwasfoundtobemoredetrimentalthanasingleannual incidentofoverfertilization,particularlyinsituationsofdeepsoilsandincasesofloworhighlyvariable drainagebetweenyears.

1. Introduction

The EuropeanWater Framework aims to achieve long-term sustainablewatermanagementfor bothsurfaceand groundwa-terbodies. Thefirst stepof thisframework is toachieve “good status”forallwatersby2015.Onecomponentofgoodstatusis thenitrateconcentrationinbothsurfacewaterandgroundwater. Intensiveagriculturehascontributedtoanincreaseinnitratelevels inmany areas ofEurope(Strebelet al.,1989).Alluvial ground-waterisparticularlyvulnerabletonitrate(NO3−)leachingdueto

∗ Correspondingauthor.Tel.:+330534323920;fax:+330534323955. E-mail addresses: jose-miguel.sanchez-perez@univ-tlse3.fr, sanchez@cict.fr

(J.M.Sánchez-Pérez).

1 Presentaddress:AgricultureandAgri-FoodCanada,SoilsandCropsResearch andDevelopmentCentre,2560boulevardHochelaga,Quebec,QC,G1V2J3Canada.

nitrogen(N)lossesfromagriculturalsoils,sinceagriculturallandis characterizedbythepresenceofshallowgroundwaterandfertile soilssuitableforfarming.Severalstudieshaveshownthatnitrate leachingthroughunsaturatedsoilcanhaveanimportantimpacton groundwaterpollution(Gustafson,1983;Bijay-Singhetal.,1995; Arrateetal.,1996;Sánchez-Pérezetal.,2003c).However,the rela-tionshipbetweengroundwaterNO3−concentrationandNsources usedatthesoilsurfaceiscomplex.

Previousstudieshaveprovedthatcropmodelspresent poten-tialforquantifyingtheimpactofagriculturalactivitiesonnitrate leachingintogroundwater(WagenetandHutson,1996;Loagueand Corwin,1996;HoffmannandJohnson,1999).First,theyareableto simulatecomplexprocessesandcalculatevariablesthatare diffi-culttomeasure.SeveralimportantsourcesofNinagriculturalsoils, suchasmineralizationfromorganicmatterornitrogen-richcrop residues(e.g.,legumes),fertilizeroratmosphericdeposition,can beconvertedtoNO3−andincorporatedintogroundwaterrecharge

(3)

Fig.1. Mapofthestudyareashowing(a)thelocationofthestudyarea,(b)thefloodplainlimit,thefoursoiltypesdefinedandthepiezometerlocations,and(c)2006and (d)2007landuseandlocationsofthemonitoredfields(indicatedbynumbers).

(Böhlke,2002).Thatiswhysoil-cropmodels,validatedusinginsitu measurablevariables,suchassoilwatercontent(SWC)andsoil mineralnitrogen(SMN)content,areusefulforquantifyingnitrate leachinginagriculturalareas.

Anotheradvantageofcropmodelsistheirabilitytosimulate thecroprotationpatternandthefallowperiodbetweentwomain cropsoverseveralyears.Thisiscriticalforstudyingnitrate leach-ing becausethe temporal dynamics of this process are greatly influencedbythestatusofthecropandclimaticvariations.This temporalaspectisalsousefulforpredictingthemitigationeffects ofimprovedagriculturalpractices,suchasoptimizedNfertilizer applicationsandcatchcropestablishment,onsoilandwaterstatus. IftheSMNlevelatharvestishighandnonewcropissown imme-diately,theuseofacatchcropisanefficientwaytoreducenitrate leachingduringfallowperiods(seereviewbyThorup-Kristensen etal.,2003).However,theeffectsofanycatchcropshouldbe eval-uatedoverthelongtermratherthanjusttheshortterm(Berntsen etal.,2006).

Manymodels suchasCropEnvironment REsource Synthesis (CERES)(RitchieandOtter,1984;JonesandKiniry,1986),Erosion ProductivityIntegratedCalculator(EPIC)(Williamsetal.,1989)and SimulateurmulTIdisciplinairepourlesCulturesStandard(STICS) (Brissonetal.,1998)areabletosimulatecropgrowthandwater andnitrogenbalancesatfieldscale.However,thepredictive qual-ityofthesemodelshasbeenevaluatedmainlyonthebasisofannual experimentsand/orexperimentalconditions.Theirabilityto pre-dictwater and nitrogenleaching over 2–3years in “real” farm conditions,whichmaydifferfromtheagriculturalpracticesapplied onexperimentalsites,needstobemorewidelyevaluatedbefore theyareusedtosimulateexantescenariosofcroppingsystems (Beaudoinetal.,2008).Onepossibilityistocomparetemporal sim-ulatedandmeasuredsoilwaterandmineralnitrogenintherooting zoneinordertoevaluatetheabilityofthemodeltosimulatethe

nitrogencycleandwaterandnitratemovementsintheunsaturated zoneofthesoiltowardthegroundwater.

Theaimofthisstudywastoanalyzeandquantifywhenand where nitrateleaching occurs in an alluvialfloodplain, using a dynamicsoil-cropmodel.Theobjectivesofourworkweretwofold: (1)toevaluatethepredictivequalityofthedynamicSTICS soil-cropmodelforsimulatingsoilwaterandmineral-Ncontentsover threesuccessiveannualperiodsincomparisonwithfield measure-ments;(2)toanalyzeandquantifytheimpactofcropsequenceand theeffectofinitialsoilmineralcontentonsimulatedspatialand temporalnitrateleaching.Theworkwascarriedoutinfarmfields locatedinthealluvialfloodplain,inwhichconventionalagricultural practicesareapplied.

2. Materialsandmethods

2.1. Studyarea

ThestudysiteislocatedinameanderoftheGaronneRiverat Monbéqui insouthwesternFrance(43◦5330N,1◦1300E).The area extends over approximately 12km2, with 50 agricultural fields,mostofwhichareusedforcrops,makingupabout75%of thetotalarea(Fig.1).

The alluvialplain of theGaronne River comprises a succes-sionofterraces.Analluvialaquiferissituatedinthefirstterrace, whichiscomposedofcoarsealluvium.Thefirst50–100mfrom theriverbankare coveredby riparianforest andpoplar planta-tions, beyondwhich lies agricultural land. The alluvial aquifer comprises a layer, about 6–7m thick, overlying impermeable andinduratemarl.Previousmeasurementsofnitrate concentra-tioninthisaquifershowedconsiderablespatialvariabilityovera shortdistance.Themeasurednitrateconcentrationinthe ground-water (see Fig. 1 for piezometers location) varies widely from

(4)

Table1

Climaticdata(rainfall,minimumandmaximumtemperatureandcumulativesolarradiation)recordedfromNovember2004toOctober2007.

Period Rainfall(mm) MeanTmin(◦C) MeanTmax(◦C) Cumulativesolar

radiation(MJm−2)

1/1/04–30/11/05 501 8.7 17.7 4861

1/12/05–31/10/06 644 8.5 20.2 4896

1/11/06–31/10/07 600 8.7 19.0 4971

10 to 90mgNO3L−1, whereas in theriver it varies from10 to 20mgNO3L−1(Sánchez-Pérezetal.,2003b).Interactionsbetween

theriverand thegroundwatercouldexplainpartofthespatial distributionofnitrateconcentrations.Indeed, dilutionand den-itrificationprocessescouldexplainthelowgroundwaternitrate concentration(∼10mgNO3L−1)observedin thealluvialaquifer alongtheriverbank(Sánchez-Pérezetal.,2003a;Iribaretal.,2008). Infact,thereare“hotspots”ofdenitrificationintheaquiferareathat areregularlysubjectedtomixingofriverwaterandaquiferwater (McClainetal.,2003;Sánchez-Pérezetal.,2003a;Iribaretal.,2008). Inaddition,inthisareathenitrateconcentrationsingroundwater aredilutedbytheriverwater(Wengetal.,2003;Peyrardetal., 2008).However,therearealsolargespatialvariationsin ground-waternitrateconcentrationinsidethealluvialaquiferunderlying agriculturalland,wheretheinfluenceofriverwaterisverylow.

Themaincropsinthestudyareaarewheatandmaize, with lessimportantcropsbeingpeas,sorghum,soybean,rapeseedand sunflower.Melonsandvetch(greenmanure)arealsogrown occa-sionally.Someofthemaizeandwheatfieldswerebeingusedto evaluatenewcultivarsinlargetrialscarriedoutbyseed compa-nies.Poplarplantationsrepresentedabout15%ofthetotal area andwerelocatedneartheriver.Therestoftheareawascovered bybuildings(5%)andriparianforest(5%).

Meanannualprecipitationinthestudyareaisabout660mm (1994–2007).MeteorologicaldatafortheperiodfromDecember 2005toOctober2007werecollectedonthesiteusinganautomatic meteorologicalstation(Table1).FromJanuary2005toDecember 2005,precipitationdatawereobtainedfromtheMonbéqui meteo-rologicalstation(MeteoFrance),located1kmfromthestudysite. Data ontemperature, wind, humidity and solarradiation were obtained from Toulouse-Blagnac meteorological station (Meteo France),located50kmfromthesite.Forthethreecropsequences onthemonitoredfields,the2004–2005periodwasthedriestand the2005–2006periodthewettest.Themeanminimum temper-atureandthemeandailysolarradiationwerealmostthesame forallthreecroppingperiods.Totalannualrainfallwas501mm forthe2004–2005period,644mmforthe2005–2006periodand 600mmforthe2006–2007period.Seasonalprecipitation distri-butionshowsthatprecipitationtendstobelowerinwinterthan inspring,summerandautumn.Insummer,showersandstorms cangenerateshort,intenseprecipitationevents(ca.30mmday−1).

Duringthestudyperiod,thegroundwaterlevelvariedbetween2.5 and5mbelowthesoilsurfaceandthegroundwaterdidnotinteract withtherootsystemsofarablecrops.

2.2. Experimentaldesign

2.2.1. Monitoredfieldsandfield-scalemodeling

Soilscoreswerecollectedfrom25fields(includingseven mon-itoredfields)inordertodeterminesoilcharacteristics,i.e.,texture, organicmatter,pH,totalcarbonates(Table2).Therewasatexture gradientfromtheriverbanktotheendofthefirstterraceranging fromsandyloamtosiltyclayloamtexture.Thisgradientwas par-ticularlypronouncedneartheriverbank,wherethereareriparian forestsandpoplarplantations.Thesoilcharacteristicsofthe agri-culturalfieldswerefairlyhomogenous.Fromthesoilanalysis,four classesofsoilsweredistinguished(Fig.1).Soil1wassituatednear theGaronneriverbank,itstexturewasloamy,anditcontaineda highpercentageoflimestone.Soil2,situatedalittlefartherfrom theriverbed,wasasiltyloam,andcontainedlesssandandmoresilt thansoil1.Soils3and4weresiltyclayloams,butsoil3contained lesssandandCaCO3thansoil4,anditspHwaslower.

A groupof seven fields wasmonitoredfrom February 2005 (fields1,6,and 10)orDecember2005(fields2,3,5,and 8)to October2007.Thesefieldswerearepresentativesampleofallmain cropsandsoiltypesatthesite.Theyincludedsixagriculturalfields (1,2,3,6,8,and10)andafallowfield(5),occasionallygrazed,with nocroppingormineral-Nfertilizer,whichwasusedasthecontrol representingminimumNleachingundertheprevailing pedocli-maticconditions(Fig.1b).Thecropsequencesandthequantityof Nfertilizerandirrigationwaterappliedtoeachofthemonitored agriculturalfieldsarereportedinTable3.Onlymaizeandsorghum wereirrigated.Peaandsoybeanweregenerallynotfertilized.One wheatfieldwasnotfertilizedin2006,becausethesamplingzone waslocatedinanunfertilizedareaofawheattrial.Sunfloweris usuallynotfertilizedwithNbecauseithaslowNrequirements anditsNneedsaremetbyahighlevelofsoilNmineralizationin springandsummer.

Foreachfield,soilcoreswereextractedon7–13samplingdates, fromFebruary2005toNovember2007(seeFig.1).Thesoilcores werecollectedtoadepthof1.2musinganautomaticsoilcorer. Inordertotakeintra-fieldvariabilityintoaccount,between6and

Table2

Soilpropertiesofthefoursoilsidentifiedinthestudyarea.

Soil1 Soil2 Soil3 Soil4

Depth(cm) 0–30 30–120 0–30 30–120 0–30 30–120 0–30 30–120 Sand(%) 36 38 30 28 12 10 20 23 Silt(%) 44 44 52 50 59 52 51 48 Clay(%) 20 18 18 22 29 38 29 29 pH 8.2 8.4 8 8.3 7.3 7.5 8.5 8.3 CaCO3(%) 6.7 7.6 1.7 2.8 0.1 0.1 2 2.6 Organic-C(gkg−1) 10 5 9 6 12 8 12 8 Organic-N(gkg−1) 0.9 0.4 0.8 0.5 1.0 0.6 1.0 0.6

Fieldcapacity(wateringg−1ofsoil) 22.6 15.7 21.6 20.9 24.2 23.1 23.0 22.0

(5)

Field Croprotation 2005 2006 2007 Crop Fertilization (kgNha−1) Irrigation (mm) Crop Fertilization (kgNha−1) Irrigation (mm) Crop Fertilization (kgNha−1) Irrigation (mm)

1 Soybean 0 0 Winterpea 0 0 Maize 150 175

2 Maize 95 140 Wheat 140 0

3 Sorghum 220 80 Wheat 108 0

5 Fallow 0 0 Fallow 0 0

6 Springpea 0 0 Wheat 0 0 Rapeseed 178 0

8 Soybean 80 0 Soybean 50 0

10 Sunflower 0 0 Wheat 134 0 Soybean 40 0

10cores,dependingonthesizeofthefield,weretakenfromeach fieldoneachsamplingdate.Eachsamplewasfirstdividedintofour layersof30cmandthenmixedbetweenthe6and10coreslayerby layerbeforeanalysis.Thefirst30cmcorrespondedtotheplowed horizon;theotherlayersdidnotcorrespondstrictlyto pedologi-calhorizonsbutwereselectedtoevaluatethecapacityoftheSTICS soil-cropmodeltosimulatewaterandnitratemovementinsidethe soilprofile.Thecoreswerehomogenizedandmoisturecontentwas measuredafterdryingat105◦Cfor24h.Sampleswereextracted with1molL−1KClsolutionper100goffreshsoil,andnitrateand ammoniumcontentsweremeasuredbycontinuousflow colorime-try(autoanalyzer,SkalarAnalytical).

Soilmoistureat fieldcapacity andatwiltingpoint was esti-matedfromgravimetricinsitusoilmeasurements.Fieldcapacity ofeach30cmlayerwasestimatedfromsoilcoressampled2–3 daysafterrainfalleventsduringthethreewintersstudied. Wilt-ingpointmoisturewasestimatedfrommeasurementsmadeatthe endofsummerandthebeginningofautumnafterthecropswere harvested.ThesevaluesaresummarizedinTable2.Theestimated fieldcapacityvalueswereingoodagreementwiththoseestimated usingthepedotransferfunctiondevelopedbySaxtonandRawls (2006),whilethewiltingpointsweregenerallyalittlelower(1–2%) thanthoseestimatedwiththisfunction.Moreover,insitusoil mois-turemeasurementsaremorerepresentativethanstandardizedlab experiments(soilhomogenizedandsievedthrough2mmmesh) carriedoutonde-structuredsoil(Maryetal.,1999).Forthefields studied,theavailablesoilwaterforcropsvariedbetween190and 235mmtoadepthof1.2m.

The STICS model was initialized once using soil water and mineral-NcontentsmeasuredinFebruary2005forfields1,6and 10,wherespringcropsweresownin2005;andwiththe corre-spondingdatafromDecember2005forfields2,3,5and8,where wintercropsweresown.Theoutputvariablesusedformodel eval-uationwerethewaterandmineral-Ncontentsinthewhole1.2m deepsoilprofile.

2.2.2. Samplinginsupplementaryfieldsandmodelingofthe wholestudyarea

InordertoevaluateSMNvariabilityforthewholestudyarea, allfieldsweresampledin2007,specificallyinJulyafter harvest-ingofthewintercrops(wheat,rapeseed,winterpea)andinearly Novemberafterharvestingofthespringcrops(maize,sorghum, sunflower,melon,andsoybean).Thesefieldsweresampledand analyzed(waterandmineral-Ncontents)usingthesamemethods asforthemonitoredfields.WhilemeasuredSMNandSWCwere usedastheinitializationdataforthemonitoredfields,initialization fortheotherfieldsinthealluvialzonewasperformedinNovember 2005usingvaluesobtainedbyinversionoftheSTICSmodelinorder tominimizedifferencesbetweenpredictedandmeasuredSWCand SMNvaluesatharvest2007.TheinitialSWCvaluesobtainedwere closetofieldcapacityasforthemonitoredfields.InitialSMNvalues

variedbetween25and300kgNha−1,whichisthesamerangeof variationasforthemonitoredfields.Usingthismethodandthe esti-matedinitialvalues,thesimulatedSMNvaluesatharvestin2007 wereinreasonablygoodagreementwiththemeasuredvalues.The biaswassmall(ME=3.1kgN-NO3ha−1)andRMSEwasfairlygood (RMSE=26.9kgN-NO3ha−1).Itwasthenpossibletorunthemodel andtocalculatenitrateleachingforeachfieldinthestudyarea.As thesimulationsofthe7monitoredfieldsshowedthatdrainagewas eithernilorverylowduringthe2004–2005cropsequence,the sim-ulationswereonlyperformedonthe2005–2006and2006–2007 cropsequences,whicharepresentedinFig.1b.Cropmanagement practiceswereassessedusingdataonrealfarmpracticescollected insurveysofthefarmerswhomanagethemonitoredfields. 2.3. Modelevaluation

ThestatisticalevaluationofthemodelfocusedonbothSMN andSWCmeasuredonthesamplingdates.Threestatisticalcriteria wereused(Smithetal.,1996):

Modelefficiency(EF):optimalvalue=1

EF=1−



n

i=1(Pi−Oi)2



n

i=1(Oi− ¯O)2

Meanerror(ME)anditsrelativevaluein%(ME%):optimalvalue=0

ME= 1 n n



i=1 (Oi−Pi); ME%=



ME¯ O



×100

Rootmeansquareerror(RMSE)and itsrelativevalue(RMSE%): optimalvalue=0 RMSE=









1 n n



n=1 (Oi−Pi)2; RMSE%=



RMSE ¯ O



×100

wherenisthenumberofobservations,Oitheobservedvalue, ¯O themeanoftheobservedvalues,andPithevaluepredictedbythe model.

Amodelefficiencylevelhigherthan0.6isgenerallyaccepted asveryefficient.Ameanerror(%)andaRootmeansquareerror (%)lowerthan15%canbeconsideredveryefficientconsideringall theprocessessimulatedandthesimplificationsusedinthemodel (Smithetal.,1996).

(6)

Fig.2.Observedandsimulatedvaluesof(a)soilwaterand(b)soilnitrogencontent overa1.2mdepthinthemonitoredfields.

2.4. TheSTICSmodel

ThisstudywascarriedoutusingtheSTICSmodel,whichwas mainlydevelopedattheNationalInstituteofAgronomicResearch (INRA)inFrance.STICSisadynamicsoil-cropsimulationmodel functioningatthedaytimescale(Brissonetal.,1998,2002,2003, 2008).Thecropof interestis characterizedby itsaboveground

biomass(carbonandnitrogen),leafareaindex,andnumberand biomass(carbonandnitrogen)ofharvestedcroporgans.Thesoil descriptionincludesfourcompartments:microporosity(or textu-ral porosity),macroporosity(orstructural porosity),fissures(in thecaseofswellingclaysoils)andstones(varioustypesofstones accordingtotheirporosityandwaterstorage).Thesoilisdivided into a maximum of 5 horizonsbut calculations of microporos-ityaredoneper1cm layer,which istheresolution requiredto derive nitrateconcentration with relevanceas shown byMary etal.(1999).Watertransportinsoilmicroporeswascalculatedfor each1cmlayerusingatippingbucketapproach.Thedailywater budgetallowscalculationofthewaterstatusofthesoil, includ-ingactualevaporationandcroptranspiration,aswellasindices ofwaterstress,whichreduceleafgrowthandnetphotosynthesis ofplants.Itisbasedonestimatingthewaterrequirementsofthe soil–leafsystemontheonehandandonthewatersupplytothe soil–rootsystemontheother.Thedailynitrogenbudgettakesinto accountmineralizationfromhumusandcropresidues, denitrifica-tion,nitrogenabsorptionandsymbioticN2fixationforleguminous crops.

IntheSTICSmodel,thesoilischaracterizedbythickness,bulk density,fieldcapacityandwiltingpointvaluesforeachlayer;these propertiesneededtobespecifiedforeachlayerwhosedepthis determinedby theuser(actual pedologicalorsamplingdepth). Othersoilpropertydataarerequiredtorunthemodel,suchas the organic N, clay, pHand carbonate contents in the plowed layer;theseparametersdrivethesoilNmineralizationsimulation. The last inputs required are climate data, such as daily mini-mumandmaximumtemperatures,solarradiation(globalincoming energy),rainfallandcalculatedpotentialevapotranspiration.For cropmanagement,themodelrequiresdataonsowing(date,depth and density),mineraland organicNfertilization, irrigationand soiltillagewithplowingofcropresiduesandorganicproducts. The model can beused onsuccessive crop sequences without re-initializationeveryyear.Soilwater,mineralnitrogen,organic nitrogenandcarbonareupdatedaftereachcropcycle. Decomposi-tionofcropresiduesisalsotakenintoaccountfromharvesttothe nextcrop.TheSTICSmodelwasinitiallyparameterizedand vali-datedforbaresoilandwheatandmaizecrops(Brissonetal.,1998), butithassincethenbeenadaptedforothercropssuchasrapeseed, sunflower,soybean,flax,tomato,sorghum,lettuce,whitemustard, sugarbeetandpotato(Brissonetal.,2003).Morethan200output variablescanbesimulateddaily,suchas(i)soilwaterandnitrate contentsin eachlayer,(ii)cropwater andnitrogenuptake,and (iii)waterdrainage,nitrateleachingandnitrateconcentration—the outputvariableshighlightedinthisstudy.AstheSTICSmodelhad previouslybeencalibratedandvalidatedforallthecropsstudied inthepresentwork(Brissonetal.,1998,2003),weusedthemodel withoutanyspecificcalibrationofcropparameters.Moreover,no

Table4

Validationresultsofsimulatedsoilwatercontentandmineral-Ncontent.

Field1 Field2 Field3 Field5 Field6 Field8 Field10 Allfields

Soilwatercontenton0–120cm(mm)

Obsnumber 11 9 7 8 9 9 13 66 ME −9.7 −11.9 −25.7 27.7 −23.1 2.0 −4.5 −10.3 ME(%) −3.5 −3.4 −6.7 7.4 −6.3 0.5 −1.4 −3.0 RMSE 16.6 22.2 28.8 46.2 32.8 25.6 30.2 23.7 RMSE(%) 6.0 6.4 7.6 12.3 8.9 6.7 9.1 6.8 EF 0.92 −0.51 −4.70 −1.41 0.82 0.12 0.81 0.84

Soilmineral-Ncontenton0–120cm(kgNha−1)

Obsnumber 11 9 7 8 9 9 13 66 ME −6.2 −11.2 9.0 −4.0 18.8 8.0 2.4 0.5 ME(%) −7.0 −4.8 3.0 −31.2 14.0 9.0 3.6 0.4 RMSE 28.1 31.2 35.5 7.6 33.9 27.7 19.4 27.7 RMSE(%) 31.6 13.5 12.0 58.7 25.2 30.9 29.5 22.8 EF 0.59 0.90 0.51 −0.01 0.68 0.67 0.56 0.92

(7)

specificcalibrationwascarriedoutforanysoilorcropprocesses sincethemodelcansimulatea widerangeofpedoclimatic and croppingsystemconditions(Brissonetal.,2003).

3. Resultsanddiscussion

3.1. Modelvalidation

Forthesevenmonitoredfields,thesimulatedvalueswerein goodagreementwiththeobserveddata(Fig.2).Forsoilwater con-tent(SWC) thesimulationsweresatisfactory(Fig.2a;R2=0.81; P<0.001).However,therewasasmalltendencyforthemodelto overestimatethelowerSWCvalues.Overall,SWCwas overesti-matedbyonly10.3mm(3.0%)onaverage(Table4).TheMEvalues werelowandrangedfrom−25.7mmto27.7mm.Therewasaslight overestimationforfields1,2,3,and6and10,andaslight underesti-mationforfields5and8.Thepredictionerror(RMSE)waslowand variedbetween6.0and12.3%.Modelefficiencywassatisfactory forfields1,6,and10.Forfield8,efficiencywasslightlyhigherthan zero,whilefortheotherfields(fields2,3and5)modelefficiency waslessthanzero.Thislowefficiencycouldbeexplainedbythe smallrangeofvariationintheobserveddata.Thusthemodelwas notabletosimulateverysmallvariationsinwatercontent(afew mmofwaterfor1.2msoildepth),whichcouldhavebeenpartly duetomeasurementprecision.

Withregardtosoilmineralnitrogen(SMN),themodelwasable tocorrectlysimulatetheobservationswithoutanybias(Fig.2b; R2=0.92;P<0.001).Therangeofvaluesoftheobserveddatawas large,indicatingthatthemodelhassufficientsensitivitytosimulate largesoilmineral-N variations.The SMNcontent was overesti-matedbyonly0.5kgNha−1onaverage.ThisgoodoverallMEwas partlyduetocompensationeffectsbetweenfields.Thesoil mineral-N wasslightly overestimated in fields 1, 2 and 5, and slightly underestimatedinfields3,6,8and10.Thepredictionerror(RMSE) variedbetween12.0 and58.7%. Themodel efficiencywasgood (>0.6)forfields1,2,6,and8andlesssatisfactoryforfields3and10. Forfield5(fallowlandusedforgrazing),theefficiencywaslessthan zero;thehighMEandRMSE(31.2%and58.7%respectively)andthe poorefficiency(almostzero)couldbeexplainedbythelowvalues andvariationinsoilmineral-N.Nevertheless,theoveralltrendfor field5andthelevelofconcentrationwerecorrectlysimulated.In general,thevaluesofMEandRMSEwereingoodagreementwith thosereportedbySchnebelenetal.(2004),Beaudoinetal.(2008)

andJégoetal.(2008)forpredictingSMNusingtheSTICSmodel forvariousarablecrops.Furthermore,itisnoteworthythattheME, RMSEandEFwerealmostsimilarinthefoursoillayersstudied, indicatingthattheSTICS modelcansimulatedynamicSWCand SMNprofiles.

Fig.3showsthetemporalchangesinsimulatedsoilmoisture andSMNincomparisonwithobserveddataforeachsoillayerin field1asanillustrationofmodelperformance.Theseresults indi-catethatthemodelwasabletocorrectlysimulatethetemporal changesin water and mineral-Nquantitiesin thedifferentsoil layers.Theseasonalvariationsinsoilmoistureweresignificant. Summers were characterizedby a large decrease in soil mois-ture,up tovalues close towiltingpoint (at leastfor the three firsthorizons).However,thecropsequencehadanimpactonthe temporalpatternofthesevariations.Theshorterperiod charac-terizedbymoistureatfieldcapacityduring2005–2006compared with2006–2007couldbeexplainedbythelongerperiodofbare soilbetweenpeaharvest(2006)andmaizesowing(2007)as com-paredwiththeperiodbetweensoybeanharvest(2005)and pea sowing(2006).Inthedeepestsoillayer(90–120cm),soilmoisture decreasedsignificantlyonlyduringsummer2005.

SMNvaluesintheuppermostlayer(0–30cm)increasedinthe springbecauseofsoilorganicmatterandcropresidueN mineral-ization(andNfertilizationin2007).ThedecreasesinSMNobserved aftereachofthesethreeincreaseswereduetocropNuptakeand nitratetransfertodeepersoillayers.Inthe30–60cmand60–90cm layers,SMNdecreasedrapidlyafterthebeginningofthe simula-tionduetoNabsorptionbysoybean.SMNinitiallyincreasedatthe beginningof2006duetonitratetransferfromtheupperlayerand decreasedthereafterbecausethissignificantamountofnitratewas transferredtothelowerlayer.Thenextincreasewasalsodueto nitratetransferfromupperlayers.Finally,SMNdecreasedbecause oftransfertolowerlayersandNuptakebythemaizecrop.Inthe deepestlayer(90–120cm),SMNincreasedfromMarch2006due tonitratetransfer.

Simulatedsoilwaterandnitrogenlevelswereingood agree-ment with the measured values despite the wide range of agronomic(croptype,fertilizationandirrigation)and environmen-talconditionsencounteredduringourstudy.Althoughforsome fieldsandsomesamplingtimes,thesimulationswerenotalways completelysatisfactoryintermsofabsolutevalues,thetrendsand rangeofvariationweresatisfactoryforallfields.Thegood agree-mentbetweensimulatedandmeasuredvaluesprovidesconfidence inthesimulationsofnitrateleachingandwaterdrainagefluxes. Moreover,itcanbepostulatedthatthemodelcorrectlysimulated (i)theNmineralizationdynamicsofsoilorganicmatterandthe decompositionofcropresidues,and(ii)waterandnitrate trans-ferwithinthesoilprofile,becausenobiaswasobservedinthe simulationofSWCandSMNovertheentireyearforallthe moni-toredfields.Thisisparticularlytrueduringthelongbaresoilperiod betweentwomaincrops(springcropsownafterwintercrop,e.g. maize afterwinter wheat),where nointeraction occurredwith plantNuptake.Themodelcouldthenbeusedtoevaluatethe rel-ativeeffectsofdifferentinputvariablesonnitrateleaching,asalso shownbyotherauthors(e.g.Beaudoinetal.,2005).

3.2. Evaluationofspatialandtemporalvariabilityinnitrate leaching

3.2.1. Simulatedtemporalvariationsinthethreecroppingyears Temporalchangesinsimulateddrainage,nitrateleachingand nitrateconcentrationareillustratedinFig.4forfields1and6,which arerepresentativeofthesevenmonitoredfields.Duetothelow levelofprecipitationduringthepreviousyear,soilmoisturewas belowfieldcapacityduringthe2004–2005winter,whichledthe modeltosimulatenodrainageornitrateleachinginfield1(Fig.4a andb).Inthisfield,likeinothermonitoredfields,twoperiodsof drainageoccurred,asindicatedbythemeasuredsoilmoistureand waterbalance.Thetemporalpatternanddurationoftheseperiods canvaryfromfieldtofieldaccordingtothecroppingsequence.In 2006,themonthofMarchwasrainy(107mm)andthesoil microp-oresweresaturatedtoadepthof1.2mduringthisperiod.Thishigh rainfallcombinedwiththebaresoilwasresponsibleforthefirst sig-nificantsimulateddrainageevent(13mm)forfield1.Fromautumn 2006untilspring2007,allsoillayerswereclosetofieldcapacity, henceeverynewrainfalleventgenerateddrainage,assimulated bythemodel(Fig.4a).Forfield1,thesimulationindicated signifi-cantnitrateleachingof113kgNha−1duringthestudyperiodand aconsiderablevariationinnitrateconcentrationindrainagewater, thatis,50–240mgNO3−L−1(Fig.4c).Theweightedaveragenitrate concentrationoverthewholeperiodwas190mgNO3−L−1.

Fig. 4 also shows temporal changes in simulated drainage (Fig. 4d), nitrateleaching (Fig.4e)and nitrate concentrationin drainage water (Fig. 4f) for field 6. In this field, the temporal variationinsimulateddrainageandnitrateleachingwasslightly differentfromthatinfield1.Thefirstsignificantsimulateddrainage eventoccurredinFebruary2005,earlierthaninfield1,andthe

(8)

Fig.3. TemporalchangesinobservedandsimulatedgravimetricsoilmoistureandSMNforfield1atdifferentsoildepths.Croppingperiodsareindicatedingray.

seconddrainagefluxoccurredinApril2005.Thesedrainageevents maybeexplainedbytheinitialSWC,whichwashigherinfield6 thaninfield1becauseoftheprecedingcrop.Thesimulatedmain drainageperiod(almost200mm)occurredinfield6intheperiod fromNovember2005toApril2006,inspiteofthepresenceofa

winter wheatcrop, andthesimulated amountofnitrate leach-ingwas44kgNha−1 (Fig.4e),orhalfthatinfield1.Mostofthis nitrateleachingoccurredduringthe2006drainageperiodwiththe winterwheatcropbeingpresent,whentheamountofdrainage waterwassignificantandassociatedwithnitrateconcentrations

(9)

Fig.4.Simulatedtemporalchanges(aandd)indrainageandcumulativedrainage,(bande)innitrate-NleachingandcumulativeNleaching,and(candf)ininstantaneous nitrateconcentrationindrainagewaterandflowweightedmeanNO3−concentrationinfields1and6.ArrowsindicatetimeandamountofN-fertilization.Croppingperiods areindicatedingray.

varyingbetween60and100mgNO3−L−1(Fig.4f).Finally,the sim-ulationsindicatedthereweretwomainperiodsofdrainagein2007, January–MarchandSeptember–October.

Fields1and6showedtwodifferentpatternsoftemporal distri-butionofdrainageandalsoofnitrateleaching.Spatialanalysisof nitrateleachinginallfieldsinthestudyareacouldhelpto deter-minewhichofthesetwopatternsofdistributionisdominant. 3.2.2. Simulatedspatialvariationinnitrateleaching

Fig.5showsthecumulativenitrateleachingsimulatedduring twosuccessivecropsequences(2005–2006and 2006–2007)on allfieldsin thestudyarea. The2004–2005cumulativeleaching resultsarenotpresentedbecausetherewasalmostnodrainage duringthatperiod.Inthesixmonitoredagriculturalfields,nitrate leachingrangedfrom5to160kgNha−1in2005–2006andfrom 5to120kgNha−1 in2006–2007.In thefallowfield (5),nitrate leachingwasstillpredictedtobelessthan5kgNha−1.Inallother

agriculturalfields,averagenitrateleachingwasslightlyhigherin 2006(38kgNha−1)thanin 2007(23kgNha−1)(P<0.05). Over-all,mostofthenitrateleachingoccurredduringspring2006,as illustratedforfield1(Fig.4b).Thelevelofnitrateleaching was lowerduring winter2006–2007and spring2007.Nevertheless, forbothyears,therangeofvariationinnitrateleachingbetween thefieldswasquitelarge.In2006and2007,just15%ofthefields accountedfor60and67%ofnitrateleaching,respectively.Nitrate pollutionofgroundwaterisoftencalled“diffusepollution”in ref-erencetothepolluterpaysprinciple.However,inthestudyareas, thenitrateleachingwasassociatedwithpointsourcepollution(at thefieldscale)andwascharacterizedbyconsiderablespatial vari-ationwithinashortdistanceandbytemporalvariations.Therewas nosignificantdifferenceinsimulatednitrateleachingbetweenthe twomaincropsinthearea(wheatandmaize)ineither2006or 2007.Moreover,therewasnosignificantdifferenceinnitrate leach-ingamongtheothercropsbecauseofthehighspatialvariability

(10)

Fig.5. Spatialdistributionofsimulatednitrateleachingat1.2mdepthunderall fieldsinthestudyarea(a)in2005–2006and(b)in2006–2007.

betweenfields.However,in2007,simulatednitrateleachingwas significantlyhigher(P<0.05)fromthemaizeandcerealcultivar testingtrialfields,whereasin2006thedifferencewasnot signifi-cant(P=0.48).Thesefields,usedfortheassessmentofnewcultivars bybreeders,weregenerallyoverfertilizedinordertoavoidtherisks ofcropnitrogendeficiency.

Soil type didnot inducesignificantdifferences in simulated nitrate leaching, but initial SMN had a significant impact. In 2006,nitrateleachingwassignificantlycorrelatedwithinitialSMN (y=0.26x+8.8;R2=0.43),whilein2007thecorrelationwasnot sig-nificant.In2007,theimpactofthenewcultivartrialfieldsofmaize andcerealwaspredominant.

Asshowninthisworkandinseveralpreviousstudies(Shepherd andLord,1996;Beaudoinetal.,2005),SMNatharvestwasthekey factorexplainingthevariationinnitrateleaching.SMNmeasuredat harvest(JulyforwintercropsandNovemberforspringcrops)inthe 40fieldsofthearea(thesevenmonitoredfieldsin2005,2006and 2007,and19additionalfieldssampledin2007)showedthatthere wasnosignificantdifferencebetweenSMNatharvestoveradepth of0–1.2mforthetwomaincrops,despitedifferencesinaverage values (wheat:60±13kgNha−1; maize: 78±25kgNha−1).The meanSMNafterwheattoadepthof1.2mwashigherthanthe 35–40kgNha−1reportedbyMakowskietal.(1999)andBeaudoin

et al.(2005)over a depthof 0–1.2min northernFrance. How-ever,overadepthof0–60cm,themeasuredSMNinawheatfield atharvest(38kgNha−1)issomewhatlowerthanthe43kgNha−1 over0–60cmreportedbyWebsteretal.(2003)intheUK.Forthe othercrops,SMNwasnotsignificantlydifferentbetweenwheatand maizebutitwaslowerforrapeseed(25±7kgNha−1)and consid-erablyhigherfortwofieldsoftrialmaizelines(215±25kgNha−1). Thesemaizelinesgenerallytakeuplessnitrogenthancommercial hybridcropsduetotheirsmallersizeandslowergrowthrate.This valueindicatesthattheNfertilizerapplicationrateswerenotwell tailoredtothesecrops,whichcouldexplainwhytheSMNatharvest wassohighinthesefields.

TheSMNcontentsmeasuredatharvestinthesevenmonitored fieldsin2007wereinagreementwiththeSMNsimulatedbySTICS (ME=15.4%;RMSE=30.5%).MeasuredSMNcontentswerealsoin goodagreementwiththemeanSMNmeasuredinallthefieldsofthe studyareaatharvestexceptforfields2and8,wheretheSMNover adepthof0–1.2mwasslightlyhigherthantherangeofvariationin theotherfieldsplantedtothesamecrop.Thisindicatesthat,overall, themonitoredfieldswererepresentativeofthefieldslocatedinthe studyarea.

Simulateddrainage,nitrateleachingandnitrateconcentration aredetailedinTable5forthemonitoredfields.Thedrainageand nitrateconcentrationwereextremelyvariablefromonefield to another,evenwithinthissmallstudyareawithitsfairly homoge-nouspedoclimaticconditionsandstocklessfarms.Inallcases,the nitrateconcentrationsindrainagewaterwereconsiderablyhigher than those in the Garonne Riverand, except for a few instan-taneousfluxesandthevaluesobtainedforthefallowfieldused forgrazing,thesimulationsindicatedthattheyweregreaterthan 50mgNO3−L−1.Thesimulatedmeanweightednitrate concentra-tionswereextremely highin 2006for fields2 and 3(241 and 334mgNO3−L−1respectively),andin2007forfields1,2and3(213, 385,and307mgNO3−L−1respectively).Theamountofdrainage wateranditsnitrateconcentrationbelowadepthof1.2mcould explainwhythenitrateconcentrationinthealluvialaquifercould reachvaluesupto60mgNO3−L−1insomepiezometersofthe allu-vialgroundwater.Asshownforfields1and6,drainagewasmore significantin2006and2007comparedto2005(almost negligi-ble),whichisexplainedbyrainfallvariability.Thesimulatednitrate leachingvalueswerehigherthan50kgNha−1forfield1in2007,for field2in2006and2007,forfield3in2006and2007,andforfield8 in2007,althoughplantNuptakeandyieldsfellwithintherangeof variationofthestudyarea(Table5).Thehighlevelofnitrate leach-ingwasassociatedwithhighnitrateconcentrationsindrainage water(>100mgNO3−L−1),whichweregenerallyassociatedwith highinitialSMN.Intheunfertilizedfallowlandusedforgrazing, thesimulationshowedthatsignificantdrainageoccurredonlyin 2007(63mm)but,owingtothegreencoverthroughouttheyear, thenitrateconcentrationswereverylow(<10mgNO3−L−1). 3.2.3. Relationshipbetweensimulatednitrateleachingand agriculturalpractices

Our work involved analyzing and explaining the high spa-tial variability of the piezometer measurements in the study area(Sánchez-Pérezetal.,2003b)in connectionwithsimulated drainage,nitrateleachingand nitrateconcentrationindrainage wateratthealluvialfloodplainscale.Therelationshipsbetween nitrateleachinganddrainage,andbetweennitrateleachingand nitrateconcentrationindrainagewaterwerenotsignificant, indi-catingthatdrainageandnitrateconcentrationindrainagewater werenotdirectlylinked.

Somestudieshaveshownthatpreviouscroptypehasanimpact onnitrateleaching(ShepherdandLord,1996;Halletal.,2001;Jégo etal.,2008).However,inourstudyareanosignificantrelationship wasfoundbetweenSMNatharvestandcroptype,probablybecause

(11)

model

for

estimating

nitrate

Table5

Inputdataandsimulatedoutputvariablesofthesevenmonitoredfields.

Inputdata Outputsvariablessimulated

Year Simulatedperiod Field Crop Rainfall (mm) InitialSMN (kgNha−1) Drainage (mm) Nitrate leaching (kgNha−1) Nitrate concentration indrainage water (mgNO3−L−1) SMNatharvest (kgNha−1) PlantN-uptake (kgNha−1) Dryyield (tha−1) 2005 18/02/05–30/11/05 1 Soybean 350 58 0 0 – 75 179 1.0 25/11/04–30/11/05 6 Springpea 425 159 74 10 63 167 231 4.3 18/02/05–30/11/05 10 Sunflower 350 74 77 7 39 53 139 5.3 2006 01/12/05–31/10/06 1 Winterpea 644 75 37 6 69 162 233 3.0 01/12/05–31/10/06 2 Maize 644 303 188 142 334 207 177 6.3 01/12/05–31/10/06 3 Sorghum 644 287 93 51 241 248 230 7.0 01/12/05–31/10/06 5 Fallow 644 25 0 0 – 14 60 – 01/12/05–31/10/06 6 Wheat 644 167 137 34 110 65 169 5.8 01/12/05–31/10/06 8 Soybean 644 58 156 9 24 101 177 4.1 01/12/05–31/10/06 10 Wheat 644 53 109 6 23 55 163 7.4 2007 01/11/06–31/10/07 1 Maize 600 162 222 107 213 119 240 9.6 01/11/06–31/10/07 2 Wheat 600 207 120 104 385 125 215 5.1 01/11/06–31/10/07 3 Wheat 600 248 118 81 307 75 258 10.0 01/11/06–31/10/07 5 Fallow 600 14 63 <1 <1 10 40 – 01/11/06–31/10/07 6 Rapeseed 600 63 106 <1 <1 87 277 3.3 01/11/06–31/10/07 8 Soybean 600 101 235 60 112 81 147 2.9 01/11/06–31/10/07 10 Soybean 600 54 253 30 53 41 165 4.2 Table6

SimulationoftheimpactofinitialSMNinfields2and3onwaterandnitratefluxes.SimulatedoutputvariablesusingactualinitialSMNarecomparedwithmodelsimulationsusinganaverageinitialSMNof80kgNha−1.

Inputdata Simulatedoutputvariables

Field Simulationperiod Crop SMNinitial

(kgNha−1) Drainage (mm) Nitrate leaching (kgNha−1) Nitrate concentration indrainage water (mgNO3−L−1) FinalSMN (kgNha−1) 2 1/12/05–31/10/06 Maize 30380 188189 14236 33484 207112 1/11/06–31/10/07 Wheat 20780 120128 10415 38552 125131 3 1/12/05–31/10/06 Sorghum 287 93 51 241 248 80 93 12 57 141 1/11/06–31/10/07 Wheat 248 118 81 307 75 80 117 9 34 83

(12)

y = 1,24x -29,6 R² = 0,80 0 50 100 150 200 250 300 350 400 450 400 300 200 100 0 NO 3 -(m g .L -1) Initial SMN (kgN.ha-1)

Fig.6. SimulatednitrateconcentrationindrainagewaterasafunctionofinitialSMN in2006and2007.

fertilizer-Nisnotproperlyadjustedtomeetcroprequirementsfor somecrops(e.g.newmaizecultivartrials)andalsobecause farm-ersdo not analyzeSMNaspartof theirapproachfor adjusting fertilizer-N.Inaddition,thethreeprecedingyearswereverydry andSMNcouldhaveaccumulatedinthesoil.Thus,no relation-shipwasfoundbetweenpreviouscropandsimulateddrainage, nitrateleaching,ornitrateconcentration(Table5).Therewasalso nosignificantcorrelationbetweennitrateconcentrationornitrate leachingandquantityofNfertilizerapplied(Fig.4a,c,d,andf). Thiswasprobablyduetothefactthatfertilizationrateswerenot adjustedbasedontheinitialSMNlevel.Consequently,thenitrate concentrationcouldvarywidelyforthesamefertilizerapplication rate.TheadjustmentofN-fertilization basedontheinitialSMN levelwouldhavedecreasedthenitrateconcentrationindrainage water,asreportedinotherstudies(HansenandDjurhuus,1996; Maryetal.,2002;Fergusonetal.,2002)anddemonstratedbythe scenariowithreducedinitialSMN.

Inthestudyarea,soiltypeanddepthwerealmosthomogenous andalthoughmanystudieshaveshownthatsoiltypehasan impor-tantimpactonnitrateleaching(Niederetal.,1995;Simmelsgaard, 1998;Hoffmannand Johnson, 1999), nosignificantimpactwas observedinourstudy.Thesmallvariabilityofsoilpropertiesand thesmallnumberofagriculturalfieldswithsoil1(3fields),soil3 (9fields)orsoil4(12fields),comparedtosoil2(26fields),could explainwhynosignificantrelationshipwasfound.

Theinitialsoilnitrogencontent,thatis,themineral-Npresentin thewhole1.2mdepthprofileatthebeginningofthestudyand sim-ulationperiod,waspositivelyandsignificantlycorrelatedwiththe nitrateconcentrationindrainagewater(Fig.6).Thisisinagreement withotherstudies(ArreguiandQuemada,2006),whichreported thatSMNcontentbeforeplanting,togetherwithdrainage,wasthe mainfactor determiningtheamountofN leachedandthusthe nitrateconcentrationindrainagewater.TheinitialSMNvaluewas particularlyhighinfields2and3and,asaconsequence,themean simulatednitrateconcentrationindrainagewaterwasalsovery high.InordertoexaminetheimportanceofinitialsoilmineralN content,weusedscenarioswithlowerinitialSMNvalues.The sim-ulationsofthe2005–2006–2007cropsequencesshowedthatthe nitrateconcentrationindrainagewaterfromfields2and 3was veryhigh.Theuseofacatchcropwasnotpossibleinthese sit-uationsbecausetheperiodofbaresoilbetweenmaincropswas tooshort.Astrongpositivecorrelationwasfoundbetweenthese nitrateconcentrationsand initialSMN.Inordertoexaminethis relationshipmoreclosely,wecarriedoutsimulationsforthesetwo fieldswithaninitialSMNof80kgNha−1.Forthetwofieldsandfor thetwosuccessiveyearssimulated,decreasingtheinitialSMNled toalargedecreaseinnitrateleachingandnitrateconcentrationin

drainagewater,withoutaffectingthemaincropyields(Table6). TheseresultsillustratetheimportanceofreducinghighSMN con-tentsduringautumnbeforethewinterdrainageperiodinorderto reducenitrateleaching.Insuchasituation,acatchcropmaybe asolutionforreducingnitrateleaching(Thorup-Kristensenetal., 2003).

The SMN level in late autumn,before winter drainage, was foundtobethemaincontributingfactor.Thisdemonstratesthat Nmanagementwasunsatisfactoryinthemediumtermandthat cumulativeproblemsassociatedwithunsuitableagricultural prac-ticesmaybemoredetrimentalforNmanagement thana single annualcaseofnitrogenoverfertilizationincasesofdeepalluvial soils,particularlyinsituationsofloworhighlyvariabledrainage betweenyears.

4. Conclusions

ThesimulatedSWCand SMNvalues inthedynamic simula-tionsweregenerallyandspecifically(temporalandbetween-layer changes)ingoodagreementwiththemeasuredvalues.These sat-isfactory resultsallowed themodel tobeused tosimulate the temporal andspatial variabilityin nitrateleaching toprovidea diagnosticassessmentof thesituation.Thisworkcouldprovide thebasisforfuturestudiestoassesstheimpactofmodifications ofagriculturalpracticesaimedatdecreasingnitrateleachingand nitrateconcentrationindrainagewater.

TherewasnosignificantdifferenceinSMNvaluesatharvestor innitrateleachingforthedifferentmaincropsinthestudyarea, althoughlargebetween-fieldvariationswereobserved.Nitrogen managementinthispartofthealluvialfloodplainwasnot effec-tiveandhencethenitrateconcentrationsindrainagewaterunder cropsweretoohigh.Drainageandnitrateconcentrationvalues var-iedwidelyfromonefieldtothenext,dependingontheprevious crop,agriculturalpractices(withorwithoutirrigation)andannual climateconditions.Forsomefields,theaverageannualnitrate con-centrationindrainagewaterwasgreaterthan200mgNO3−L−1and nitrateleachingexceeded100kgNha−1.Analysesoftemporaland spatialvariabilityinnitrateleachingshowedthatthepatternof nitrateleachingwasextremelyspecificandirregular(spatiallyand temporally)andalsothattheSMNcontentattheendofautumn, beforethewinterdrainageperiod,wasthemostsignificantfactor explainingthisvariability.Forthestudyarea,thismeansthatN managementmustbeaimedatreducingSMNasmuchaspossible inNovember.ThismeansthatNfertilizationforthenextmaincrop mustbeadjustedbytakingintoaccounttheresidualSMNatthe beginningofthecropseason(soilanalysismaybenecessary)and byplantingcatchcropstodecreaseSMNbeforethewinter.

Inordertocomplementthisworkandtobetterassesstheimpact ofthespatialandtemporaldistributionofnitrateleachingunder agriculturalfieldsonthenitrateconcentrationingroundwaterand intheGaronneRiver,theSTICSsoil-cropmodelcouldbecoupled witha hydrogeologicalmodel. Thiswouldpermit simulationof (i)theimpacts of agriculturalactivitiesongroundwaternitrate concentrationanditsspatialvariability and(ii)theinteractions betweenriverwaterandgroundwater.Inthecaseoflargerivers suchastheGaronneRiver,groundwatercanbeinfluencedbyriver waterseveralhundredmetersfromtheriverbank.Thiswouldmake itpossibletosimulatetheimpactofagriculturalpracticesonnitrate concentrationsingroundwaterinaportionofthealluvialplainand betterexplainthespatialvariabilityofnitrateconcentrationsinthe groundwater.Theperformanceofthecoupledmodelcouldbe eval-uatedusingthegroundwaternitrateconcentrationmeasuredinthe piezometersthathavebeenusedonthissiteforseveralyears.

(13)

Acknowledgments

This study was supported by ECOBAG: ‘Zone atelier Adour Garonne’.TheauthorsthankD.ChesneauandP.Petibonfortheir assistancewithsoilcoresamplingandanalyses,andwethankall thefarmersinthestudyareaforallowingustotakesamplesin theirfields.

References

Arrate,I.,Sánchez-Pérez,J.M.,Antigüedad,I.,Vallecillo,M.A.,Iribar,V.,Ruiz,M.,1996. GroundwaterpollutioninthequaternaryaquiferofVitoria-Gazteiz(Basque country,Spain).Influenceofagriculturalactivitiesandwater-resources man-agement.EnvironmentalGeology30(3–4),257–265.

Arregui,L.,Quemada,M.,2006.Drainageandnitrateleachinginacroprotation underdifferentN-fertilizerstrategies:applicationofcapacitanceprobes.Plant andSoil288(1),57–69.

Beaudoin,N.,Saad,J.,VanLaethem,C.,Maucorps,J.,Machet,J.M.,Mary,B.,2005. NitrateleachinginintensiveagricultureinNorthernFrance:effectoffarming practicessoilsandcroprotations.AgricultureEcosystems&Environment111, 292–310.

Beaudoin,N.,Launay,M.,Sauboua,E.,Ponsardin,G.,Mary,B.,2008.Evaluationofthe soilcropmodelSTICSover8yearsagainstthe“onfarm”databaseofBruyères catchment.EuropeanJournalofAgronomy29,46–57.

Berntsen,J.,Olesen,J.E.,Petersen,B.M.,Hansen,E.M.,2006.Long-termfateof nitro-genuptakeincatchcrops.EuropeanJournalofAgronomy25,383–390. Bijay-Singh,Yadvinder-Singh,Sekhon,G.S.,1995.Fertilizer-Nuseefficiencyand

nitratepollutionofgroundwaterindevelopingcountries.Journalof Contami-nantHydrology20,167–184.

Böhlke,J.K.,2002.Groundwaterrechargeandagriculturalcontamination. Hydroge-ologyJournal10,153–179.

Brisson,N.,Mary,B.,Ripoche,D.,Jeuffroy,M.H.,Ruget,F.,Gate,P.,Devienne-Barret, F.,Antonioletti,R.,Durr,C.,Nicoullaud,B.,Richard,G.,Beaudoin,N.,Recous,S., Tayot,X.,Plenet,D.,Cellier,P.,Machet,J.M.,Meynard,J.M.,Delécolle,R.,1998. STICS:agenericmodelforthesimulationofcropsandtheirwaterandnitrogen balance.I.Theoryandparameterizationappliedtowheatandcorn.Agronomie 18,311–346.

Brisson,N.,Ruget,F.,Gate,P.,Lorgeou,J.,Nicoullaud,B.,Tayot,X.,Plenet,D.,Jeuffroy, M.H.,Bouthier,A.,Ripoche,D.,Mary,B.,Justes,E.,2002.STICS:agenericmodelfor thesimulationofcropsandtheirwaterandnitrogenbalance.II.Assessmentby comparingwithexperimentalrealityforwheatandcorn.Agronomie22,69–93. Brisson,N.,Gary,C.,Justes,E.,Roche,R.,Mary,B.,Ripoche,D.,Zimmer,D.,Sierra, J.,Bertuzzi,P.,Burger,P.,Bussière,F.,Cadiboche,Y.M.,Cellier,P.,Debaeke,P., Gaudillère,J.P.,Hénault,C.,Maraux,F.,Seguin,B.,Sinoquet,H.,2003.Anoverview ofthecropmodelSTICS.EuropeanJournalofAgronomy18,309–332. Brisson,N.,Launay,M.,Mary,B.,Beaudoin,N.,2008.ConceptualBasis,Formalisations

andParameterisationoftheSTICSCropModel.QUAE,INRA,Versailles,France, 297pp.

Ferguson,R.B.,Hergert,G.W.,Schepers,J.S.,Gotway,C.A.,Cahoon,J.E.,Peterson, T.A.,2002.Site-specificnitrogenmanagementofirrigatedmaize:yieldandsoil residualnitrateeffects.SoilScienceSocietyofAmericaJournal66,544–553. Gustafson,A.,1983.Leachingofnitratefrom arablelandintogroundwaterin

Sweden.EnvironmentalGeology5,65–71.

Hall,D.,Schaffer,M.J.,Waskom,R.M.,Delgado,J.A.,2001.Regionalnitrateleaching variability:whatmakesadifferenceinnortheasternColorado.Journalofthe AmericanWaterResourcesAssociation37,139–150.

Hansen,E.M.,Djurhuus,J.,1996.Nitrateleachingasaffectedbylong-termN fertil-izationonacoarsesand.SoilUseandManagement12,199–204.

Hoffmann,M.,Johnson,H.,1999.Amethodforassessinggeneralisednitrogen leach-ingestimatesforagriculturalland.EnvironmentalModelingandAssessment4, 35–44.

Iribar,A.,Sánchez-Pérez,J.M.,Lyautey,E.,Garabétian,F.,2008.Differentiated free-livingandsediment-attachedbacterialcommunitystructureinsideandoutside denitrificationhotspotsintheriver–groundwaterinterface.Hydrobiologia598, 109–121.

Jégo,G.,Martínez,M.,Antigüedad,I.,Launay,M.,Sanchez-Pérez,J.M.,Justes,E.,2008. Evaluationoftheimpactofvariousagriculturalpracticesonnitrateleaching undertherootzoneofpotatoandsugarbeetusingtheSTICSsoil-cropmodel. ScienceoftheTotalEnvironment394,207–221.

Jones,C.A.,Kiniry,J.R.,1986.CERES-Maize,aSimulationModelofMaizeGrowthand Development.TexasA&MUniversityPress,CollegeStation,TX.

Loague,K.,Corwin,D.L.,1996.Uncertaintyinregional-scaleassessmentof non-pointsourcepollutants.In:Corwin,D.L.,Loague,K.(Eds.),ApplicationofGIS totheModellingofNon-PointSourcePollutantsintheVadoseZone.S.S.S.A.Inc., Madison,Specialpublication48.

Makowski,D.,Wallach,D.,Meynard,J.M.,1999.Modelsofyield,grainproteinand residualmineralNresponsestoappliedNforwinterwheat.AgronomyJournal 91,377–385.

Mary,B.,Beaudoin,N.,Justes,E.,Machet,J.M.,1999.Calculationofnitrogen miner-alizationandleachinginfallowsoilusingasimpledynamicmodel.European JournalofSoilScience50,549–566.

Mary,B.,Laurent,F.,Beaudoin,N.,2002.Lagestiondurabledelafertilisationazotée. In:65thIRBCongress,Brussels,13–14February2002,p.6.

McClain,M.E.,Boyer,E.W.,Dent,C.L.,Gergel,S.E.,Grimm,N.B.,Groffman,P.M.,Hart, S.C.,Harvey,J.W.,Johnston,C.A.,Mayorga,E.,McDowell,W.H.,Pinay,G.,2003. Biogeochemicalhotspotsandhotmomentsattheinterfaceofterrestrialand aquaticecosystems.Ecosystems6,301–312.

Nieder,R.,Kersebaum,K.C.,Richter,J.,1995.Significanceofnitrateleachingandlog termNimmobilisationafterdeepeningtheploughlayersfortheNregimeof arablesoilsinN.W.Germany.PlantandSoil173,167–175.

Peyrard,D.,Sauvage,S.,Vervier,P.,Sanchez-Perez,J.M.,Quintard,M.,2008.A cou-pledverticallyintegratedmodeltodescribelateralexchangesbetweensurface andsubsurfaceinlargealluvialfloodplainswithafullypenetratingriver. Hydro-logicalProcesses22,4257–4273.

Ritchie,J.T.,Otter,S.,1984.DescriptionandPerformanceofCERES-Wheat,a User-OrientedWheatYieldModel.USDA-ARS-SRGrasslandSoilandWaterResearch Laboratory,Temple,TX,pp.159–175.

Sánchez-Pérez,J.M.,Bouey,C.,Sauvage,S.,Teissier,S.,Antigüedad,I.,Vervier,P., 2003a.Astandardizedmethodformeasuringinsitudenitrificationinshallow aquifers:numericalvalidationandmeasurementsinriparianwetlands. Hydrol-ogyandtheEarthSciencesSystem7,87–96.

Sánchez-Pérez,J.M.,Vervier,P.,Garabétian,F.,Sauvage,S.,Loubet,M.,Rols,J.L., Bariac,T.,Weng,P.,2003b.Nitrogendynamicsintheshallowgroundwaterof ariparianwetlandzoneoftheGaronne,SouthwesternFrance:nitrateinputs, bacterialdensities,organicmattersupplyanddenitrificationmeasurements. HydrologyandtheEarthSciencesSystem7,97–107.

Sánchez-Pérez,J.M.,Antigüedad,I.,Arrate,I.,García-Linares,C.,Morell,I.,2003c. Theinfluenceofnitrateleachingthroughunsaturatedsoilongroundwater pol-lutioninanagriculturalareaoftheBasquecountry.TheScienceoftheTotal Environment317,173–187.

Saxton,K.E.,Rawls,W.J.,2006.Soilwatercharacteristicestimatesbytextureand organicmatterforhydrologicsolutions.SoilScienceSocietyofAmericaJournal 70,1569–1578.

Schnebelen,N.,Nicoullaud,B.,Bourennane,H.,Couturier,A.,Verbeque,B., Reva-lier,C.,Bruand,A.,Ledoux,E.,2004.TheSTICSmodeltopredictnitrateleaching followingagriculturalpractices.Agronomie24,423–435.

Shepherd,M.A.,Lord,E.I.,1996.Nitrateleachingfromasandysoil:theeffectof previouscropandpost-harvestsoilmanagementinanarablerotation.Journal ofAgriculturalScienceCambridge127,215–229.

Simmelsgaard,S.E.,1998.Theeffectofcrop,Nlevel,soiltypeanddrainageonnitrate leachingfromDanishsoils.SoilUseandManagement14,30–36.

Smith,J.,Smith,P.,Addiscott,T.M.,1996.Quantitativemethodstoevaluateand compareSoilOrganicMatter(SOM)models.In:Powlson,D.,Smith,P.,Smith, J.(Eds.),EvaluationofSoilOrganicMatterModels.Springer-Verlag,Berlin,pp. 181–199.

Strebel,O.,Duynisveld,W.H.M.,Böttcher,J.,1989.Nitratepollutionofgroundwater inwesternEurope.AgricultureEcosystems&Environment26,189–214. Thorup-Kristensen,K.,Magrid,J.,Jensen,L.S.,2003.Catchcropsandgreenmanures

asbiologicaltoolsinnitrogenmanagementintemperatezones.Advancesin Agronomy79,227–302.

Wagenet,R.J.,Hutson,J.L.,1996.Scale-dependencyofsolutetransportmodeling/GIS applications.JournalofEnvironmentalQuality25,495–510.

Webster,C.P.,Conway,J.S.,Crew,A.P.,Goulding,K.W.T.,2003.Nitrogenleaching lossesunderalessintensivefarmingandenvironmentintegratedsystem.Soil UseandManagement19,36–44.

Weng,P.,Sanchez-Perez,J.M.,Sauvage,S.,Vervier,P.,Giraud,F.,2003.Assessmentof thequantitativeandqualitativebufferfunctionofanalluvialwetland: hydro-logicalmodellingofalargefloodplain(GaronneRiver,France).Hydrological Processes17,2375–2392.

Williams,J.R.,Jones,C.A.,Kiniry,J.R.,Spanel,D.A.,1989.TheEPICcropgrowthmodel. TransactionsoftheASAE32,497–511.

Figure

Fig. 1. Map of the study area showing (a) the location of the study area, (b) the floodplain limit, the four soil types defined and the piezometer locations, and (c) 2006 and (d) 2007 land use and locations of the monitored fields (indicated by numbers).
Fig. 2. Observed and simulated values of (a) soil water and (b) soil nitrogen content over a 1.2 m depth in the monitored fields.
Fig. 3. Temporal changes in observed and simulated gravimetric soil moisture and SMN for field 1 at different soil depths
Fig. 4. Simulated temporal changes (a and d) in drainage and cumulative drainage, (b and e) in nitrate-N leaching and cumulative N leaching, and (c and f) in instantaneous nitrate concentration in drainage water and flow weighted mean NO 3 − concentration i
+3

Références

Documents relatifs

However, the previous studies of the SWAT-LUD model focused on the riparian area only, and the impacts of the SW–GW exchange on river water flow and the influence of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

collection du XX ème siècle comprend des pastels de Launois, portraits et scènes de maisons closes, le très beau Portrait de la mère de l’artiste par Marquet -

Functional silencing with yellow light was demonstrated in cortical pyramidal neurons or cortical interneurons in acute brain slices prepared from mice resulting from a cross to

Intercropping has not been modelled extensively and models that simulate these cropping systems, such as STICS, have not often been evaluated for tropical conditions and for

For studies on large catchments with contrasted land uses but slow land use changes, the explanation is probably a scale effect: on large catchments, the year to year variations

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Results of annual simulations for the experimental site: mean drainage, mean N leaching and nitrate concentration in drainage water at the base of the soil profile under