• Aucun résultat trouvé

Scaling relations for the length of coaxial oxy-flames with and without swirl

N/A
N/A
Protected

Academic year: 2021

Partager "Scaling relations for the length of coaxial oxy-flames with and without swirl"

Copied!
9
0
0

Texte intégral

(1)

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte

(OATAO)

OATAO is an open access repository that collects the work of some Toulouse

researchers and makes it freely available over the web where possible.

This is

an author's

version published in:

https://oatao.univ-toulouse.fr/23417

Official URL :

https://doi.org/10.1016/j.proci.2018.06.032

To cite this version :

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Degenève, Arthur and Vicquelin, Ronan and Mirat, Clément and Labegorre, Bernard and

Jourdaine, Paul and Caudal, Jean and Schuller, Thierry Scaling relations for the length of

coaxial oxy-flames with and without swirl. (2018) Proceedings of the Combustion Institute, 37

(2)

Scaling

relations

for

the

length

of

coaxial

oxy-flames

with

and

without

swirl

A. Degenève

a,b,∗

,

R.

Vicquelin

a

,

C.

Mirat

a

,

B.

Labegorre

b

,

P.

Jourdaine

b

,

J.

Caudal

b

,

T.

Schuller

a,c

aLaboratoireEM2C,CNRS,CentraleSupélec,Université Paris-Saclay,3,rueJoliotCurie,Gif-sur-YvetteCedex91192,

France

bAirLiquide,CentrederechercheParisSaclay,ChemindelaPortedesLoges,B.P.126,LesLogesenJosas78354,France

c InstitutdeMécaniquedesFluidesdeToulouse,IMFT,Université deToulouse,CNRS,Toulouse,France

Abstract

Anextensiveexperimentalstudyiscarriedouttoanalyzescalinglawsforthelengthofmethaneoxy-flames stabilizedonacoaxialinjector.ThecentralmethanefuelstreamisdilutedwithN2 ,CO2 orHe.Theannular airstreamisenrichedwithoxygenandcanbeimpregnatedwithswirl.Formerstudieshaveshownthatthe stoichiometricmixinglengthofrelativelyshortflames iscontrolledbythemixingprocesstakingplacein thevicinityof theinjectoroutlet.Thispropertyhasbeenusedtoderivescalinglawsatlargevaluesofthe stoichiometricmixturefraction.Itisshownherethatthesamerelationcanbeextendedtomethane oxy-flamescharacterized bysmall valuesofthestoichiometric mixturefraction.Flamelengthsaredetermined withOH∗chemiluminescencemeasurementsovermorethan1000combinationsofmomentumratio,annular swirllevelandcompositionoftheinnerandouterstreamsofthecoaxialinjector.Itisfoundthatthelengths ofalltheflamesinvestigatedwithoutswirlcollapseonasingleline,whosecoefficientscorrespond towithin 15%offlamelengthsobtained forfuelandoxidizerstreamsatmuchlargerstoichiometricmixturefractions. Thisrelationisthenextendedtothecaseofswirlingflamesbyincludingthecontributionofthetangential velocityintheflowentrainmentrateandisfoundtowell reproducethemixingdegreeofthetwo co-axial streamsaslongastheflowdoesnotexhibitavortexbreakdownbubble.Athigherswirllevels,whenthe flowfeaturesacentralrecirculationregion,theflamelengthisfoundtoalsodirectly dependontheoxygen enrichmentintheoxidizerstream.

Keywords: Coaxialjet;Oxy-combustion;Swirl;Flamelength;Turbulence

Correspondingauthorat:LaboratoireEM2C,CNRS,

CentraleSupélec, Université Paris-Saclay, 3, rue Joliot

Curie,91192Gif-sur-YvetteCedex,France.

E-mail address: arthur.degeneve@centralesupelec.fr

(A.Degenève).

1. Introduction

Many industrial combustors are powered by

co-axial injectors in which the oxidizerand fuel streams are injected separately andexpand in a largecombustionchamber. Itiswellknownthat

(3)
(4)

thicknesse=1 mm,whereinmethane is eventu-allymixedwithadiluent(N2,CO2orHe),andan

annularinjectionchannel of outerdiameterd2 =

20 mm, with an adjustable O2 /N2 gas composi-tion.Aswirlmotioncanbeimposedtothe annu-larstreamthankstotangentialslits.Theaxialand tangentialvolumeflowrates injectedinthe annu-larchannelaredesignatedrespectivelybyQ2, zand

Q2, θ.Assumingasolid-bodyrotation,the

geomet-ricalswirlnumberS2 intheannularchannelisgiven

by S2 = π 4 Hd2 NlL 1− (d2/d1)4 1+Q2,z/Q2 (3)

whereHisthedistanceseparatingthetangential injectionchannelsfromtheburneraxis,lthewidth andLtheheightoftheNtangentialinjection chan-nels.Thisdevicewasdesignedtoproduce geometri-calswirlnumbersrangingfromS2 =0to1.73with

N=2slits.Thecentralfuelstreamisnotswirledin thisstudy.Thecoaxialjetexhaustsinquiescentair atambientpressure,aboveaback planeatroom temperatureT =300K,soastoavoideffectsof confinement andheat transfer to the walls. The coaxialinjectoroutletiselevated5mmabovethe backplanetoeasevisualizationandthereisno re-cessbetweenthecentralandouterinjectoroutlets. Thisaltitudedefinestheaxialoriginz=0.

Theflamelengthisdefinedasthefurthestpoint ontheaxiswithacombustionreaction[12,17].In manycases,thelengthofdiffusionflamesis deter-minedbyrecordingitsglobalemissioninthe visi-bleband[12,19,20]ortheemissionofselected in-termediateradicals[9,17,18].Inthesestudies,the flame lengthiscommonly correlated to the stoi-chiometricmixinglengthLS .Giventhelargerange

ofoperatingconditionstargetedinthiswork,itis firstworthexploringiftheOH∗emissionsignalisa goodtracerforthelengthofoxy-flamesandifitis wellcorrelatedtothestoichiometricmixinglength

LS.

Numerical simulations of steady

one-dimensional counterflow methane oxy-flames

werecarriedoutwiththeGrimech3.0mechanism

[21] in [22] and completed with OH∗ chemistry

in[23].TheseauthorsverifiedthattheOH∗peak emissionfromdiffusionoxy-flamesliesveryclose to stoichiometry at z=zst for a large range of

oxygen enrichments and strain rates. Numerical

simulationshavealsobeencarriedoutinthisstudy toverifythispropertyforselectedoperatingpoints

withthesameGrimech3.0mechanismcompleted

withthechemistryofOH∗[23].Theyareprovided assupplementarymaterialandconfirmthatboth

peaks of temperature and OH∗ lie close to the

flame front at z=zst , when compared to the

flamethickness.Self-similarcounterflowequations were solvedwithanin-housecodewith identical

transport and thermodynamics properties as in

the CHEMKIN package and similar numerical

algorithms.

Fig.2.OH∗intensitydistributionofselectedflamesfrom

datasetD2inTable1andincreasingm values.

Num-bersrefertoFig.4(b).WhitecontoursindicatetheOtsu

thresholdusedtodetermineLS.

Fig.3.OH∗intensitydistributionofselectedflamesfrom

datasetsD5andD6inTable1withhighannularswirl

lev-elsS2 .LatinlettersrefertodatashowninFig.7.Greek

lettersmakereferencestodatashowninFig.8.White

con-toursindicatetheOtsuthresholdusedtodetermineLS .

The OH∗ images are recorded with a 16 bit

intensified CCD camera (ICCD, Princeton,

PI-MAX4,1024 × 1024pixels)equippedwithanUV

objective (Nikkor 105 mm) and a 10 nm

band-passfiltercentered at310 nm (Asahi

XBPA310-Bandpass).Lineofsightintegratedaveragedfields ofOH∗emissionaredeterminedfrom30snapshots eachwithanexposuretimeof 200ms.Statistical convergenceofthemeanOH∗intensityis system-aticallyverified.

The Otsu thresholding method [24]is chosen

heretoinfertheflamefrontlocationfromtheOH∗ imagesas in [25,26].Exampleswithoutswirl are showninFig.2andeffectsofswirlareillustrated inFig.3.ThestoichiometricmixinglengthLS is de-terminedasthehighestpointoftheOtsucontour, whichisfoundtoliealongtheburnercenterline, ex-ceptforthehighlyswirledflamesfeaturingacentral recirculationzone.Asensitivityanalysishasbeen carriedouttoexaminechangesof LS when

vary-ingtheimagebrightnessandcontrast.Different ex-posuretimesandcameraaperturesweretested.It appearsthatthelargestvariations of LS are

lim-itedtowithin5%.Themethodisalsovalidatedin

Section 4bycomparingtheresults withthe

(5)
(6)
(7)
(8)
(9)

mea-Acknowledgments

ThisworkissupportedbytheAirLiquide,

Cen-traleSupélecandCNRSChaironoxy-combustion

andheattransferforenergyandenvironmentand

by the OXYTEC project (ANR-12-CHIN-0001)

froml’AgenceNationaledelaRecherche.

Supplementary material

Supplementarymaterialassociatedwiththis ar-ticlecanbefound,intheonlineversion,atdoi:10. 1016/j.proci.2018.06.032.

References

[1] H.Becker,S.Yamazaki,Combust.Flame33(1978) 123–149.

[2] R.-H.Chen,J.F.Driscoll,Proc.Combust.Inst.22 (1989)531–540.

[3] W. Dahm, A. Mayman, AIAA J. 28 (1990) 1157–1162.

[4] R.-H.Chen,J.F.Driscoll,Proc.Combust.Inst.23 (1991)281–288.

[5] J.F.Driscoll,R.-H.Chen,Y.Yoon,Combust.Flame 88(1992)37–49.

[6] T.Cheng,Y.-C.Chao,D.-C.Wu,etal.,Proc. Com-bust.Inst.27(1998)1229–1237.

[7] M.Favre-Marinet,E.Camano,J.Sarboch,Exp. Flu-ids26(1999)97–106.

[8] E.Villermaux,H.Rehab,J.Fluid.Mech.425(2000) 161–185.

[9] S.A.Schumaker,J.F.Driscoll,Proc.Combust.Inst. 32(2009)1655–1662.

[10] S.AlexanderSchumaker,J.F.Driscoll,Phys.Fluids 24(2012)055101.

[11] N.Peters, J.Göttgens, Combust.Flame85(1991) 206–214.

[12]W.Hawthorne,D.Weddell,H.Hottel,Proc. Com-bust.Inst.3(1948)266–288.

[13]N.Weiland,R.-H.Chen,P.Strakey,Proc.Combust. Inst.33(2011)2983–2989.

[14]H. Rehab, E. Villermaux, E. Hopfinger, J. Fluid. Mech.345(1997)357–381.

[15]K.M.Tacina,W.J.Dahm,J.Fluid.Mech.415(2000) 23–44.

[16]W.J.Dahm,J.Fluid.Mech.540(2005)1–19.

[17]J.Sautet,L.Salentey,M.Ditaranto,J.Samaniego, Combust.Sci.Technol.166(2001)131–150.

[18]M.Ditaranto,J.Sautet,J.Samaniego,Exp.Fluids30 (2001)253–261.

[19]H.K.Kim,Y.Kim,S.M.Lee,K.Y.Ahn,Energy Fu-els20(2006)2125–2130.

[20]H.K.Kim,Y.Kim,S.M.Lee,K.Y.Ahn,Energy Fu-els21(2007)1459–1467.

[21] G.P.Smith,D.M.Golden,M.Frenklach,etal.,http:

//www.me.berkeley.edu/gri_mech(2011).

[22]K. Maruta, K.Abe, S. Hasegawa, S.Maruyama, J. Sato,Proc.Combust.Inst.31(2007)1223–1230.

[23]M.DeLeo,A.Saveliev,L.A.Kennedy,S.A. Zele-pouga,Combust.Flame149(2007)435–447.

[24]N.Otsu,IEEETrans.Syst.ManCybern.9(1979) 62–66.

[25]X.Zhang,L.Hu,W.Zhu,X.Zhang,L.Yang,Appl. Therm.Eng.73(2014)15–22.

[26]Q. Wang, L. Hu, X. Zhang, X. Zhang, S. Lu, H. Ding, Energy Convers. Manag. 106 (2015) 703–708.

[27]H.Watanabe,S.J.Shanbhogue,A.F.Ghoniem,in: ASMETurboExpo,2015.V04BT04A014

[28]R.Chen,R.Axelbaum,Combust.Flame142(2005) 62–71.

[29]M.Ribeiro,J.Whitelaw,J.Fluid.Mech.96(1980) 769–795.

[30]R.-H.Chen,J.F.Driscoll,J.Kelly,M.Namazian, R. Schefer, Combust. Sci. Technol. 71 (1990) 197–217.

Figure

Fig. 3. OH ∗ intensity distribution of selected flames from

Références

Documents relatifs

II Stabilization of confined premixed CH 4 /H 2 /air swirling flames 139 4 Analysis of topology transitions of swirled flames interacting with the combustor peripheral wall 141

Since the purpose of fire safety measures is to prevent fire losses (human losses-deaths and injuries-as well as property losses) it is logical to claim that any combination

En comparaison avec les corpus existants annotés discursivement (en particulier le Penn Discourse TreeBank pour l’anglais), le corpus ANNODIS présente deux carac- téristiques propres

Given an input, a style transfer algorithm renders an output with the color style from a user-provided example, while preserving the content from the input

The native PaTrmD protein contains 252 amino acids and the purified recombinant protein exists as a dimer in solution (Zhong et al. 1), indicating that it is feasible to

Backgrounding is the process of maintaining a background model of a scene and using it to detect foreground objects within the scene.. Backgrounding is a

In general, high mixing temperature above the Tg of lignin Indulin AT (around 65 o C) increases the flexibility of lignin structure that facilitates the

recoil track gives both energy and direction information about the incident