• Aucun résultat trouvé

Teaching tool for advanced visualization of temporal bone structures by fusion of μCT and CT scan images

N/A
N/A
Protected

Academic year: 2021

Partager "Teaching tool for advanced visualization of temporal bone structures by fusion of μCT and CT scan images"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01108877

https://hal.inria.fr/hal-01108877

Submitted on 23 Jan 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Teaching tool for advanced visualization of temporal bone structures by fusion of µCT and CT scan images

Clair Vandersteen, Thomas Demarcy, Hervé Delingette, Charles Raffaelli, Jonathan Laudanski, Thierry Pourcher, Jacques Darcourt, Philippe Franken,

Dan Gnansia, Nicholas Ayache, et al.

To cite this version:

Clair Vandersteen, Thomas Demarcy, Hervé Delingette, Charles Raffaelli, Jonathan Laudanski, et al.. Teaching tool for advanced visualization of temporal bone structures by fusion of µCT and CT scan images. 8th International Symposium on Objective Measures in Auditory Implants, Oct 2014, Toronto, Canada. �10.13140/2.1.1517.6007�. �hal-01108877�

(2)

Clair Vandersteen1,2, Thomas Demarcy2,3, Hervé Delingette2, Charles Raffaelli4, Jonathan Laudanski3, Thierry Pourcher5, Jacques Darcourt5, Philippe Franken5, Dan Gnansia3, Nicholas Ayache2, Nicolas Guevara1

IUFC, Nice Hospital, France1; Asclepios Research Team, Inria Sophia Antipolis, France2; Neurelec/Oticon Medical, France3; Radiology Department, University Hospital, Nice, France4; TIRO Department, Nice University, France5

Main goal

Improve the understanding of human temporal bone computed tomography (CT) scans based on semi-automatically segmented microcomputed tomography (µCT).

Introduction

The three-dimensional ear anatomy is complex and challenging to interpret in CT scans because small structures are partially visible. Histological slices provide

complementary high-resolution information, but may lead to geometrical distortions of the anatomy during preparation. Conversely, µCT preserves the shape.

3D images acquisition and segmentation

o Five freshly cadaveric pairs of temporal bones

o Acquisition of CT (General Electric; Light Speed VTC 64) ) and a µCT (General

Electric; eXplore speCZT) images

o Seed-based segmentation of every reliable anatomical structures on CT or µCT

Teaching tool for advanced visualization of temporal bone structures by fusion of μCT and CT scan images

References

1 Umeyama, S.: Least-squares estimation of transformation

parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991).

2 Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block

Matching : A General Framework to Improve Robustness of Rigid Registration of Medical Images. Med. Image Comput. Comput. Interv. 557–566 (2000). CT μCT CT μCT μCT CT μCT μCT CT CT μCT CT μCT Structure 1 pyramidal eminence 2 sinus tympani

3 posterior tympanic sinus

4 chordal ridge

5 excavated lateral tympanic sinus

6 styloid eminence 7 chordal eminence 8 chorda tympani 9 cochlea 10 stapes 11 lateral sinus

12 superior semi-circular canal

13 facial nerve

14 internal carotid artery

15 tympanic membrane

16 scala tympani

17 CT slice

18 sickle crest

19 superior vestibular nerve area

20 inferior vestibular nerve area

21 posterior ampullary nerve

22 cochlear nerve area

23 stapes muscle

24 tensor tympani muscle

25 posterior ligament of incus

26 superior ligament of incus

27 superior ligament of malleus

28 anterior ligament of malleus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 15 23 24 28 25 26 27

8th International Symposium on Objective Measures in Auditory Implants

Rigid registration of µCT and CT

o First, rough point-based registration

using anatomical landmarks1

o Second, automatic rigid registration

using a block matching framework2

Reliable anatomical structures

 cortical and trabecular layers of the entire temporal bone  vestibular labyrinth with the scalae tympani and vestibuli  ossicles and their ligaments

 tympanic membrane

 middle ear muscles and tendons

 internal carotid artery and the sigmoide sinus  different branches of the vestibular nerve

 facial nerve and the chorda tympani

Results

High resolution structures are fused and

visualized on corresponding CT images. This experience significantly improves the visual recognition and spatial understanding of

partially visible structures (e.g. tympanic scala, facial nerve and chorda tympani) in CT images.

Conclusion

Geometrically accurate temporal bone

reconstructions provide an advanced teaching tool for medical students and cochlear implant surgeons. The understanding of spatial

relationship between anatomical structures as well as the virtual exploration of surgical

approaches is greatly facilitated.

Références

Documents relatifs

Water suppression was not required for the analysis of lipid composition in the liver of ob/ob mice, since lipid signals were of comparable intensity as the water signal.. In

Dans l es mi l ieux ouverts, nous avons trouvé que la proportion de plantes pratiquant uniquement une repro- duction sexuée, ainsi que l es plantes ayant r ecours

D’après les mécanismes que nous avons développés dans le « cadre théorique » (cf. point 2.3.2, mémoire de la douleur et mémoire proprioceptive, neurones miroirs),

In this paper we propose an alternative technique based on a geometric tensor and we use it to analyze 38 representative elementary volumes extracted from 24 specimens of cortical

We therefore ran Monte Carlo simulations (see Supplementary Information) to resolve this discrepancy, and eventually succeeded in simultaneously reproducing both the

Moreover, the images obtained with a black blood MRI sequence (such as T1 spin echo sequence) provide unstable signals through the image. For these reasons, a generic method

In order to further investigate the effects of the sharp skull edges in neuro CT images on JPEG and JPEG2000 lossy compression, a straightforward segmentation has been applied to a

i) Le développement dentaire chez Scyliorhinus est caractérisé par une combinaison im- portante de collagènes, exprimés par les odontoblastes à des moments différents au cours