• Aucun résultat trouvé

Incremental redundancy schemes based on LDPCs for transmission over Gaussian block-fading channels

N/A
N/A
Protected

Academic year: 2022

Partager "Incremental redundancy schemes based on LDPCs for transmission over Gaussian block-fading channels"

Copied!
4
0
0

Texte intégral

(1)

½

! "

# $ %

! #

! ! !

" "#

! #!" # &' &'

!

!

# !" #

# ( ! )*+

" !

, - .&",-.&

!

/ 0

1 /

!

$ 2

3

4

1

!

# % #!

3

3

3 5

# Æ $

6 / (

!

$ # #!

3

$ # % !

! " # 7!

# 6 )

+ 3 1

!8 "/

% # 9

3 3

3 !#

# #

!

$ #

# "

#

#! # $ !

" # " ! ,

#

# " )* +

" # #

#! 2

$!

# #!#

½

#

&' "

/

/

# !

&' /"

/

!

# !#

½

¾

&':&'

# "

#

# #

# ,3

3

#"

! #

:

,

#! 2/

# )* + ! /

Æ # #

#6 !

3

;

<

#

# 1

#

# #! Æ

# # .

9 !# #

! # $#/

=6#!

3

>

$!

3 $ #

# 6)>?*+

! @ 3

: #

3 A :

$

3 )+

*

(2)

!

!

92 ! 3

# 9

!

3 .

31 B

2

3.

3 1

C

= *

3

1

14

?

9!#

9!

3 . D

3

# %

1

3 .

1A

<

#!

3 1

#

1 4!

!

¾

"

6 11

E !!

1A

!

#!

#3 1

#

15

# # #

/# (

/ ( & 8 0 # (

!

1

$

%

1;

$ %

! 0 #

& 8 !

!

) F&+

1>

F& 3

!

# #

/ # #

#3!

#1 5

8 ! #

3 AG 1AG ! # 3

#!!! ! ( & 8

31A AG! $& 8

( ! $

!# #

/ !

/ )A 1A 5+ : !

131 5A

3A 1 13513A 5#"

! 15 5; ! A 1A 5

5 J3 54'

' 1 $

! $8!#!

)B +

! " !

#!# G.# $

G G. #

" # !-

)C + $/ @

" # 2 G

! !

)C + < G 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rate of the code R

p(m)

m=1 m=3 m=5 m = 7

m=9

m=10

m=2 m=4 m=6 m=8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rate of the code R

p(m) m=10

m=9

m=7 m=5

m=3 m=1 m=2

m=4

m=6

m=8

!

(3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rate of the code R

Tput

Chernoff Bound

Gaussian Approximation Convolutions

"

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Rate of the code R

Tput

Chernoff Bound

Gaussian Approximation

Convolutions

#

#

#!G G.

# 6

! # G

6 9 !

# !

= #

2

3.

G

A

1*

G

G G. (

!

9 G. #

- )C+ & ,-.&

2 # #% &

) - * #

" + # "

,+

! #

#"

#! #! #

# 6

+ ( > ! ?

#

-

# ( / @ #

(

)C ;+ 2

##G.$

(

! # %

$ " # !

# # G. %!

" #! # = !

#)1 + / !

#

92 !, #!

! # #"

, ! 3 1 , -

! .

! #! $

- #!

-. , 3

1

-., 3 1B

( /

-K.,33/1$4

#/ $

!> #+ #

" = #

# # "

(#!

3

1

0

1C

2

01

3

&

1

41

#

# #"

(1

2

"

/ )5 + 9/ "

!

1

1 =

" #/

/

31

/1

1

1?

$ # #

#" (

#!

310

1

A

1D

G ## % 1C 1D

3

1

0

10

1

A

5A

3A

(4)

#Æ $

! #G/

5A %2/ 31 $

M2 2 2)A1 51

2 #

M2

3 1

0

10

12A

!7 &

3.

M

2 A A

2 2)A1

# #

#

# * B #

# ,-.&

$,-.&! #

# ! #

6

9( )C + 9! ,-.&

#!

# #C

! 3 A 1A ;::=6 9

# #

# /

# 3 A 15 3 A 1 #

A *A *D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rate of the code R

Tput

LDPC Codes

RB Codes Convolutions

$ %&' ( ( () '

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5

Rate of the code R

tput

LDPC Codes

RB Codes Convolutions

* %&' ( ( () '

0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Rate of the code R

tput

LDPC Codes Binary code

+ %& ' ( (

",)

-. / (0&(1( 12 1%' 3

&(' ( &4

!

-!. / 5 &( 06( &('( /) & '3

7 '(&(/')4

!

-". /5&( 89' ( ( 9 : ( 07(

/)3'%'(3%( 3&'&

:( ; (7<) (4

!

-#. =07(2('( (273

' (4 >*?

-$. & ; (% ((0@379A

' ; (&(& ((4

!

-*. 9; ; 03%( 3&'&4

!>*"

-+. 8 9' ( ( 9 : ( 0& ' 3

%( 3&' & :( 3 ( %'3

(4 !

-?. BC ( 9 9 9 06( : 9( 3

( 7( 79A '4

>>*

Références

Documents relatifs

This section addresses practical block and convolutional codes which attain maximum code diversity ( d FH ) for a given number of uncorrelated blocks and information rate.. If

For static fading systems where coded data is interleaved over a small number of independent blocks, Knopp and Hum- blet have shown in [5] that practical coding schemes can

We derived expressions for the mutual information characterizing the M - block random channel spanned by the transmission of a user code word in the cases of conventional

We study the synergy between coded modulation and antenna-diversity recep- tion on channels affected by slow Rician fading.. Specifically, we assess the impact of

On the contrary, when optimal coding is used, the outage probability of either constant and optimal short-term and long-term power allocation generally decreases as M increases (to

Since the vector BF-AWGN channel is equivalent to a scalar BF-AWGN channel as described by (2) with Mm blocks and fading power gains λ k,i , Propositions 3 and 4 of [1] apply

Figure 9 shows the word error probability (WER) versus signal-to-noise ratio (SNR) achieved by a binary (3, 6) root- LDPC code of length 200 used for transmission over a block-

ity of a channel with transmit power constraint, indepen- dent flat fading between the transmit and receive anten- nas, Gaussian noise added independently at each receiver antenna,