• Aucun résultat trouvé

High temperature single crystal x-ray diffraction: structure of cubic manganese iodine and manganese bromine boracites

N/A
N/A
Protected

Academic year: 2022

Partager "High temperature single crystal x-ray diffraction: structure of cubic manganese iodine and manganese bromine boracites"

Copied!
5
0
0

Texte intégral

(1)

Article

Reference

High temperature single crystal x-ray diffraction: structure of cubic manganese iodine and manganese bromine boracites

CROTTAZ, Olivier, KUBEL, Frank, SCHMID, Hans

Abstract

The structural parameters of optically controlled cubic Mn I boracite, Mn3B7O13I, and Mn Br boracite, Mn3B7O13Br, were refined on single crystals at 421 and 580 K, resp. (space group F.hivin.43c, Z = 8). To perform these measurements, a low-cost heating device, based on a soldering Fe heating element, was used. Cell parameters are 12.3404(3) .ANG. for Mn I boracite and 12.3100(9) .ANG. for Mn I boracite and 12.3100(9) .ANG. for Mn Br boracite.

The cell parameters and the deviation from planarity of the O environment around the metal ion are greater in Mn boracites than in other known cubic boracites. At. coordinates are given.

CROTTAZ, Olivier, KUBEL, Frank, SCHMID, Hans. High temperature single crystal x-ray diffraction: structure of cubic manganese iodine and manganese bromine boracites. Journal of Solid State Chemistry , 1995, vol. 120, no. 1, p. 60-63

DOI : 10.1006/jssc.1995.1376

Available at:

http://archive-ouverte.unige.ch/unige:31185

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

l O U R N A L O F S O L I D S T A T E C H E M I S T R Y 1 2 0 , 60-63 (1995)

High Température Single Crystal X-Ray Diffraction: Structure of Cubic Manganèse lodine and Manganèse Bromine Boracites

O . C r o t t a z / F . K u b e l , a n d H . S c h m i d

Department of Minerai, Analylical. and Applied Chemistry, University of Geneva, 30 quai E. Ansermef, 1211 Geneva 4, Switzerland Received March 31, 1995; in rcviscd form Junc 19, 1995; accepted June 20, 1995

The structural parameters of optically controlled cubic man- ganèse iodine boracite, MnîByOoI, and manganèse bromine bo- racite, MnjBTOiîBr, have been refined on single crystals at 421 and 580 K, respectively (space group F43c, Z = 8). I n order to perform thèse measurements, a low-cost heating device, based on a soldering Iron heating élément, has been used. Cell parameters were found to be 12.3404(3) A for manganèse lodine boracite and 12.3100(9) A for manganèse bromine boracite. The cell parameters and the déviation from planarity of the oxy- gen environment around the métal ion are found to be greater in manganèse boracites than in other known cubic boracites. © 1W5 Académie Press, Inc.

I . I N T R O D U C T I O N

Boracites o f chemical c o m p o s i t i o n M^-jOx^X (hereafter M-X, w h e r e M stands for a b i v a l e n t m é t a l i o n and X f o r a halogen i o n ) t e n d t o undergo first order structural phase transitions f r o m a h i g h - t e m p e r a t u r e cubic s t r u c t u r ^ ( p o i n t g r o u p 4 3 m , n o n - c e n t r o s y m m e t r i c space g r o u p F 4 3 ç ) t o noncubic l o w - t e m p e r a t u r e structures ( m m 2 , m , 3 m , 4 2 m ) . I n o r d e r t o study t h è s e transitions, s t r u c t u r a l data o f cubic boracites are r e q u i r e d . T h e chemical e n v i r o n m e n t o f the m é t a l ions i n cubic boracites is s h o w n i n F i g . 1. T h e m é t a l atoms are s u r r o u n d c d b y four n e a r b y o x y g e n atoms ( 0 ( 1 ) ) w h i c h are nearly coplanar a n d t w o m o r e distant halogen atoms located o n an axis p e r p e n d i c u l a r t o the i d é a l M- 0 ( 1 ) plane. T h i s r é g i o n o f the structure is supposed t o be responsible for t h e phase transitions (see R é f . ( 1 ) ) a n d can be described as an elongated o c t a h e d r a l e n v i r o n m e n t o f the m é t a l i o n w i t h a tendency t o a t e t r a h e d r a l a r r a n g e m e n t of the f o u r nearly coplanar o x y g e n ( l ) ions (i.e., an octahe- d r a l e n v i r o n m e n t w i t h a t e t i a g o n a l a n d a s m a l l t e t r a h e d r a l d é f o r m a t i o n ) . T h e d é f o r m a t i o n o f the o x y g e n p l a n e varies w i t h the m é t a l and the halogen atoms p r é s e n t i n t h e b o r a - cites. T h e d é v i a t i o n f r o m p l a n a r i t y was i n t r o d u c e d i n t h e f o r m o f a p a r a m e t e r e (defined as e ( A ) ^ x ( 0 ( l ) ) x a{A))

' To whom correspondence shnuld be addressed.

by N e l m e s ( 2 ) . T h i s p a r a m e t e r is r e l a t e d t o the magnitude o f the planar t o t e t r a g o n a l d é f o r m a t i o n o f the oxygen i o n arrangement and is m o r e casily calculated t h a n the

" o u t o f p l a n a r i t y " angle ( t h a t is, the angle between the i d é a l m é t a l plane a n d the 0 ( 1 ) ions). T o o b t a i n correct rcsults i t is h e l p f u l t o standardize the structures using t h e " s t r u c t u r e t i d y " p r o g r a m ( 3 ) . H o w e v e r , i t should be n o t e d that t h e n u m é r a t i o n s o f the o x y g e n a n d b o r o n atoms are opposite t o n o n s t a n d a r d i z e d a t o m i c positions p u b l i s h e d previousiy.

So far the cubic phase has been characterized for boracites w i t h M g , C r , Fe, C o , N i , C u , a n d Z n as the M^"^ i o n [see ( 4 ) a n d Réf. t h e r e i n , (5) f o r F e - I , a n d ( 6 ) for Z n - C l ] . E x c e p t for M g ^ ^ a n d Z n ^ ^ ail t h è s e ions m a y p r é s e n t a J a h n - T e l l e r effect, e i t h e r i n octahedral o r i n t e t r a h e d r a l e n v i r o n m e n t ( 7 ) . w h i c h may make the u n d e r s t a n d i n g o f the d é f o r m a t i o n difficult. Since Mn^+

is a 3rf^ i o n , w h e r e n o J a h n - T e l l e r effect is expected i n the g r o u n d state for o c t a h e d r a l o r t e t r a h e d r a l c o o r d i n a t i o n , a study o f the cubic phase o f boracites w i t h manganese(II) m a y a l l o w a better u n d e r s t a n d i n g o f the cubic structures o f boracites a n d o f t h e c u b i c - o r t h o r h o m b i c phase-transi- t i o n t e m p é r a t u r e s i n the boracites. Consequently, we have chosen t o refine the cubic structures o f M n - I and M n - B r boracites.

2. E X P E R I M E N T A L 2.1. Apparatus

T h e data c o l l e c t i o n s were m a d e o n a C A D - 4 diffrac- t o m e t e r .

_ F o r M n - I a n d M n - B r , the t e m p é r a t u r e s o f the m m 2 =>

4 3 m phase transitions are 407 a n d 543 K , respectively (8).

I n o r d e r t o p e r f o r m X - r a y data collections, an optical con- t r o l device a n d a l o w cost h e a t i n g device, a l l o w i n g single crystal studies i n t h e range 320-520 K , have been de- v e l o p e d .

T h e o p t i c a l c o n t r o l device is needed t o assure that the crystal is i n the cubic a n d o p t i c a l l y isotropic phase. T h i s a t t a c h m e n t consists o f a p o l a r i z e r , an analyzer, a n d a m i c r o -

0022-4596/95 $12.00

Copyright © 1995 by Académie Press, Inc.

AU rights of reproduction in any form reserved.

(3)

S T R U C T U R E O F M A N G A N E S I Z H A L I D E B O R A C I T E S 61 the site o f the crystal, before and afler the data collection.

T h e t e m p é r a t u r e was set t o 421 ± 1 K for M n - I and 580 ± 5 K for M n - B r . T h e crystals were fixed w i t h stan- d a r d A r a l d i t glue o n q u a r t z fibers.

F I G . 1. Environment of thc métal ions in cubic boracites.

scope. T h e crystal can be observed in situ i n t r a n s m i t t e d Ught, d u r i n g heating.

T h e heating device consists o f the h e a t i n g é l é m e n t o f a soldering i r o i i ( 0 = 4.5 m m , T = 20 W ) w h i c h is i n t r o d u c e d i n t o a T Pyrex t u b e = 5.0 m m ) . T h e t u b e is i n s u l a t e d by A l foils. T h e soldering i r o n was connected to a variable voltage generator set t o 3 V f o r M n - I a n d t o 6 V f o r M n - B r . A n air stream is i n t r o d u c e d l a t e r a l l y i n t o the T Pyrex tube. T h e air stream is p r o v i d e d b y a compressed air System connected t o a pressure reducer and a P o r t e r flux r e g u l a t o r system. T h e flow rate was set to 9 l i t e r / m i n . A sketch o f this system is s h o w n i n F i g . 2. T h c t e m p é r a t u r e was measured w i t h a F t - P t / R h t h e r m o c o u p l e , placed at

0-12V

— air stream with constant pressure 'AI foils

_ crystal

quartz fiber

F I G . 2. Schematic sketch of Ihe heating device used for thc X-ray mcasurements at 421 ± 1 and 580 ± 5 K.

2.2. Data Colleaion and Refinemeni

M n - 1 : b r i g h t p i n k dodecahedral crystal = 0.1 m m ) o b t a i n e d by chemical v a p o r t r a n s p o r t ( 9 ) . L a t t i c e parame- ter a = 12.3403(3) Â a n d K - 1879.29(5) at 421 ± 1 K . C A D - 4 a u t o m a t i c f o u r - c i r c l e diffractometer, A ( C u Ka) = 1.5418 A , Z = 8, g r a p h i t e m o n o c h r o m a t o r , a c o m - p l è t e s p h è r e measured w i t h —15 < h < 15, —\5<k<

15, - 1 5 < / < 15, [(sin 0)1 k]^^^ = 0.606 Â - \ 8 integrated intensities, co - 20 scan, 2 standard reflections, m a x i m u m i n t e n s i t y change 6%, spherical a b s o r p t i o n c o r r e c t i o n {fxR = 0.59), lattice parameters d e t e r m i n e d f r o m 24 reflec- t i o n s w i t h 44" < 20 < 10°; structure refinement by f u l l - m a t r i x least squares, f u n c t i o n m i n i r a i z c d 1^w(\Fj^ - u n i t weights: scattering factors for n e u t r a l atoms and a n o m - alous-dispersion c o r r e c t i o n (International Tables for X-ray Crystallography, 1974, V o l . Ï V ) , 20 parameters refined [one scale factor, 4 p o s i t i o n a l parameters, 3 isotropic, 9 aniso- t r o p i c , a n d one o v e r a l l displacement parameters, one ex- t i n c t i o n p a r a m e t e r a n d one absolute structure param- eter ( 1 0 ) ] . using t h c X T A L 3.2 p r o g r a m system (11).

(A/(r)nitix = 3 X 10 T h e refmed value f o r the absolute s t r u c t u r e p a r a m e t e r was 0.025(25). A value close to 0 or 1 was expected f o r a cubic single crystal, as l o n g as i t is n o t m i m e t i c a l l y t w i n n e d . F i n a l R values are R - 2.0%

a n d = 2.7% for 99 c o n t r i b u t i n g reflections.

T w o measurements were made f o r M n - B r ; D u r i n g a first a t t e m p t a data set was coUected o n a crystal w h i c h was m i m e t i c a l l y t w i n n e d i n t h e cubic phase due t o g r o w t h t w i n s . T h i s type o f t w i n (see, c.g., F i g . 16 i n R é f . ( 1 2 ) ) cannot be analvzed o p t i c a l l y . T h e r c f i n e m e n t a l l o w e d t h e c a l c u l a t i o n o f a n absolute structure p a r a m e t e r o f 0.58(3) w i t h R = 5.2% and R^ = 4.9%. T h e second measurement was m a d e o n a single crystal w h i c h was n o t t w i n n e d i n thc cubic phase.

C o n d i t i o n s for data c o l l e c t i o n were t h e samc as for M n - I , except: b r i g h t p i n k dodecahedral crystal ((f) = 0.3 m m ) w i t h lattice p a r a m e t e r a = 12.3100(9) A and V = 1865.4(4) Â^ a t 580 ± 5 K . - 1 5 < / Ï , A < 15, - 5 < / < 5.

[(sin y)/A]max = 0.634 A-\8 i n t e g r a t e d intensifies, co — 28 scan, 2 standard reflections, m a x i m u m intensity change 5%, spherical a b s o r p t i o n c o r r e c t i o n {^R = 0.39), l a t t i c e p a r a m e t e r s d e t e r m i n e d f r o m 25 reflections w i t h 32°

<2B< 86". ( A/ a) n . , ^ - 0.5 X I Q - * . T h e refined value for t h e absolute s t r u c t u r e parameter was - 0 . 0 0 1 8 ( 2 ) . F i n a l R values are R ^ 3.7% a n d R^, = 4.8% for 90 c o n t r i b u t i n g re- flections.

T h e standardized a t o m i c c o o r d i n a t e s o f M n - I and M n - B r are listed i n T a b l e 1.

(4)

62 C R O T T A Z . K U B E L , A N D SCHMID T A B L E 1

Standardized Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A^ x ICH) of M n - I and M n - B r Boracites

Wyckoff

Atom notation X y z TT a

L'cq

Mn - I (421 ± 1 K ) : a = 12.3404(3) À

Mn 24(c) 0 0.25 0.25 1.07(4)

I m 0.25 0.25 0.25 0.83(4)

B ( l ) 32(e-) 0.0797(4) 0.0797(4) 0.0797(4) 0,9(1)

3(2) 24{d) 0.25 0 0 01(3)

0{11 96{h) 0,0230(1) 0.0'^42(1) 0.1807(1) 041(5)

0(2} 8(«) 0 0 0 1,0(2)

Mn-•Br (580 ± S K ) : a = 12.3100(9) A

Mn 24(0 0 0.25 0.25 3.23(7)

Br m 0.25 0.25 0.25 2,47(8)

B ( l ) 0.nS14(5) 0.0814(5) 0.0814(5) 2,0(2)

B(2) 24(d) 0.25 0 0 1,2(4)

0(1) %(/i) 0.0234(2) 0.0950(2) 0.1814(2) 1.1(7)

0(2) 8(«) 0 0 0 2,1(2)

" t/eq is deJined as one-lhird of Ihe trace of tlic nrthogonalized L',, tensor.

3. RESULTS A N D DISCUSSION

The main interatomic distances i n cubic iodine and b r o - mine boracites are presented i n Table 2. T h e last hne (i.e., A^ijia^) shows the différence b e t w c c n e x t r ê m e values. I t can be noted that there is a significant change o f the M-X, A / - 0 ( 1 ) , and B ( l ) - 0 ( 2 ) b o n d distances when metals and halogens are varied. O t h e r distances like the 0 ( 1 ) - 0 ( 1 ) , B ( l ) - 0 ( 1 ) and B ( 2 ) - 0 ( l ) are not influenced. Except for the letrahedrally coordinated B ( l ) atoms the b o r o n - oxygen dislances show only little change w i t h the type o f boracite and t e m p é r a t u r e , thus contirming the picture o f a rigid b o r o n - o x y g e n n e t w o r k . D u e to this rigidity consid- é r a b l e modifications may mainly be expected i n the m é t a l environment which therefore is discussed i n d é t a i l .

T h e M n - O ( l ) and M n - A ' bonds are longer in M n - I and M n - B r than any o l h c r m e t a l - o x y g e n ( l ) or metal-halogen b o n d i n the other k n o w n cubic boracites, as reflected by the larger unit cell parameters of t h è s e compounds. The out o f planarity angles are equal t o 7.68(1)" i n M n - I and 7.85(3)° i n M n - B r while the d é v i a t i o n f r o m planarity pa- rameters (e) are 0.2834(12) Â in M n - I and 0.2881(24) À i n M n - B r . Similarly to other cubic boracites, the m é t a l i o n v i b r â t e s mainly i n the direction parallel to thc weak m é t a l halogen b o n d [{u)f!(Mf_ - 3.9(2) i n M n - I and 5.2(4) i n M n - B r ] rather than in the direction o f thc strong m e t a l - oxygcn bonds. T h e values obtained for the [{u}j/{u}i ra- tios are i n agrccment w i t h those of other boracites, found t o be between 2.7(3) for C r - I and 5.1(3) for C r - C l [see R e L ( 4 ) ] .

T h e d é v i a t i o n from planarity of the A/ O 4 group, e, as a function of the cubic cell parameters is shown i n Fig. 3.

T h e overail t r c n d of e to increase w i t h the cell parameter, as suggested by M o n n i c r et al. (13), is respected as M n - 1 and M n - B r show greater d é f o r m a t i o n s than other bora- cites. I t can be noted that the Z n - C l boracite does not foUow thc g ê n e r a i trend as i t is m u c h more planar than expected by the value o f Ihe lattice parameter. This may be due t o the d^^ configuration o f the Zn^"" atoms. T h e fact that e x t r ê m e values are observed for boracites w i t h Z m ^ (d^'^) and M n - " (d^) is another indication of thc i m - portance o f the clcctronic configuration o f the transition m é t a l o n the structure o f cubic boracites.

W h e n the e parameter is p l o t t e d as a function of the M - O ( l ) b o n d length i t appears that the largest s corre- sponds to the longest M - O ( l ) b o n d . B u t i f the geometry around the M ions is governed mainly by sterical effects, the largest e should correspond t o the shortest M-0{1) bond. This suggests that. as the M - O ( l ) distance gets shorter, the bond strength increases, thus leading to a more planar environment. T h i s effect may be in relation w i t h the sp'^ hybridization o f the 0( 1 ) ions w h î c h may lead to an interaction between the M ^ " empty 4d shell and the 0(1) é l e c t r o n lone pair. T h i s interaction could tend to

T A B L E 2

Interatomic Distances (A) in Cubic M n - B r , M n- 1 , and i n Other Cubic lodine Boracites

Name M-X M-0{ 1 ) O(l)-O(l)shortest B(1)~0(1) B ( 2 ) - 0 ( l ) B ( l ) - 0 ( 2 ) Réf.

C r - l 3,0520(2) 2.075(2) 2.393(2) 1.439(3) 1.479(2) 1.682(2) (13)

Fc-I(373 K) 3.06 2.10 -2.3 -1.5 -1.4 -1,5

C o - I 3.030(1) 2.056(2) 2.390(2) 1,434(3) 1.463(1) 1.673(3) (14)

N i - 1 3.011(1) 2.053(3) 2.390(4) 1.433(4) 1.465(3) 1,673(5) (15)

C u - I 3.005(1) 2.008(4) 2.389(5) 1 431(8) 1.469(4) 1,692(7) (16)

Mn-I (471 K ) 3.0851(1) 2.1233(12) 2.3872(17) 1.441(5) 1.4708(12) 1.703(3)

Mn-Br (580 K) 3.0775(2) 2.107(2) 2.386(4) 1.433(7) 1.471(3) 1.736(6)

A/niax (without F c - l ) 0.0801(2) 0.115(5) 0,006(3) 0,010(13) 0.016(3) 0.063(11)

(5)

S T R U C T U R E OF M A N G A N E S E H A L I D E B O R A C I T E S 63

12.5 12.41-

^ 12.3

1 12.2 -

o

Û .

s 12.1

12.0 11.9

ô N

— l O

0.12 0.14 Q16 ai8 0.20 022

Epsilon (Â)

Q24 0.26 0.28 0.30

F I G . 3. Déviation from planarity, e (for définition see text), of the O-atom environment around the métal atoms (site symmetry of métal atoms 4) i n cubic boracites as a function of cubic celL parameter, a. Data include Refs. (4-6 and 13-20). Error bars + 1 e.s.d. Dashed régions inciude ( i ) N i - I (77 and 293 K ) , Cu-Cl (390 K ) , Cu-Br, and C u - I and ( i i ) C r - C I , C r - B r (113 and 293 K ) . C r - I , and C o - I . See Réf. (3) for détails.

p r é s e r v e a planar e n v i r o n m e n t . T h i s hypothesis can aiso h e l p t o e x p l a i n the great d i f f é r e n c e o f p l a n a r i t y b e t w c c n the M g - C I and Z n - C l boracites, as the i n t e r a c t i o n b e t w c c n the o x y g e n lone pairs and t h e e m p t y d shell arc w c a k c r i n M g - C l {3d shell) t h a n i n Z n - C l (4d s h e l l ) .

M o r e t h e o r e t i c a l studies are necessary i n o r d e r t o under- stand the effect o f the e l e c t r o n i c c o n f i g u r a t i o n o f t h e m é t a l ions on the structure o f cubic boracites. T h e possible i n t e r - actions b e t w e e n the m é t a l ions and t h e sp^ 0 ( 1 ) ions also r e m a i n unclear.

A C K N O W L E D G M E N T

The authors are grateful for the support of the Swiss National Sci- ence Foundation.

R E F E R E N C E S

1. F. Kubel and A . M . lanner, Acta Crystallogr., Sect. C 49, 657 (1993).

2. R. J. Nelmes, J. Phys. C 7, 3855 (1974).

3. L . M . Gelato and E. Parthé, / Appl. Crystallogr. 20, 139 (1987).

4. M . Yoshida, K. Yvon, F. Kubel, and H . Schmid, Acta Crystallogr., Secl. B 4 S , 30 (1992).

5. F. Kubel, Ferroekctrics 160, 61 (1994).

6. F. Kubel, submittcd for publication.

7. J. D. Dunitz and L. E. Orgel, J. Phys. Chem. Solids 3, 20 (1957).

8. H , Schmid and H . Tippmann, Ferroelectrics 20, 21 (1978).

9. H . Schmid, / Phys. Chem. Solids 26, 973 (1965).

10. H . D . Flack, Acta Crystallogr., Sect. A 39, 876 (1983).

11. S. R. Hall, H . D. Flack, and J . M . Stewart (Eds.), " X T A L 3 . 2 Référ- ence Manual." Universities of Western Auslralia, Geneva, and Mary- land, 1992,

12. H . Schmid, Rost Krisi. 7 , 32 (1967); [Growth Crystals (Engl. Transi.) 7, 25 (1969)].

13. A . Monnier, G. Berset, H . Schmid, and K . Yvon, Acta Crystallogr., Sect. C 43, 1243 (1987),

14. R. J. Nelmes and W. J. Hay, / Phys. C 14, 5247 (1981).

15. R. J. Nelmes and F. R. Thornley, J. Phys. C 9, 665 (1976).

16. G. Berset, W. Depmeier, R. Boutellier, and H . Schmid, Acta Crystallogr., Sect. C 41, 1694 (1985).

17. F. R. Thomley, N . S. J. Kennedy, and R. J. Nelmes, / . Phys. C 9, 681 (1976),

18. F. R. Thomley, R, J , Nelmes, and N . S. J. Kennedy, ferroelectrics 13, 357 (1976)'

19. R. J. Nelmes and F. R. Thornley, J. Phys. C 7 , 3855 (1974).

20. S. Sueno, J. R. Clark, J, J. Papike, and J. A . Konnert, Am. Miner.

58, 691 (1973).

Références

Documents relatifs

The crystallographic structure of the sample was refined from room temperature to liquid helium temperature in the centrosymmetric C2/c space group, i.e., a group which does not

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Even when we consider diffraction from a very small crystal, where the shapes of diffraction spots are only determined by the mosaicity distribution of the crystal, the

Manganese phosphide (MnP) is ferromagnetic bet- ween 291.5 °K and 47 °K, below which it has a screw spin structure. The moments of the screw rotate in the be plane, the period

The temperature dependence of linewidth displays a maximum at approximately 10 O K in agree- ment with earlier studies.. The angular dependence of linewidth in the vicinity of

It is suggested that the observed maxima in the curves of peff against atomic per cent tin along lines of constant maganese content in the ternary system result from

The magnetic form factor of Mn ions in MnTe has been found to be very close to the experimental values obtained by Corliss and others.. - Manganese telluride

While crystal structure requires knowledge of angles, distances, surfaces and volumes, directions and planes as well as other geometrical notions, the calculations are lengthy