• Aucun résultat trouvé

Eddy-current NDE of combustion turbine blade coatings. Determination of conductivity profiles in the presence of a diffusion process

N/A
N/A
Protected

Academic year: 2021

Partager "Eddy-current NDE of combustion turbine blade coatings. Determination of conductivity profiles in the presence of a diffusion process"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01104123

https://hal-supelec.archives-ouvertes.fr/hal-01104123

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-

entific research documents, whether they are pub-

lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Eddy-current NDE of combustion turbine blade

coatings. Determination of conductivity profiles in the

presence of a diffusion process

Frédéric Nougier, Marc Lambert, Riadh Zorgati

To cite this version:

Frédéric Nougier, Marc Lambert, Riadh Zorgati. Eddy-current NDE of combustion turbine blade

coatings. Determination of conductivity profiles in the presence of a diffusion process. ENDE’08, Jun

2008, Séoul, South Korea. �hal-01104123�

(2)

Context of the study Theoretical formulation Validation

Eddy-current NDE of combustion turbine blade

coatings. Determination of conductivity profiles in

the presence of a diffusion process

Frédéric Nougier Marc Lambert Riadh Zorgati

Département de Recherche en Électromagnétisme,

Laboratoire des Signaux et Systèmes (UMR8506 CNRS-SUPELEC-Univ. Paris 11), 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France

ENDE 2008

(3)

Context of the study Theoretical formulation Validation

Context and configuration of the study

Eddy-Current measurements over combustion turbine blade coatings affected by depletion of aluminium;

Model taking inward and outward depletion of aluminum inside the coating into account;

Conductivity profile follows a two-hyperbolic-tangent law;

Analytical formulation of the variation of impedance obtained combining the approaches found in [1, 2, 3]

Air

Substrat Interdiffusion zone Coating (reservoir of aluminium)

Protective oxide zone z

σ(z)

r1 r2 h2

h1

r Zone 1a

Zone 1b Zone 1c

Zone 2

Zone 3

0

(4)

Context of the study Theoretical formulation Validation

General formulation

Formulation for a two-tanh profile

General formulation

A(r) = A(r ,z) uθ+ Aec(r ,z) = R(r )W (z)– lead to

2

∂r2R(r ) +1 r

∂rR(r ) + µ

a2− 1 r2

R(r ) = 0 (1)

2

∂z2W(z) =h

a2+j ωµσ(z)i

W(z) (2)

Following [2] the general solution given by

W(z) = CF1(f (z)) + BF2(f (z)) (3) where F1and F2typical mathematical functions related to σ(z) Expression of

A1c(r ,z) = Z+∞

0

µNII(r1,r2)eazJ1(ar )³

eah1−eah2´ 2a3(h2−h1)(r2−r1) da +

Z+∞

0 C1eazJ1(ar )da, with I (r1,r2) = Zar2

ar1

xJ1(x)dx ∀z ∈[0;+∞[

A2(r ,z) = Z+∞

0 [C2F1(f (z)) + B2F2(f (z))] J1(ar )da ∀z ∈[−r ;0]

A3(r ,z) = Z+∞

0 B3F3(g (z))J1(ar )da ∀z ∈] − ∞;−r ]

(5)

Context of the study Theoretical formulation Validation

General formulation

Formulation for a two-tanh profile

A1c(r,z) known, then Z deduced as

Z=K

+∞

Z

0 I(r1,r2)2

a6

·

2³ea(h2h1)1+a(h2h1)´+³eah2eah1´2φ(a)

¸ da

(4)

withφ(a)=C1 K;K =

µNII(r1,r2)³eah1eah2´

2a3(h2h1)(r2r1) ;K= jωπµN2 (h2h1)2(r2r1)2. Continuity conditions of the quantities and/or their derivatives with respect z and/or their cancellation at±∞expressφ(a)as

φ(a)=(aMO)RT(aLN)ST+[a(LQMP)NQ+OP] U (aM+O)RT(aL+N)ST+[a(LQMP)+NQOP] U (5) where

L=F1(f (z=0)); M=F2(f (z=0)); N=F1(f (z))¯¯z=0; O=F2(f (z))¯¯z=0; P=F1(f (z= −r)); Q=F2(f (z= −r)); (6) R=F1(f (z))¯¯z=−r; S=F2(f (z))¯¯z=−r; T=F3(g (z= −r));

U=F3(g (z))¯¯z=−r

means derivative with respect to z

(6)

Context of the study Theoretical formulation Validation

General formulation

Formulation for a two-tanh profile

Formulation for a two-tanh profile

Conductivity profile given by

σ(z)=









σ12+σ1σ12 2

· 1+tanh

µz+c1 2v1

¶¸

∀z[r,0]

σ2+σ12σ2 2

· 1+tanh

µz+c2

2v2

¶¸

∀z]− ∞, −r] (7)

Particular functions F1,F2and F3are

F1(y2(z))=y2µ(z) [1y2(z)]νF(µ + ν, µ + ν +1,2µ +1;y2(z)) (8) F2(y2(z))=y2µ(z)[1y2(z)]νF(ν − µ +1,ν − µ, −2µ +1;y2(z)) (9) F3(y3(z))=y3λ(z) [1y3(z)]τF(λ + τ, λ + τ +1,2λ +1;y3(z)) (10)

with y2(z)= µ

1+e

z+c1 v1

1

, y3(z)= µ

1+e

z+c2 v2

1

µ =v1 q

a2+jωµ0σ12, ν =v1 q

a2+jωµ0σ1 λ =v2

q

a2+jωµ0σ2, τ =v2 q

a2+jωµ0σ12

(11)

F(α, β, γ;x) is the hypergeometric function

(7)

Context of the study Theoretical formulation Validation

Single tanh-profile Two-tanh-profile

Description of the configuration

r

1

1.3 mm

r

2

3.3 mm

h

1

0.5 mm

h

2

7.8 mm

N

turn

580

σ1

1.883 10

7S m1 σ12

3.766 10

7S m−1

c

1

0.3 mm

v

1

0.1857 mm

1 1.5 2 2.5 3 3.5 x 1074

−15

−10

−5 0

x 10−4

Conductivité

Profondeur

Profil de conductivité

Comparison with the results given in [1]

Real part of Z , (b=NR2) Imaginary part of Z , (b=NR2) Frequency from [1] N=10 N=20 from [1] N=10 N=20 1kHz 0.00817 0.008169 0.008165 0.00828 0.008267 0.00828 10kHz 0.02583 0.02585 2.5823 0.22571 0.22557 0.22566 100kHz -0.68836 -0.68799 -0.6882 1.49719 1.49645 1.496769

(8)

Context of the study Theoretical formulation Validation

Single tanh-profile Two-tanh-profile

Description of the configuration

r1=2.0mm σ1=6 105S m−1 r2=4.0mm σ12=9 105S m−1 h1=0.5mm σ2=8 105S m−1 h2=7.3mm Nturn=200 c1=0.2mm v1=0.03mm c2=0.8mm v2=0.1mm

4 5 6 7 8 9 10

x 105

−14

−12

−10

−8

−6

−4

−2 0

x 10−4

Conductivite

Profondeur

Comparison with the results obtained from a multi-layer model

0 2 4 6 8 10

x 106

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10 0

Our model N = 1000 N = 10000 N = 100000 N = 1000000

RealpartofZ

Frequency (Hz) 0 2 4 6 8 x 10106

0 100 200 300 400 500 600 700 800 900 1000

Our model N = 1000 N = 10000 N = 100000 N = 1000000

ImaginarypartofZ

Frequency (Hz)

(9)

Context of the study Theoretical formulation Validation

Single tanh-profile Two-tanh-profile

E. Uzal and J. Rose, The impedance of eddy current probes above

layered metals whose conductivity and permeability vary continuously,

IEEE Trans. Magn. 29, (1993), 1869–1873.

T. Theodoulidis, T. Tsiboukis and E. Kriezis, Analytical solutions in eddy

current testing of layered metals with continuous conductivity profiles,

IEEE Trans. Magn. 31, (1995), 2254–2260.

T. Theodoulidis and E. Kriezis, Series expansions in eddy current

nondestructive evaluation models, J. Mater. Process. Technol. 161,

(2005), 343–347.

Références

Documents relatifs

In the present study, we formed FeCoAl based alloys by MA and investigated their magnetic properties; especially the eddy current dependence at low frequency and the coefficient of

Keywords : Eddy curren, Defect characterization, Finite Element Method, micro coil, arrayed eddy current sensor. Centre de Recherche en Technologies Industrielles - CRTI

Experimental results show that fine nanocrystalline alloy powders prepared by mechanical milling are very promising for microwave applications and it is suggested that Eddy

For this we are used a planetary ball mill, we are milled the Fe-Co alloy for different milling times until to obtain nanostructure, the lamellar structure with some small

For this we are used a planetary ball mill, we are milled the FeCo alloy for different milling times until to obtain nanostructure, the lamellar structure with some small

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Analysis of the data showed that the sensor output was in relation with different parameter of powder (diameter, density and structural) that the sensitivity of the sensor