• Aucun résultat trouvé

Development of inkjet-printed inverters

N/A
N/A
Protected

Academic year: 2021

Partager "Development of inkjet-printed inverters"

Copied!
17
0
0

Texte intégral

(1)

https://doi.org/10.4224/23000711

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=4486bd0a-fde5-4309-afc4-cc8c53e6d270 https://publications-cnrc.canada.ca/fra/voir/objet/?id=4486bd0a-fde5-4309-afc4-cc8c53e6d270

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Development of inkjet-printed inverters

Chu, Ta-Ya; Dadvand, Afshin; Graddage, Neil; Py, Christophe; Lang, Stephen; Tao, Ye

(2)

Ta-Ya Chu, Afshin Dadvand, Neil Graddage, Christophe Py, Stephen Lang,

and Ye Tao

(3)

Outline

• Introduction

• Development of 3-layer-printed OTFTs

• Different types of printed inverter developed at NRC

 Enhancement-load PMOS inverter

 PMOS inverter (screen printed resistor)

 CMOS inverter

(4)

Challenges in printing process

Challenges  yield, stability

 Uniformity, Roughness  Interface interaction  Solvents compatibility  Drying process  Printing platform Printing process Thermal evaporation Spin coating 1985 1990 1995 2000 2005 2010 2015 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Organic light emitting Organic transistor Printed transistor N u mb e r o f p u b lica ti o n Year

(5)

Polymer based transistor backplane is required for

flexible/bendable electronics in the future

Polyera smartwatch using OTFTs Flexible Curved Foldable Bendable

(6)

NRC 3-Layer-Printed Organic Thin Film Transistors (OTFTs)

 No spin coating process

 Printing process in ambient air

3-layer-printed OTFTs Ag Dielectric S D PET Substrate Organic Semiconductor

Inkjet printed layers

 Organic semiconductor  Dielectric

(7)

-300 -200 -100 0 100 200 300 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 He ig ht [nm] Width [m] 1 Nozzle 2 Nozzles 3 Nozzles

Thin and uniform printed dielectric layer enabled by the

coffee ring effect

-60 -40 -20 0 20 40 60 0 200 400 600 800 1000 Drop Spacing 15m 25m 35m 45m 55m He ig ht [nm] Width [m] Organic Electronics 29 (2016) 114-119

 Transistor driving voltage is proportional to the thickness of dielectric layer

 Difficult to achieve a pin-hole free of thin dielectric layer by printing method

(8)

3-layer-printed OTFTs mobility up to ~1 cm

2

/Vs at 15 V

0 2 4 6 8 10 12 14 16 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 (-I DS ) 1 /2 ( 1 0 -3 A 1 /2 ) -VG (V) -IDS ( A ) =1.0 cm2/Vs VDS=-15 V 0 2 4 6 8 10 0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 -IDS (  A) VDS (V) VGS (V) -1 -3 -5 -7 -9 -11 -13 -15

Channel length 5 µm, channel width 1 mm

Dielectric thickness~ 250 nm Max. Processing Temp. 140°C

0.2 0.4 0.6 0.8 1.0 1.2 1.4

420 OFETs (8 OFETs, 2%, mobility lower than 0.2 cm2/Vs are not counted for statistics)

Mob ility (cm 2 /V s) 0.86 Standard deviation 0.15 (17%) 3-layer-printed OTFTs Ag Dielectric S D PET Substrate DPP-DTT

Average mobility of 0.86 cm2/Vs (variation σ~15%) with

(9)

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 Input Output Vo lt a g e (V) Time (sec) Vdd=-20V, 100 Hz

Printed PMOS enhancement-load Inverter and relative

logic circuits

Vout Vin Vdd Channel length L= 5 µm, Channel width  Drive transistor W=1 mm  Load transistor W=200 µm,

Simplest printing process and excellent stability Lower output amplitude

(10)

Printed logic gates NAND, AND, NOR and OR

Table 1. Truth tables for NAND, AND, NOR and OR logic gates Output for the different logic gates

Vin 1 Vin 2 NAND AND NOR OR

1 1 0 1 0 1

1 0 1 0 0 1

0 1 1 0 0 1

0 0 1 0 1 0

NAND NOR AND OR

Vdd=-30V -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 -20 -10 0 -20 -10 0 -20 -10 0 -20 -10 0 -20 -10 0 -20 -10 0 Time (sec) OR NOR AND NAND Vin2 Volt age (V) Vin1

(11)

Printed PMOS inverter using screen printed resistor

0 1 2 3 4 5 0.5 1.0 1.5 2.0 2.5 3.0 D e la y t im e ( m s )

Resistance of the external resistor (M)

Vout Vin Vdd -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -16 -14 -12 -10 -8 -6 -4 -2 0 2 Vo lt a g e (V) Time (sec)

Printed inverter (Inkjet printed OFET/ Screen printed resistor) Input

Output

OFET (L=5m, W=1mm), Screen printed resistor

Screen printed carbon ink for resistor

-14 -12 -10 -8 -6 -4 -2 0 -16 -14 -12 -10 -8 -6 -4 -2 0 Vin (V) V out (V ) 0 1 2 3 4 5 6 7 8 9 10 G ai n

(12)

0 5 10 15 20 1E-11 1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 S Q R T I D S (m A ) Lo g I D S (A ) VGS(V) vDS=20 0 5 10 15 20 0 2 4 6 8 10 12 0 V 4 V 8 V 12 V 16 V 20 V IDS (  ) VDS(V)

3-Layer-Printed

N type transistor

Organic Electronics 29 (2016) 114-119 Dielect. Thick. (nm) Mobility (cm2/Vs) @ bias=20 V Vth (V) On-current (A) Off-current (A) On/Off

800 0.01 12.8 2.5E-07 1.16E-12 2.1E+05

450 0.05 10.9 3.2E-07 1.20E-12 2.6E+05

300 0.05 9.7 5.0E-07 7.15E-12 7.0E+05

220 0.10 8.4 8.8E-06 6.24E-11 1.4E+05

180 0.12 4.1 1.5E-05 6.70E-10 4.0E+04

Development of printed CMOS inverter

NDI2OD-T2 N-type semiconductor 3-layer-printed OTFTs Ag SOG Dielectric S D PET Substrate

(13)

Ag Ag Dielectric Dielectric N P Vdd Vout Ground PET Substrate DPP-DTT

P-type semiconductor N-type semiconductor NDI2OD-T2

V

in

V

out

V

dd

P

N

Development of printed CMOS inverter

Difficulties

 Compatible processing condition for both P and N type materials

 Compatible IV characteristics  Stability between P and N

(14)

25 20 15 10 5 0 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24 10 V 15 V 20 V 25 V V ds (V ) V gs(V) Gain 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 12 14 16 18 20 Vo u t Time (sec) Output Input

Development of printed CMOS inverter

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0 2 4 6 8 10 12 14 16 18 20 O u tp u t (V) Time (sec)

Printed CMOS driven at 10Hz (15V, exposed in air) Initial

1 hr 2 hrs 7 hrs 80 hrs

 Full-swing output amplitude achieved  Gain value of 24 obtained

 Air stability testing without encapsulation

(15)

Summary

 NRC developed printing process for 3-layer-printed OFETs, mobility of 1 cm2/Vs on

PMOS and 0.1 cm2/Vs on NMOS transistors have been achieved.

 Introduced coffee ring effect to achieve thin and uniform dielectric layer by inkjet printing process.

 Gain value of 24 with a nearly full-swing of output voltage obtained from the printed CMOS inverter.

 Demonstrated the air stable printed CMOS without encapsulation

Summary

Printed circuits

Semiconductor

Electrode Dielectric

(16)

15 15

Thank you for your attention!

Question?

Dr. Ta-Ya Chu Research Officer Tel: 1-613-949-7558 ta-ya.chu@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca

(17)

Figure

Table 1. Truth tables for NAND, AND, NOR and OR logic gates Output for the different logic gates

Références

Documents relatifs

« Il faut que les gens se disent sur ce sujet ils ont raison, sur ce sujet ça va améliorer ma vie, et donc ça veut dire qu’il faut vraiment regarder quels sont les

The second objective of this study was to design a differential gas sensor, based on variations of the electrical properties of the sensitive composite material in the presence of

25 Temperature dependence of relaxation time of the MWS processes (open symbols) and structural relaxation process of constrained amorphous phase

Electrical characterization is performed to assess the ferroelectric properties of thin-film ceramic piezoelectrics such as PZT, namely the response of polarization and

Economic instruments may bring economic efficiency in environmental policies not only when a market economy is fully developed, but also, in the context of

Dans cette étude, nous avons revu la mise en équations des rotors en prenant en compte le frottement sec (frottement de Coulomb) sur les paliers dits « roulement à billes

(b) At almost zero temperature the wall splits into two confined-Coulomb interfaces with a complete wetting layer of Coulomb phase between them... When a confined-confined

a IICR plots showing the resulting IICR curve of the European population under this model and the inferred IICR curve obtained with our method (where the recent period of