• Aucun résultat trouvé

Accelerated conditioning for a proton exchange membrane fuel cell

N/A
N/A
Protected

Academic year: 2021

Partager "Accelerated conditioning for a proton exchange membrane fuel cell"

Copied!
6
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Journal of Power Sources, 205, pp. 340-344, 2012-01-10

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.jpowsour.2012.01.039

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Accelerated conditioning for a proton exchange membrane fuel cell

Yuan, Xiao-Zi; Sun, Jian Colin; Wang, Haijiang; Li, Hui

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=24ca7dbb-bdda-4a21-90ff-f7b32aca251f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=24ca7dbb-bdda-4a21-90ff-f7b32aca251f

(2)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Power

Sources

j o ur n a l ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Short

communication

Accelerated

conditioning

for

a

proton

exchange

membrane

fuel

cell

Xiao-Zi

Yuan

,

Jian

Colin

Sun,

Haijiang

Wang

∗∗

,

Hui

Li

InstituteforFuelCellInnovation,NationalResearchCouncilCanada,4250WesbrookMall,Vancouver,BC,CanadaV6T1W5

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26October2011 Receivedinrevisedform 21December2011 Accepted1January2012 Available online 10 January 2012

Keywords: Conditioning Pre-conditioning Activating Commissioning Break-in

a

b

s

t

r

a

c

t

Aconditioningprocessisusuallyneededforanewlyfabricatedprotonexchangemembrane(PEM)fuel celltobeactivated.Dependingonthemembraneelectrodeassemblies,thisprocesscantakehoursand evendaystocomplete.Toprovideforacceleratedconditioningtechniquesthatcancompletetheprocess inashorttime,thispapercomparesvariousreportedmethodstoconditionaPEMsinglecell.Themajor objectivesaretoidentifyacceleratedconditioningapproachesthatcansignificantlyreducethe condi-tioningdurationfortheexistingconditioningregimeinanoperationallyeasymanner,andtounderstand thefundamentalprinciplesthatgovernacceleratedconditioning.Variouseffectsinvestigatedinclude temperature,cyclingsteps,andcyclingfrequencies.Othertechniques,suchasshortcircuiting,hydrogen pumping,andhotwatercirculation,arealsodiscussed.Foreachtechnique,measurementsaretakenusing electrochemicalimpedancespectroscopy(EIS),cyclicvoltammetry(CV),andlinearsweepvoltammetry (LSV).

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

A conditioningprocess is usually needed for a newly fabri-catedpolymerelectrolytemembrane(PEM)fuelcelltobeactivated

[1].Throughthisprocess,alsocalledbreak-in,commissioning,or incubation,thenewcellcanreachitsbestperformance.Typically, duringthisbreak-inperiodthecellperformanceincreases gradu-ally,thenreachesaplateauwithoutfurtherincrease.Depending onthemembraneelectrodeassemblies(MEAs),thisprocesscan takehoursand even daystocomplete.Anidealscenariois not onlytohavethehighestpossiblepowerdensityafterthe break-inprocedure,butalsotominimizetheactivationcompletiontime

[2,3].

Variousapproaches havebeeninvestigatedtomaximizefuel cellperformanceandshortentheelectrodeactivationtime.On-line techniquesexploredincludecurrentcontrol[5,6],potential con-trol[7,8],temperaturecontrol[9–11],hydrogenpumping[4,12], COstripping[13],andairbraking[14,15].Off-linemethodsinclude electrochemicalconditioning ofthe MEA[16], and steamingor boilingtheelectrode[17].TheUS FuelCellCouncil(USFCC)has evenestablishedcellbreak-inprotocolstostandardizetheprocess

[18].However,nostandardmeasurementhasbeenestablishedto determinetheeffectivenessofabreak-inorconditioning proce-dure.Murthyetal.[3]recommendedmonitoringafuelcell’soutput

∗Correspondingauthor.Tel.:+16042213000x5576;fax:+16042213001. ∗∗Correspondingauthor.Tel.:+16042213038;fax:+16042213001.

E-mailaddresses:xiao-zi.yuan@nrc.gc.ca(X.-Z.Yuan),haijiang.wang@nrc.gc.ca

(H.Wang).

currentdensityat0.6Vandrecordingitasafunctionoftimeduring theapplicationofagivenconditioningprocedure.

Comparedwithfuelcelldurabilitystudies,researchonfuelcell conditioningisrelatively limited.In mostcases,proceduresare givenandresultsarepresentedwithoutdiggingfurtherintothe mechanisms.Asaresult,thereportscontainmorehypothesesthan facts.Mostmechanismsproposedarehypotheticalbecausethey lackdirectexperimentalsupportorconcreteexperimental verifica-tion.Asystematicinvestigationofconditioninganditsmechanisms isstill required.Tothis end,thepresent paperaimstoidentify acceleratedconditioningapproachesthatcansignificantlyreduce the conditioning duration for an existing conditioning regime, witheasyoperationalconditions,and tounderstandthe funda-mental principlesthat governaccelerated conditioning.Various effectsinvestigatedincludetemperature,cyclingsteps,andcycling frequencies.Othertechniques,suchasshortcircuiting,hydrogen pumping,andhotwatercirculation,arealsodiscussed.

2. Experimental

2.1. Acceleratedconditioning

ThePEMfuelcellhadanactiveareaof50cm2.Allthe

experi-mentswerecarriedoutusingGore57catalystcoatedmembranes (CCMs).Toensureinstanttemperaturecontrolinthecell,allof thegasesandwatercouldbeoperatedtobypassthecellthrough three-wayvalves.

Thebaseline datawasobtainedbydrawingthecurrent ata constantvoltageof0.6V.Oncetheinitialsetpointswerereached (70◦C,with100%relativehumidity(RH)onbothsides),thecellwas

0378-7753/$–seefrontmatter.Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2012.01.039

(3)

connectedtothesystem.After6hofoperationat0.6V,EIS,CV,and LSVweremeasured. Thencelloperationwascontinuedat0.6V untiltherewasnofurtherperformance improvement,at which pointEIS,CV,andLSVmeasurementsweretakenagain.

Factorsthataffectconditioningwerechosenbasedoneaseof operationandtheeffectivenessofthemethod,andincluded tem-perature, cycling steps, and cycling frequencies. Assessment of temperatureeffectswasperformedat50◦C,70C(baseline),and

90◦C,ataconstantvoltageof0.6Vand100%RHonbothsidesfor

6h.Todeterminetheeffectofcyclingsteps,threeexperimentswere carriedout:(1)thecellwascycledbetween0.6Vand0.3V,with eachsetpointheldfor60s,andthecyclewasrepeatedfor6h.(2) Thecellwascycledbetween0.6V,0.3V,andOCV,witheachset pointheldfor60s,andthecyclewasrepeatedfor6h.(3)Thecell wascycledinasequenceofpotentialcyclingsteps,asfollows:

(i)Cellvoltagewasdecreasedfrom0.9Vto0.2Vandmaintained for60sateachdecreaseof0.1V.

(ii)Cellvoltagewasmaintainedat0.1Vfor60s.

(iii) Cellvoltagewasincreasedfrom0.2Vto0.9Vandmaintained for60sateachincreaseof0.1V.

(iv) Theabovethreestepswererepeatedfor6h.

Toinvestigatetheinfluenceofcyclingfrequency,twoothertests wereadded:thecellwascycledbetween0.6Vand0.3V,witheach setpointheldfor(1)5minor(2)20s.Theconditionsofallthese testswerethesameasforthebaseline.Each conditioning pro-cesswasperformedfor6h,andEIS,CV,andLSVweremeasured immediatelyafterward.

Other techniques investigated in this paper included short circuit,hot watercirculation, andhydrogenevolution/hydrogen pumping.Theprocedures forshortcircuitwereas follows.The anodeand thecathodewereconnectedtoshortthecell,witha lowflowratefor1minandahighflowratefor3min.This pro-cesswasrepeatedfor0.5h.Attheendofthisprocess,hydrogen wassuppliedataminimumrateandoxygensupplywasstopped. Whenthecellvoltagewasbelow0.1V,thehydrogensupplywas stopped.Forhotwatercirculation,hotwater(80◦C)wascirculated

forbothanodeandcathodefor0.5h,andthentheelectrochemical performancesweremeasured.Forhydrogenevolution/hydrogen pumping,airatthecathodesidewasreplacedbynitrogen,while theanodesidewasfedwithpurehydrogen.Anexternalpower supplywasusedtogenerateacurrentdensityofca.200mAcm−2

throughthecell,withhydrogenbeingoxidizedattheanode;the protonsweretransportedthroughthemembranetothecathode, wheretheywerereduced.Theprocedurewascontinuedfor30min. 2.2. Electrochemicaltechniques

Toassesstheeffectivenessofactivationandtounderstandthe underlyingprinciples,EIS,CV,andLSVweremeasuredaftereach conditioningprocess.ASolartronSI-1260Impedance/Gain-Phase analyzerandaSolartronSI-1287ElectrochemicalInterfacewere usedforEIStestingatacurrentof36Aoverthefrequencyrangeof 10kHzto0.1Hz.

Prior tothe CV and LSV tests, the air supply was switched tonitrogenand the systemwasrun at OCVwithH2 min flow

(0.5lmin−1) and N

2 minflow (2lmin−1)until steady potential

wasachieved.InsituCVwasperformedonthefuelcellusingthe SolartronSI-1287ElectrochemicalInterfacetocomparetherelative electrochemicalsurfacearea(ECSA).Toavoidpossibledegradation fromcarbonsupportoxidationinducedbyhighpotentials,thecell wascycledbetween0.05and0.8Vonthecathodevs.reversible hydrogenelectrode(RHE)atascanrateof50mVs−1.

Thegaspermeabilityorcrossoverthroughthemembranewas assessed using LSV to measure the limiting oxidation current

10 15 20 25 30 35 40 45 50 30 25 20 15 10 5 0 Time (H) Current at 0.6V (A)

Fig.1. Timedependenceofcurrentat0.6Vforthebaseline.

densitiesofthecrossoverhydrogen.ForLSVmeasurement,allthe operatingconditionsforthefuelcellwerethesameasintheCV test,exceptforalinearpotentialscanfrom0to0.5V(vs.RHE)on thecathodeatascanrateof5mVs−1.

Foreachexperiment,theoutputcurrentdensityofthecellat 0.6Vwasmonitoredandextractedfromthedataasafunctionof time.

3. Resultsanddiscussion 3.1. Baseline

Thebaseline datawasobtainedbydrawingthecurrentat a constantvoltageof0.6Vandat70◦Cfor100h.Fig.1showsthe

timedependenceofcurrentat0.6Vduringbaselineconditioning (notethatthefigurepresentsonlythefirst28h).Ascanbeseen, thecurrentincreaseswithtimeforabout20h,withthegreatest increase occurringatthe verybeginning. After20h, nofurther performanceimprovementisobserved.After6,28,and100hof operationat 0.6V, EIS, CV, and LSV were measured(shown in

Figs.2–4,respectively).ThereisaspikeinFig.1duringconditioning at∼6h,whichwascausedbytheinterruptionofthe condition-ingoperationformeasuringEIS,CV,andLSV.Thecurvesat0time, “fresh”,werealsoaddedtothefiguresforcomparison.These“fresh” valueswereobtainedbymeasuringanewsamplethat hadnot undergoneanyconditioning.Clearly,afterconditioningthe elec-trochemicalactiveareaincreased,andthemembraneresistance (high-frequencyintercept)andpolarizationresistance(the differ-encebetweenthelow-andhigh-frequencyintercepts)decreased. Basedontheimpedancespectra,membraneresistance(Rel),charge

transferresistance(Rct),andmasstransferresistance(Rmt)canbe

extractedusingtheequivalentcircuitdepictedinFig.5,whereCPE representstheconstantphaseelement.Thesimulatedparameters arelistedinTable1.

-0.05 0 0.05 0.1 0.15 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 Z' (Ω cm2) -Z'' ( Ω cm 2 ) Baseline 6H Baseline 28H Baseline 100H Fresh

(4)

Table1

ParametersextractedfromimpedancespectrausingtheequivalentcircuitdepictedinFig.5.

Acceleratedconditioningoperation Rel(cm2) Rct(cm2) Rmt(cm2) Acceleratedconditioningoperation Rel(cm2) Rct(cm2) Rmt(cm2)

Fresh 0.17 0.225 0.045 Baseline6H 0.165 0.178 0.045 Baseline28H 0.155 0.148 0.04 Baseline100H 0.152 0.148 0.04 50◦C 0.167 0.212 0.045 0.6–0.3V,20s 0.157 0.235 0.05 70◦C 0.165 0.178 0.045 0.6–0.3V,60s 0.157 0.152 0.03 90◦C 0.16 0.135 0.024 0.6V–0.3V,5min 0.169 0.155 0.032 0.6–0.3V 0.157 0.152 0.03 Shortcircuit 0.152 0.175 0.043

0.6–0.3V–OCV 0.157 0.175 0.038 Hotwatercirculation 0.191 0.268 0.051

Sequentialcycling 0.152 0.16 0.04 Hydrogenpumping 0.17 0.19 0.041

Fig.3. ComparisonofCVcurvesatdifferenttimesduringbaselineconditioning.

Fig.4. ComparisonofLSVcurvesatdifferenttimesduringbaselineconditioning.

Theobservedphenomenacan beexplained bythefollowing possibletheories[2]:

(1)Increaseintheelectrochemicalactiveareaofthecatalyst:this isachievedbytheremovalofimpuritiesintroducedduringthe processofmanufacturingtheMEAandthefuelcellstack,and theactivationofacatalystthatdoesnotparticipateinthe reac-tion.

Fig.5. EquivalentcircuitofaresistorandaVoigt’sstructureinserieswithcapacitors replacedbyCPE.

(2)Membrane“break-in”:onesuchtheoryisthatthemembranes mayincludecatalystresiduethathinderstheirperformance. Another is that the membranes are initially dry, hindering thecellperformanceuntilthemembraneshydrateduringthe incubation period (indicated by thedecrease in membrane resistance).

(3)Decreaseinchargetransferresistance:theinitialperformance ofanewMEAwithNafion-bondedelectrodesusuallyimproves withtime,astheelectrolytecontainedintheelectrodesneeds hydrationtoensurethepassageofhydrogenions.

(4)Decreaseinmasstransferresistance:conditioningcreatesmore transferpassagesforreactantstothecatalyst.

Asseen inFig.4,hydrogencrossoverincreasesslightly over time comparedwiththefreshsample.However,theincreaseis insignificant.

3.2. Effectoftemperature

Thetemperatureeffectisobtainedbycomparingthe perfor-manceafter6hofconditioningat50,70,and90◦C.Fig.6shows

thetimedependenceofcurrentat0.6Vduring6hof condition-ingat differenttemperatures. Ascanbeseen, cellperformance increaseswithincreasingtemperature.Forallthetemperatures, asimilarincreasingtrendinperformanceisobservedwithin6h, butthistimeisapparentlynotenoughforthecellstocompletely reachtheirbestperformance.For example,in thebaselinecase, 20hofoperationisneeded.Nevertheless,thegreatestperformance increaseoccursattheverybeginning(i.e.,1–2h).QiandKaufman

[9]alsofoundthatunderelevatedtemperature,thecurrent den-sityatcertaincellvoltagescouldbedoubledafteractivationand theactivationcouldbecompletedextremelyquickly,withmostof itachievedinthefirstfewminutes.

After6hofoperationat0.6Vatdifferenttemperatures,EIS,CV, andLSVweremeasured.TheresultsofCVandEISarecomparedin

Figs.7and8,respectively.Evidently,afterconditioningatdifferent temperaturestheelectrochemicalactiveareaincreases(relative tothefreshsample,theelectrochemicalactiveareaincreasesby

0 10 20 30 40 50 7 6 5 4 3 2 1 0 Time (H) Current at 0.6V (A) 50°C 0.6V 70°C 0.6V 90°C 0.6V

Fig.6.Comparisonofcurrent–timecurvesat0.6Vconditionedatdifferent temper-atures.

(5)

0.5 1 1.5

Fast conditioning operation

Relative active area

90°C 70°C

50°C Fresh

Fig.7.ComparisonofrelativeactiveareaderivedfromtheCVcurvesafter condi-tioningat0.6Vfor6hatdifferenttemperatures.Therelativeactiveareaofthefresh sampleis1.

1.4,1.2,and1.3timesfor50◦C,70C,and90C,respectively).Due

toionomerhydrationandcatalystactivation,themembraneand polarizationresistancesdecrease,asdemonstratedinFig.8. Fur-ther,accordingtothesimulatedimpedanceparameterslistedin

Table1,Rel,Rct,andRmtalldecreasewithincreasingtemperature.

Ithasbeenproposedthattheactivationprocessincreasescatalyst utilizationbyopeningmany“dead”regionsinthecatalystlayer. EvenwhenaprotonconductorsuchasNafionismixedintoa cat-alystlayertomakeitconductprotonsinthreedimensions,many ofthecatalystsitesarenotavailableforreaction,forvarious rea-sons:(1)thereactantscannotreachthecatalystsitesbecausethe latterareblocked,(2)Nafionnearthesecatalystsitescannotbe eas-ilyhydrated,or(3)ionicorelectroniccontinuityisnotestablished withthesesites.Whenafuelcellisoperatedatelevated tempera-tureandpressure,manyofthese“dead”regionsare“opened”and thenbecomeactive[9].

With increasing temperature, hydrogen crossover slightly increasesduetofasterdiffusionofhydrogenathigher tempera-tures. 0.15 0.16 0.17 0.18

a

b

Fast Conditioning Operation

Membrane resistance ( Ω cm 2 ) 90°C Fresh 50°C 70°C 0 0.1 0.2 0.3 0.4 0.5

Fast Conditioning Operation

Polarization resistance Rp ( Ω cm 2) 90°C Fresh 50°C 70°C

Fig.8. Comparisonof(a)high-frequency resistance(b)polarizationresistance derivedfromEIScurvesafterconditioningat0.6Vfor6hatdifferenttemperatures.

0 10 20 30 40 50 60 7 6 5 4 3 2 1 0 Time (H) Current at 0.6V (A) Baseline 0.6V - 0.3V 0.6V - 0.3V - OCV Sequential cycling

Fig.9.Comparisonofcurrent–timecurvesat0.6Vfordifferentcyclingsteps.

3.3. Effectofcyclingsteps

Theeffectofcyclingstepswasevaluatedbycomparingthe per-formanceafter6hof conditioningusing2,3, andmore cycling steps.Fig.9showsthetimedependenceofcurrentat0.6Vduring 6hofconditioningfordifferentcyclingsteps.Ascanbeseen,any potentialcyclingoperationhelpedtoactivatethecell,andcycling between0.6Vand0.3Vachievedthebestperformancewithin6h. Inotherwords,neitherOCVrelaxationnorcyclingwithmoresteps wasmuchhelpinconditioningthecell.Similartoresultsfrom pre-vioustests,thegreatestperformanceincreasedoccurredatthevery beginningofconditioning.

After6hofconditioningunderdifferentcyclingsteps,EIS,CV, andLSVweremeasured.ResultsfromCVarecomparedinFig.10, andresultsfromEISarelistedinTable1.Fig.10showsthatafter conditioningunderdifferentpotentialcyclingsteps,the electro-chemicalactiveareaincreased,especiallyfor sequentialcycling. Comparedwiththeresultsforafreshsample,Rel,Rct,andRmtall

decreasedinthethreecases.Itisgenerallybelievedthatthe mem-branehydrationlevel,thenumberofprotonconductionchannels, andthecatalystlayerporositycontinuedtoincrease duringthe conditioningperiod.AccordingtoFig.10,asthenumberofcycling stepsincreases,moreactiveareacanbeobtained.However,this trenddoesnotexactlymatchthetrendinresistancechangesas observedfromEIS;theseactivationsareeffectivefor improving onefactorbutmaynotbeeffectiveforimprovingotherfactorsthat affectcellperformance.Theultimateperformanceimprovement willbedeterminedbythecombinedeffectsofallfactors.ForLSV, therewasnosignificantchangeinhydrogencrossover.

3.4. Effectofcyclingfrequency

Theeffectofcyclingfrequencywasdeterminedbycomparing theperformanceafter6hofconditioningunderdifferentcycling

1 1.5 2 2.5 4 3 2 1 0

Accelerated conditioning operation

Relative surface area

Cycling steps Cycling frequency Other techniques

Fig.10.ComparisonoftherelativeactiveareaderivedfromtheCVcurvesafter con-ditioningwithdifferentconditioningoperations()Cyclingsteps(1:0.6V–0.3V;2: 0.6V–0.3V–OCV;3:Sequentialcycling).()Cyclingfrequency(1:0.6V–0.3V20s;2: 0.6V–0.3V60s;3:0.6V–0.3V5min).()Othertechniques(1:hotwatercirculation; 2:shortcircuit;3:hydrogenpumping).

(6)

0 10 20 30 40 50 60 7 6 5 4 3 2 1 0 Time (H) Current at 0.6V (A) Baseline 0.6V - 0.3V 1min 0.6V - 0.3V 5min 0.6V - 0.3V 20sec

Fig.11.Comparisonofcurrent–timecurvesat0.6Vfordifferentcyclingfrequencies.

frequencies.Fig.11showsthetimedependenceofcurrentat0.6V during6hofconditioningwithdifferentcyclingfrequencies.Ascan beseen,within2h,thehigherthecyclingfrequency,themore effi-cientlythecellwasactivated;atahighfrequencyof20s,thecell reacheditsbestperformancewithin2h,followedbyperformance degradation,whereasforfrequenciesof1minand5min,atleast 6hofactivationprocesswereneeded.Atthismoment,itis diffi-culttogiveanexplanationfortheeffectoffrequency.Asallthe measurementsweretakenafter6hofoperation,weareunableto trackthechangesduringthese6h.Whileothercellsarestillinthe processofconditioning,thecellatafrequencyof20shasstarted todegradewithin6h.Wemayassumethathighfrequencyworks moreeffectivelytoimprovetheelectrochemicalactiveareaofthe catalystorcreatethepathwaysforprotons.Furthermore,itis pre-dictedthatthecellwithpotentialcyclingatahighfrequencywill haveafastdegradationrate.

After6hofoperationat0.6Vunderdifferentcycling frequen-cies,EIS,CV,andLSVweremeasured.TheCVresultsarecompared inFig.10andtheEISresultsarelistedinTable1.Forallcases,after conditioningunderdifferentcyclingfrequencies,the electrochem-icalactiveareaincreased.FromTable1wecanseethatRel,Rct,and

Rmtalldecreased,exceptat20s.Inthiscase,theincreasesinRct

andRmtareattributabletodegradationafter2h.Comparedwiththe

situationatafrequencyof1minalthoughconditioningatalow fre-quencyfor5minyieldedahighECSA,itresultedinhighresistance forthemembraneandpolarization.Thelowercellperformancefor alowfrequencyof5minwasaresultofthecombinedfactors.For LSV,therewasnosignificantchangeinhydrogencrossoverwithin suchashorttimeofoperation.

3.5. Othermethods

Othermethods investigated in this report include short cir-cuit,hotwatercirculation,andhydrogenpumping.Theprinciple ofhydrogenpumpingistoimprovePEMfuelcellperformanceby movinghydrogenfromonesideofthemembranetotheother.Asa resultofthisprocess,electrodecatalystutilizationisincreasedand MEAperformanceisimproved[4].Thisisachievedbyreducingthe overpotentialofoxygenreduction.Thereductioninoverpotential isthoughttobeduetochangesintheporosityandtortuosityofthe catalystlayerswhenH2evolvesfromthem,leadingtoanincrease

inthenumberofreactant–catalyst–electrolyte3-phasesites.Hot watercirculationwaschosen,asitwasbelievedthattheNafionin theMEAcouldachievecompletehydration(includingtheNafion membraneand theNafionintheCL),leadingtoenhancedMEA performance.Hotwatercirculationmightalsohelptoopensome “dead”regionsintheCL[17].

Thesemethodswerecomparedfor0.5hofoperation.Compared withthebaselinefigures,thesemethodscouldactivatethecelltoa certainextentwithin0.5h.Cellperformancewasimprovedinthis order:shortcircuit,hydrogenpumping,andhotwatercirculation.

After0.5hofoperationunderdifferentconditions,EIS,CV,and LSVweremeasured.TheCVresultsarecomparedinFig.10,and theEISresultsarelistedinTable1.Itcanbeseenthatafter condi-tioningunderdifferentcircumstances,theelectrochemicalactive areaincreasesgreatly,especiallyfortheshortcircuitand hydro-genpumpingsituations.Theshortcircuitnotonly achievesthe largestactivearea,butalsoachievesthesmallestmembraneand chargetransferresistances(whilenotcontributingtoincreasesin themasstransferpassages),asseeninTable1.Hydrogen pump-ingcangreatlyreducethechargetransferresistance,butdoesnot contributetoimprovingthemembraneconductivityand increas-ingthemasstransferpaths.Hotwatercirculationachieved(i)the leastactiveareaincreaseand(ii)anincreasein membraneand polarizationresistances,probablyduetofloodingissues.

4. Concludingremarks

Thisreportinvestigatedvariousmethodsandfactorsto condi-tionaPEMfuelcell.Theconditioningtimesandelectrochemical propertiesafterconditioningarecompared.Itisworthnotingthat thesecomparisonsarebasedontheGoreCCM.Dependingonthe typeofMEAcomponents,theactualconditioningtimeand prop-ertiesmayvary.Accordingtoourresults:highertemperatureis more effectivetoobtainhighperformance;OCVrelaxationand morecyclingstepsarenotveryhelpfulinacceleratingtheprocess; highercycling frequencymayreducetheactivationtime, butis soonfollowedbydegradation;andtheshortcircuitmethodseems veryeffectivetoconditionthecellinaveryshorttime.However, applyingallthesestressorstoconditionthecellstronglyaffectsthe microstructuresoftheconditionedMEA,whichinturnwillstrongly affectthelong-termbehaviouranddurabilityofthecell,asMEA nanomaterialdegradationisheavilyhistory-dependent.For exam-ple,althoughshortcircuitscanconditionthecellinaveryshort time,wedonotknowhowthiswillaffectthecell’sdurability with-outalong-termdurabilitytest.Theeffectofconditioningoncell durabilitymaybestudiedinourfuturework.

References

[1] Z.Xu,Z.Qi,C.He,A.Kaufman,J.PowerSources156(2006)315–320. [2] X.Z.Yuan,S.Zhang,J.C.Sun,H.Wang,J.PowerSources196(2011)9097–9106. [3]M.Murthy,N.T.SisofoIII,C.A.Baczowski,Methodanddevicetoimprove

oper-ationofafuelcell,US2006/0166051A1(2006).

[4]C.He,Z.Qi,M.Hollett,A.Kaufman,Electrochem.Solid-StateLett.5(2002) A181–A183.

[5]W.Bi,Electrochem.Solid-StateLett.10(2007)B101–B104.

[6]J.Shan,X.,Yan,X.,Sun,Z.,Hou,P.,Qi,P.Ming,Afastactivationmethodfora fuelcellstack,ChinesePatent,201010010014.3(2010).

[7]T.W.Lim,S.H.Kim,S.Y.Ahn,B.K.Hong,B.K.Ahn,Systemandmethodfor acti-vatingfuelcell,US2010/0129689Al,2010.

[8]F.-B.Weng,B.-S.Jou,A.Su,S.H.Chan,P.-H.Chi,J.PowerSources171(2007) 179–185.

[9]Z.Qi,A.Kaufman,J.PowerSources111(2002)181–184. [10]Z.Qi,A.Kaufman,J.PowerSources114(2003)21–31.

[11]Z.Qi,A.Kaufman,Activationofelectrochemicalcellswithcatalystelectrodes, USPatent6,805,983(2004).

[12]C.He,Z.Qi,A.Kaufman,Electrochemicalmethodtoimprovetheperformance ofH2/airPEMfuelcellsanddirectmethanolfuelcells,USPatent6,730,424

(2004).

[13]Z.Xu,Z.Qi,J.PowerSources156(2006)281–283.

[14] H.H.Voss,R.H.Barton,M.Sexsmith,M.J.Turchyn,Conditioningand Mainte-nanceMethodsforFuelCells,BallardPowerSystemsInc.,CA2429598A1, 2003.

[15]C. Eickes, P.Piela, J. Davey, P.Zelenay, J. Electrochem.Soc. 153 (2006) A171–A178.

[16]K.Palanichamy,A.K.Prasad,S.G.Advan,Off-lineconditioningofPEMfuelcell membraneelectrodeassembly(MEA),ECSAbstract,http://www.electrochem. org/meetings/scheduler/abstracts/214/1091.pdf(accessed24.03.11). [17]Z.Qi,A.Kaufman,J.PowerSources109(2002)227–229.

[18]USFCC single cell test protocol, Available at http://www.fchea.org/core/ import/PDFs/Technical%20Resources/MatComp%20Single%20Cell%20Test %20Protocol%2005-014RevB.2%20071306.pdf(accessed24.03.11).

Figure

Fig. 2. Comparison of EIS curves at different times during baseline conditioning.
Fig. 3. Comparison of CV curves at different times during baseline conditioning.
Fig. 9. Comparison of current–time curves at 0.6 V for different cycling steps.
Fig. 11. Comparison of current–time curves at 0.6 V for different cycling frequencies.

Références

Documents relatifs

Chapter IV.. Conclusion and Outlook...149.. a) Evolution of the world population (previsions of United Nations) b) world CO2 emissions by sector (Other*

An- other solution is to build a state observer to estimate the relative humidities in the channels, as in [12], where they estimate precisely the distribution of state parameters

The membrane resistance and the hydrogen crossover should be both lowered by optimizing the thickness of the membrane, the sulfonation degree of sepiolite and by

Although international adjudication can presumably share these features and a common nature with domestic adjudication, it is important to draw some

Furthermore, the decreased cytolytic activity against tumor cell lines of intratumoral NK cells from cancer patients has also been shown to be increased/restored when IL-2 or IFNα

This work concerns elaboration of a new material, being a core part of a proton electrolyte membrane fuel cell (PEMFC), – an ionic polymer (an ionomer). Nowadays, the

ي نأ بعصي دق ضيوعتلا اذى نأ ريغ لأ ،ةيبطلا ةيلوؤسملا لاجم يف نوك ضعب يف ن ام ةلاح يف لبثم يدقنلا ضيوعتلا بمط ىلإ رورضملا ضيرملا فورظ يدؤت تلااحلا ناك اذإ

Point mutations in FimH adhesion of Crohn ’s disease associated adherent- invasive Escherichia coli enhance intestinal inflammatory response. Microbial influences in inflammatory