• Aucun résultat trouvé

Rewritings for Polarized Multiplicative and Exponential Proof Structures

N/A
N/A
Protected

Academic year: 2021

Partager "Rewritings for Polarized Multiplicative and Exponential Proof Structures"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-00143929

https://hal.archives-ouvertes.fr/hal-00143929

Submitted on 28 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Rewritings for Polarized Multiplicative and Exponential Proof Structures

Christophe Fouqueré, Virgile Mogbil

To cite this version:

Christophe Fouqueré, Virgile Mogbil. Rewritings for Polarized Multiplicative and Exponential Proof

Structures. Electronic Notes in Theoretical Computer Science, Elsevier, 2008, pre-proceedings version,

203 (1), pp. 109-121. �10.1016/j.entcs.2008.03.037�. �hal-00143929�

(2)

Exponential Proof Strutures

(rapport interneLIPN - Février2007)

ChristopheFouqueré

andVirgileMogbil

LIPNUMR7030, CNRSUniversitéParis13,

99av.J-BClément,F93430Villetaneuse,Frane

hristophe.fouquerelipn.univ-pa ris13 .fr

virgile.mogbillipn.univ-paris13 .fr

Abstrat. Westudyonditions foraonurrentonstrutionofproof-

netsintheframeworkoflinearlogifollowingAndreoli'sworks.Wedene

spei orretness riteriafor that purpose. We rststudythe multi-

pliativeaseandshowhowtheorretnessriteriongivenbyDanosand

deidableinlineartime,maybeextendedtolosedmodules(i.e.validity

ofpolarizedproofstrutures).Wethenstudytheexponentialase.This

hasnatural appliations in(onurrent) logi programmingas validity

ofpartial proof struturesmay be interpreted intermsofvalidity ofa

onurrentexeutionoflausesinanenvironment.

1 Introdution

Girardin his seminal paper[9℄ gave aparallel syntax for multipliativelinear

logi(MLL)asorientedgraphsalledproof-strutures.LetusreallthataMLL

formulaiseitheranatomiformulaA,anegationofanatomiformula,orbuilt

withabinaryonnetiveorP.Intheoriginaldenition,aproof-struturefor MLL isonstrutedbymeansofthefollowingbinarylinks:

-link: A B

AB

P-link:

A B

APB

P

axiom-link:

A A

where every ourrene of formula is a premise of at most one link and is a

onlusionofexatlyonelink.Aorretnessriterionenablesonetodistinguish

sequentializableproof-strutures(thesoalledproof-nets)from"bad"strutures

(that donotorrespond toproofs inthe sequentalulus).After Girard'slong

trip orretness riterion, numerous equivalent properties were found. In par-

tiular,Danosand Regnier[7℄ provedthat swithedproof-strutures should be

trees, where swithing is done by deleting one of the premises of eah P-link.

Danos [6℄showed that it is the asei theproofstruture rewrites to(is

alledaontratednode):

(3)

(1)

⊗ −→

(2) −→ (3)

P

−→

(4)

P

−→

While a lot of researh has been done on nding eient orretness riteria

forMLL,itstillremainsto studyorretnessriteriainaseofpolarizedproof-

strutures in MLL,and broadenit to theexponentialase. First used byAn-

dreoliinLogiProgramming[1℄andalsoonsideredinGirard'sworks[10℄andin

Laurent'sworks aboutPolarizedLinearLogi[13℄,this oneptofpolarization

allowstoonsiderlusteredstrutures.Reently,polarizedproofstruturesarise

naturallyinlogiprogrammingmodels [24℄.Thebasiobjetsweonsiderare

then proofstrutures with twostrataweallelementary bipolar modules, that

maybeombinedintomodules.Wereallthemultipliativeaseinthefollowing

setion(thereadermayndin[8℄extensiontoopenmodules).Wedeneaor-

retnessriterionthattakesareoftheparallelstrutureofmodules,extending

the Danosriterion.In setion3, weanalyzehowmodules may be generalized

totakeareofexponentials.

2 The multipliative ase

We onsiderin this setion theextension MLLuof MLL with 1 theunit of.

Formulaearegivenas:

F := 1|G

G1, G2:=A|A atomi formula or its negation

|G1⊗1 |1⊗G1 |G1⊗G2 |G1PG2

LetPSn bethedireted graphswhereedgesarelabelledbyformulaeofMLLu

andbuiltwiththefollowinglinks(n≥1):

-link:

A1⊗ · · · ⊗An

A1 An

P-link:

A1P. . .PAn

P

A1 An

axiom-link:

A A 1-link:

1 1

possiblywithedgespendingdownwards.ElementsofPSnarealledproofstru-

tures.Formulaelabellingpending edgesare theonlusions ofthe proofstru-

ture,nodeswithpendingedgesarealledonlusion nodes.Labelsonedgesare

omittedwhenlearfrom theontext.

Proposition1. Letπbeaproofstrutureof PSn,πisaproofnet (i.e.sequen-

tializable) iπ→:

(1) ⊗ −→ (2)

−→

(3)

1

−→

(4)

P

−→

(5)

P −→ (6) P −→

(4)

Theproofofthepropositionfollowsfromthestandardoneon binaryproof

struturesforMLL[6℄,andthefollowingremarks:andPareassoiativeand

ommutative,the 1-ary P onnetive isby onventionthe identity, 1 is aunit

for.

Werstgivethedenitionofanelementarybipolarmodule (EBM)andgive

theorrespondenewithproofstrutures. Wethendeneamoduleastheom-

position of EBMs. A module is orret if theorresponding proof struture is

sequentializable.

Denition1 (EBM). An EBM M is given by anite set H(M) of proposi-

tional variables (alledhypotheses) hi andanon emptynite setC(M)varying

over k of nite sets Ck(M) of propositional variables (alled onlusions) cjk.

Variables aresupposed pairwise distint.

1

Theset of propositional variables ap-

pearingin M isnotedv(M).Equivalently, oneandene itasadireted graph with labelled pending edges and two kinds of nodes, one positive pole under a

non-emptynite setof negativepoles:

cj11 cjKK

hi

The setof pendingedgesof anEBM M isalled theborder b(M).

TheproofstrutureorrespondingtoanEBMisgivenbythefollowingtrans-

formationonpoles.Theonversetransformationrequires thedenition ofBMs

dened later.

ifCk(M) =∅:1 ,ifCk(M)6=∅:

cjkk

P

z }| { cjkk

hi

z}|{

hi

An EBM M may be equivalently dened as a(type) formula t(M) in the

dual language of MLLu(reall that A ⊸B = A PB): t(M) = (N

ihi)⊸ (k(N

jkcjkk)), where weuse theonventionthat kFk =N

kFk =F1 when

thedomainofkisofardinal1,andifthedomainofiisempty,(N

ihi)⊸C=C

andifthedomainofjk forsomekisempty,(N

jkcjkk) =⊥.Howeverthereader

should arethat thissupposesabilateralsequentalulus,although thelogial

1

Thisrestritionistakenforsimpliity.Theframeworkanbegeneralizedifweon-

sidermultisets(ofhypothesesandonlusions)insteadofsets,andaddasrequired

(5)

are ofspeialinterest:An EBM isinitial (resp.nal) ifitsset ofhypothesesis

empty(resp.itssetofonlusionsisempty).AnEBMistransitoryifitisneither

initial nornal. Initial EBMs allowto delareavailable resoures,thoughnal

EBMs stop part of a omputation by withdrawing a whole set of resoures.

TransitoryEBMs arealleddenitelausesin standardlogiprogramming.

Denition2 (BM). A bipolar module (BM) M is dened with hypotheses H(M),onlusionsC(M),andtypet(M),indutively inthe following way:

An EBMisaBM.

LetM beaBM,andN beanEBM,letI=C(M)∩H(N),theiromposition

wrttheinterfaeI,M◦IN isaBMwiththemultisetofhypothesesH(M)∪ (H(N)−I),themultisetofonlusions (C(M)−I)∪ C(N),the typet(M)⊗ t(N) andvariables v(M)∪v(N).

Theinterfaewillbeomittedwhenitislearfromtheontext.Notethatthe

interfaemaybeempty. Thetranslationfrom proof struturesof PSn to BMs

isgivenbythetwofollowingrules, plusrules notexpliitedheredueto lakof

spaethat takeareofpolarityandtheonstant1:

P

z }| {α

−→

P

p p

z}|{α

wherepisafreshatomiformula

z}|{

hi

1 1

P

z }| { cj11

P

z }| { cjKK

−→

cj11 cjKK

hi

ConsideringBMs inplae ofproof struturesforMLLuhasvaluableonse-

quenesin termsofsimpliityoforretnessriteriaasoneantakeareofthe

bipolestrutureofBMsmorediretlythanitistheasewithabinarystruture.

Denition3 (Corretness (wrt sequentialization)). Let M be aBM, M

isorretif the orresponding proof strutureinPSn issequentializable.

SequentializationmeansthatthereexistsaformulaCbuiltwiththeonne-

tivesandP, andthevariablesC(M)suh thatthesequentH(M), t(M)⊢C

is provable in Linear Logi. Let us briey interpret EBMs and BMs in terms

ofomputation. AnEBM hasthefollowingoperationalbottom-upreading:be-

inggiveninsomeontextamultisetofhypotheses(dataforthepositivepole),

the EBM triggersone (linear) eah of the negative poles, these last have to

beusedin separateontexts.TriggeringanEBM,that isomposing itwithan

existing BM, is nothingelse but doingaresolution stepin logiprogramming.

(6)

termorretthekindofmoduleswespeakof,e.g.-orretwhenthemoduleis

losed,o-orretinthegeneralsetting.

A losed module is a BM without any pending edges, i.e. with the sets of

hypothesesandonlusionsempty.Corretnessoflosedmodulesmaybetested

either in termsof provability in asequentalulus orby meansof orretness

riteriaforproofstrutures.Inthefollowing,weonsidertheorretnessriteria

ofDanos[6℄using aontrationrelationandexplainedin theprevioussetion,

andalsotheonegivenbyDanosandRegnier[7℄thatusesswithings:letπbea

proofstruturewithbinarylinksandS(π)thesetof(swithed)graphsobtained

fromπbyremovingexatlyonepremiseedgeforeahPlink,πisaproofneti

eahgraph in S(π) is ayliand onneted.Onegeneralizes this denition to

n-aryonnetivesbyintroduinggeneralizedswithes:eahn-aryPonnetive

indues n swithed graphs. One still an dene swithed proof-strutures and a riterion generalizing Danos-Regnier orretness riterion on PSn: a proof

struture π is a proof net i thegraphs in S(π) are ayli and onneted. A

losed module M is DR-orretif theproofstruture M assoiated toM isa

proofnetwrtthepreviousriterion.WeabusivelyrefertothemoduleM instead

oftheorrespondingproofstrutureMinthefollowing,speakingofforinstane

swithed moduleinsteadofswithed proofstruture.Weimmediatelyhavethe

followingpropositionasaorollaryoftheDanosandRegnierriteriontheorem:

Proposition2. LetM bealosedmodule,M is-orretiM isDR-orret.

Wegivebelowa(bigstep)redutionrelationthattakesareofthefoaliza-

tionproperty.ThoughaDanos-likerelationwouldredueeahsteponevariable,

ourformulationusesasawholethestrutureofamodulethankstofoalization.

Thefoalizationpropertystatesthatasequentisprovableithereexistsaproof

suhthatdeompositionofthepositivestratumofformulaeisdoneinonestep.

Consideringbipolarmodules,itmeansthatonemaydenearedutionrelation

suhthateahstepreduesonepositive-negativepairofnodes.

Proposition3 (Stability). Let M and N be two losed modules suh that M ։N,M is-orretiN is-orret(seeFig. 1).

Proof. Oneandeneafuntionfromtheswithedstruturesofthemoduleon

the left of the relation onto the swithed strutures assoiated to the module

on therightsuh that a swithed struture from the left is ayli(resp. on-

neted) itheorrespondingswithed struturefromthe rightisayli(resp.

onneted).

Theorem1 (-orretness). Alosedmodule M is-orretiM →→

⊥∪

.

Proof. As the redution rules are stable wrt orretness, it remains to prove

thataorretnon-terminallosedmodule M analwaysberedued.Wedene

a partial relation on negative poles: a negative pole is smaller than another

(7)

z }| { α

β

z }| { γ

δ

−→

z }| { α

z }| { γ

β δ

α

β z }| {

γ

δ

−→

α β z }| {

γ

δ

Fig.1.Bigstepredutionrelation.

the bottom of the positive pole and the seond negative pole is linked to the

top of the positive pole.We onsider the transitive losure of this relation. If

maximal negativepoles donotexist then there exists at least oneyle in the

module alternatingpositiveandnegativepoles. Weanthendeneaswithing

funtiononthemodule(hoosingtheorretlinksfornegativepoles)suhthat

the swithed module has a yle. Hene ontradition. So let us onsider one

of themaximalnegativepole, andthe orrespondingpositivepole. Weremark

that suh a negative pole has no outoming links (the module is losed and

thenegativepole ismaximal).If thepositivepole hasothernegativepoles, we

an omit themaximal negativepole by neutrality. Otherwise,letus study the

inomingnegativepoles.Ifthereisnosuhinominglink,thenM istheterminal

module. If eah inoming negative pole hasat least onelink going to another

positivepole, then one andene a swithing funtion using for eah of these

negativepolesoneofthelinksthatdoesnotgotothepositivepoleweonsidered

rst.Henetheswithedmoduleisnotonneted(therearenooutgoinglinks).

Hene ontradition. So there exists at least one inoming negative pole with

thewhole set of links assoiatedto the positivepole:therst ruleapplies and

wearenished.

Notethatthisproofextensivelyusesthebipolarnatureofmodules.Moreover,

the proof may havebeengivenonsidering minimal poles in plae of maximal

poles, and for eah proof only oneof the two redution rules is suient and

neessary!Finally,thesametehniqueGuerrini[11℄usedforDanosriterionmay

beappliedheretogetalinearalgorithm.Studyingorretnessofopenmodules

is a neessarystep towards the speiationof alogi programming language

based on bipolar modules. We detailed in another paper the extension of the

(8)

3.1 Multipliativeexponentiallinear logi (MELL)

Addingexponentialstothelanguageobviouslyinreasesitsexpressivity:itallows

for representing reusable resoures. In linear logi, the 'of ourse' modality !

has this main property: !A ⊸ A⊗ · · · ⊗A. Tehnially, three operations are

neessary:ontration,derelitionandweakening.Therstoperationstatesthat

!A is dupliable.Derelition allowsto onsider the lassialformula !A asthe

linear one A. The last operation states that !A may be forgotten. The dual

modality 'why not' ? may be interpreted in the following way: ?A waits for

the'lassial' resoure!A. Thispromotion operationis moreomplexthanthe

other operations: in terms ofproofnets, orretnessis assuredif a'box' in the

proofnetharaterizestheontext(andthisontexthastobeorretbyitself).

Entriesof suhaboxaregivenbyone! andasetof?.

From MELLuto ?-EBMs. ThetranslationfromformulaeofMELLtomod-

ulesisnotaseasyasitiswithoutexponentials.WeonsideranextensionMELLu

ofMELLwiththeneutralelement1for,formulaearebuiltfromthefollowing

grammar:

F := 1 |G

G1, G2:=A |A |G1⊗1|1⊗G1 |G1⊗G2 |G1PG2 |?G1 |!G1

Convertingfromformulaetomodulesrequirestheuseofpolarizationandfoal-

ization.Foalizationallowstoonsidern-aryonnetives.Formulaearepolarized

negativelyorpositivelyaordingtotheirmainonnetives,onsideringonve-

nientlythatvariablesA, B, . . . arepositivewhereastheirnegationsA, B, . . .

are negative. A preise study of the exponential onnetives leads to the a-

knowledgmentthat exponentialonnetiveshange thepolarityof formulae:if

Aisapositiveformula,?Aisnegativewhereas!A ispositive.Heneexponen-

tialonnetivesmay be splitinto twoparts:!A = ↓♯A and?A= ↑♭A. The

shiftonnetivesanddothehangingofpolarities.Theintrodutionofshift onnetivesmaybegeneralizedalsotothelinearasewheneverthereisahange

ofpolarity.Thetwomodalitiesandexpressexponentiality.

Weonsider aslightlydierentversionof apolarized systemasit wasde-

signedby Boudes[5℄ orLaurent[13℄:thesystemLL

pol

givenby Laurenttakes

areofmultipliativeaswellasadditiveonnetiveswhereatomiformulaeare

always exponentialized. Following our motivations, our languagenMELLpol is

restritedto themultipliativeasefor simpliityand atomiformulaemay be

linear orexponential. Finallyweuse n-ary onnetivesand thedeomposition of exponentialsis expliit. The grammar for nMELLpol is givenin the follow-

ing way where the set of formulae is expliitlysplit into positive (P, . . .) and

negative(N, . . .)formulae(Ais apositiveatomiformula):

P :=N

i∈Iρi|♭(N

i∈Iρi) ρ :=A | ↓N

N:=Pk∈K νk|♯(Pk∈K νk) ν :=A | ↑P

(9)

Wekeepasonventionthata1-arytensoristheidentityanda0-arytensoris

thetensorunit 1.Moreover,oneanremarkthatdening1as ↓♯⊤,whereis

theneutralfortheadditiveonnetive &,isoherentwithoursettingandmay

beusefulextending ourframework to additives.Nevertheless,in the following,

thestandardrulefor1isimpliitlyaddedtothealuli.Oneandenean-ary

foalizedsequentalulus(Aisanatomiformula)asinFig.2.Sequentsontain

a distinguished plae betweenand ; , they are in one of the two following

forms:⊢ ; Γ or⊢N ; Γ whereN isanegativenonatomiformulaandΓ isa

multisetofpositiveformulaeoratominegativeformulae.Thesequentalulus

is designedsuh that,beginningwith thedistinguishedplaeempty,searhfor

proofsonsistsofrepeatingthedeomposition ofapositiveformulafollowedby

thedeompositionofnegativeformulae(neessarilysubformulaeofthepositive

formula just deomposed), until applying axioms. Note that exponential rules

are aspossibleintegrated to linearrules to quotient thesearhspae (e.g. the

axiom rule inludes (♭w), (♭⊗) manages (♭c)). The following translation (−)

from MELLu to nMELLpol is suh that if F is aMELLu formula,MELLu F is

provableinMELLpolF;isprovable:

1+=1 A+=A (F1⊗F2)+=F1+⊗F2+ (!F)+= ↓♯F F+= ↓Fotherwise A⊥−=A (F1PF2)=F1PF2 (?F)= ↑♭F+ F= ↑F+otherwise

⊢ ; A, A, ♭Ξ (axiom)

⊢1, ♭Ξ (1)⊢ ; Γ, A, ♭Ξ ⊢ ; A, ∆, ♭Ξ

⊢ ; Γ, ∆, ♭Ξ (cut)

. . . ⊢Ni; Γi, ♭Ξ . . . ⊢ ; Aj, ∆j, ♭Ξ . . .

⊢ ; Ni∈I↓NiN

j∈JAj, Γ1, . . . , Γ|I|, ∆1, . . . , ∆|J|, ♭Ξ (⊗) . . . ⊢Ni; ♭(N

i∈I↓NiN

j∈JAj), Γi, ♭Ξ . . . ⊢ ; ♭(N

i∈I↓NiN

j∈JAj), Aj, ∆j, ♭Ξ . . .

⊢ ; ♭(N

i∈I↓NiN

j∈JAj), Γ1, . . . , Γ|I|, ∆1, . . . , ∆|J|, ♭Ξ (♭⊗)

⊢ ; P1, . . . , P|I|, A1, . . . , A|J|, Γ

Pi∈I ↑PiPj∈J Aj ; Γ (P)⊢ ; P1, . . . , P|I|, A1, . . . , A|J|, ♭Γ

⊢♯(Pi∈I ↑PiPj∈JAj) ; ♭Γ (♯P)

Fig.2.n-arysequentalulusfornMELLpol(0-arytensoris1).

ThenalsteponsistsinatteningnMELLpolformulaetogetmodules.Bipo-

lar modules werepreviously obtainedby adding atomi formulaebetween two

strata(sayfromnegativetopositive):letP1, P2 bepositiveformulae,N aneg-

ative formula, ⊢ P1⊗(N P P2) is provable i ⊢ P1 ⊗(N P Z), Z ⊗P2 is

provable,where Z is afresh (positive) atomi formula. Howeverthis priniple

annot be fully applied when exponentialsour:try to atten the(provable)

sequent⊢ A P ↑♭(B⊗C), A⊗ ↓♯(B PC). This an be overomeby al-

Références

Documents relatifs

Recent in situ data obtained with balloon-borne mass spectrometers have revealed the nature of the most abundant ions in the stratosphere.. Proton hydrates,

Abstract - A unified semiclassical theory for calculating cross section and analysing powers of all ranks for polarized heavy ion elastic scattering is applied to explain

As can be seen, in this partition of the 16 possible 4-tuples into 3 mutually exclusive subsets, L corresponds to the truth table of the analogy A, K gathers the 8 patterns including

Deciding the correctness of unit-free MLL proof structures, MELL proof struc- tures, and unit-free IMLL essential nets where problems known to be decidable in deterministic,

The proof of the correctness of the big step reduction relation for closed modules gives the keys for finding a connectability property that relies on the structure of an open

When Peter tried to play football, he couldn't... The person

Therefore, this will not affect its price, nor the number of issues sent to subscribers, nor the publication of a second issue next autumn.. There are two reasons

Steenbrink, Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities, Oslo 1976, ed. Varchenko, Gauss-Manin connection of isolated