• Aucun résultat trouvé

ELECTRONIC STRUCTURE OF AMORPHOUS Si3N4

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRONIC STRUCTURE OF AMORPHOUS Si3N4"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223880

https://hal.archives-ouvertes.fr/jpa-00223880

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRONIC STRUCTURE OF AMORPHOUS Si3N4

I. Brytov, E. Obolenskii, Yu. Romashchenko, V. Gritsenko

To cite this version:

I. Brytov, E. Obolenskii, Yu. Romashchenko, V. Gritsenko. ELECTRONIC STRUCTURE OF AMORPHOUS Si3N4. Journal de Physique Colloques, 1984, 45 (C2), pp.C2-887-C2-890.

�10.1051/jphyscol:19842203�. �jpa-00223880�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, suppl6ment au n02, Tome 45, f6vrier 1984 page C2-887

ELECTRONIC STRUCTURE OF AMORPHOUS Si3N4

I.A. Brytov, E.A. Obolenskii, Yu.N. Romashchenko and V.A. Gritsenko

VNIINauekprybor, Leningrad, U. S.S. R

R6sumS - On a effect& llinterprGtation des Btats electroniques dans la bande de valence et la bande de conduction du Si3N4 amorphe et on a Btabli le diagramme des 6nergies d'aprss les spectres d'Bmission et le rendement quantique de SiK -,

SiL2 3 -, NK en combinaison avec les donnees de la spectrosco- pie des photo6lectrons de rayons X des couches internes et de la bande de valence.

Abstract

-

There is performed interpretation of electronic states $n valence and conduction bands of amorphous Si3N4 and constructed an energy diagram of electronic levels using X- ray SiK

-,

SiLg3

-,

NK

-

emission and quantum yield spectra in combination with the XPS data of inner levels.

The main structural unit of Si3N4 is tetrahedron SiN4/3

,

i.e. atom of Si is surrounded by four a t o m of N, atom of N couples three tetrahedrons.

In the present work there were studied f i l m of a-Si3Nq deposited on substrates of saphire ( Chi1203 ) or silicon single crystals, film thickness was equal to 800 nm and 85-150 nm,respectively.

X-ray photoelectron spectra (XPS) were obtained at the HP 5950A spectrometer. NK* -and SiL2,3

-

X-ray emission spectra (XES) were obtained using electron excitation at the RSM-500 spectrometer-mo- nochromator /I/. K o c -and K

p-

XES of Si from a-SigQ deposited on

X-A1203 substrate were studied at the SAW-1 spectrometer using fluorescent radiation /2/. Information about vacant states was ob- tained with the method of X-ray photoeffect quantum yield spectra (XYS) /3/.

Energy resolution depending on the spectrum part under study is not worse than 0.5 eV for SIK; 0.5 eV for NK; 0.2 eV for SiLz,3 (XYS);

0.4 eV for SIL 2 , ~ (XES)

.

Pig.1 shows XES and XYS of Si and N combined in common energy scale as well as XPS of a-Si3 N 4 valence band.

3ne can perform identification of spectra maxima basing upon the dipole selection rules for X-ray transitions and calculations of Si Nq electronic structure /4/.

In all the spectra obtained in experiment (Pig.1) maxima C corres- pond to the group of MO the main contribution to which is brought in by 2s-A0 of nitrogen with an admixture of 3s-and 3p-A0 of Si;ma- xima B and B t correspond to 6'-bonds due to interaction of 3s-and

3ps-A0 of Si with 2pg-A0 of nitrogen; maximum A indicates the presence

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19842203

(3)

C2-888 JOURNAL DE PHYSIQUE

of S i 3 p ~

-

N 2p&.rrteraction w i t h an admixture of 39, d

-

AO of S i

(maximum A of SiL2.3 ) and f i n a l l y t h e m a i n maximum A o f NKoc -band m d a high-energy e x t e n t i o n on it correspond t o non-bonding MO con- s i s t i n g mainly of 2pn -A0 o f n i t r o g e n and s p l i t t e d a c c o r d i n g t o c a l - c u l a t i o n / 4 / i n b two components.

Fig.1

-

X-ray s p e c t r a o f a-SijN4 (

-

f o r d e p o s i t e d on S i ,

- - -

f o r d e p o s i t e d on o( -A1203). ( 1 )

-

SiL2,a ; ( 2 )

-

SiK; ( 3 )

-

NK;

(41

- -

XPS of valence band;

- - -

t o t a l d e n s i t y of s t a t e s /4/.

Bonding energy Eb f o r : S i 2p = 101.6 eV; N I s = 397.6 eV; S i I s = 1842.1 eV.

SiL 2,3 -XES a t E=1 0207 eV h a s maximwn A t r e l a t i v e i n t e n s i t y o f which i s one t e n t h s of maximum A i n t e n s i t y . Nature o f t h i s maximum c a n ' t be e x p l a i n e d w i t h i n t h e l i m i t s o f c a l c u l a t i o n method f o r e l e c t r o n i c s t r u c t u r e of K - and 4

-

Si3N4 used i n /4/ and may be connected w i t h t h e s e l f - a b s o r p t i o n e f f e c t . However, we f e e l as more t r u s t w o r t h y t h e assumption t h a t maximum A' corresponds t o occupied s t a t e s gene- t i c a l l y connected w i t h 3 s, d- s t a t e s o f S i s p l i t t e d o f f towards t h i s p a r t of t h e band. Our experimental d a t a (SiLz.3

-

XES and SiNx

-

XYS) a r e i n f a v o u r of t h i s assumption.

A s i t i s seen i n Fig. 2 w i t h t h e r e d u c t i o n o f x, i. e. w i t h t h e i n t r o d u c t i o n o f s u r p l u s s u p e r s t o i c h i o m e t r i c s i l i c o n i n a-SisNy t h e f o l l o w i n g changes o f S i L z , s - s p e c t r a t a k e place: r a t i o A/B of maxima i n t e n s i t i e s i s reduced from 1.1 d o n t o 0.9; i n t e n s i t y o f mx3mum A t d r o p s and f o r S a x w i t h minimum x i t p r a c t i c a l l y i s n o t n o t a b l e o v e r background; i n i t i a l a b s o r p t i o n range i s s h i f t e d towards t h e l o w e r e n e r g i e s and f o r SFNx w i t h minimum x i n SiLza-XYS t h e r e ap- p e a r s a s t r u c t u r e c o i n c i d f i g in i t s e n e r g e t i c p o s i t i o n w i t h maximum A * o f a- Si3N4; energy of maximum "bn i s p r a c t i c a l l y mchanged and maximum "eU i s consequently s h i f t e d towards t h e lower e n e r g i e s from 110.5 eV t o 108.5 eV. In t h i s c a s e a quantum y i e l d v a l u e ( ?f ) in maximum "bn o f SiL2,3 -XYS and i t s c o n t r a s t a r e b o t h reduced o n l y by

-

4a which c a n f t r e s u l t i n such a c o n s i d e r a b l e d i f f e r e n c e f o r s e l f - a b s o r p t i o n v a l u e in short-wave p a r t o f Si-XPS which i s observed

(4)

in experiment.

Fig. 2

-

SiLL3-XES and XYS i n SiNx. S ~ H ~ / N H ~ =1:1; 1:2; 1:5; 1:IO.

9

According t o c a l c u l a t i o n s /4,5/ t h e main c o n t r i b u t i o n t o t h e d e n s i t y of v a l e n c e s t a t e s i s g i v e n by s t a t e s o f S i and b a s i n g upon t h e d i - p o l e s e l e c t i o n r u l e s f o r X-ray t r a n s i t i o n s we s u g g e s t t h e f o l l o w i n g way of i d e n t i f i c a t i o n f o x SiLo,3, K

-

and NK -XYS m a x i m a : maxima "a"

r e p r e s e n t t h e l e v e l shaped by h y b r i d i z e d vacant s t a t e s 3d-A0 o f S i and 2p-A0 of N; t h e main c o n t r i b u t i o n t o "btl l e v e l i s brought i n by vacant 3s-A0 o f S i w i t h an admixture o f 2p-A0 o f N ; l e v e l s "c, dn a r e connected i n t h e main w i t h c o n t r i b u t i o n o f vacant 3p -A0 o f S i and 2p-A0 of N t d t h an admixture of 3d-A0 o f S i ; and f i n a l l y l e v e l s t t e , f w c o n s i s t of c o n t r i b u t i o n s o f 3d-A0 o f S i and 2p-A0 o f N.

To c o n s t r u c t an energy diagram of d i e l e c t r i c u s i n g X-ray s p e c t r a l da- t a one should know t h e following: p o s i t i o n o f valence band t o p (Evb) r e l a t i v e t o combined i n common energy s c a l e X-ray s p e c t r a ; pho t o i o n i - z a t i o n t h r e s h o l d v a l u e (Eth) which d e t e r m i n e s p o s i t i o n o f Ejb r e l a - t i v e t o vacuum l e v e l Ev; e l e c t r o n a f f i n i t y v a l u e ( X 1, i.e. p o s i t i o n of conduction band bottom r e l a t i v e t o vacuum l e v e l ( E c ) ; in t h i s c a s e t h e f o r b i d d e n band width ( A Ef) i s determined by e q u a t i o n

4 Ef = E t h

- X '

Knowing v a l u e Eb of mR- and S i 2p

-

l e v e l s (Fig. 1 ) one can f i n d u s i n g X-ray s p e c t r a a p o s i t i o n o f v a l e n c e band t o p r e l a t i v e t o t h e Permi l e v e l E V ~ = 2.2 eV and t a k t n g i n t o account r e s u l t s of determi- n a t i o n of E v ~ from XPS (1.7 eV) one can determine mean v a l u e Evp = 2.0 eV. We c o n s i d e r 6.8 and 2.0 eV as r e l i a b l e v a l u e s of Ev and E,

,

r e s p e c t i v e l y / 6 / .

It seems a d v i s a b l e t o t a k e as a width of f o r b i d d e n b a d o f a-Si3N4 a v a l u e 4 Ef =

-

E =4.8 eV ( where Ev and Ec a r e independent on matrix elementE8escrfbing t r a n s i t i o n from v a l e n c e band t o conduction band) coincLding w i t h v a l u e A Ef = 4.8 ~ 0 . 2 eV o b t a i n e d in t o t a l cur- r e n t s p e c t r o s c o p y experiments w i t h a-Si3N4/6/,

With knowledge of v a l e n c e band t o p p o s i t i o n r e l a t i v e t o vacuum l e v e l (Ev = -6.8 eV) m d r e l a t i v e t o Fermi l e v e l o f an e l e c t r o n s p e c t r o - m e t e r (EvF = 2 0 0 eV) one can determine p o s i t i o n o f Fermi l e v e l of

(5)

C2-890 JOURNAL D E PHYSIQUE

t h e e l e c t r o n s p e c t r o m e t e r r e l a t i v e t o vacuum l e v e l ( EF = -4.8 eV) and t h e r e f o r e i o n i z a t i o n e n e r g i e s of l e v e l s Ei = Eb + 4.8 eve

Fig, 3 shows energy d i a g a m s o f a-Si3N4levels r e l a t i v e t o vacuum l e - v e l ss w e l l as t r a n s i t i o n s corresponding t o t h e main maxima o f X-ray

s p e c t r a and ELS. A s i t i s seen i n F i g s , l , 3 m a x i m u m A t (SiLz3-X~S) and maximum "av (SiL2,3-, SiK

-,

NK -XYS) l o c a t e d below t h e bottom o f conduction band by 1.7 a s d 0.4eV, r e s p e c t i v e l y a r e i n f o r b i d d e n band.

E n e r g i e s o f ELS maxima corresponding t o t r a n s i t i o n s from i n n e r l e - v e l s ( S i 2p- and N I s ) and from valence band t o e x c i t e d vacant s t a t e s a r e in good agreement w i t h p o s i t i o n s o f a b s o r p t i o n m a x i m a o f corresponding X-ray s p e c t r a w i t h t h e e x c e p t i o n o f t r a n s i t i o n s 101.0 ( 8 1 2 ~ ) ; 396.8 (N I s ) and 3.2, 4.6, 6,8 eV (from valence band) w i t h t h e final l e v e l s l o c a t e d in forbidden band above t h e t o p o f v a l e n c e band by 1.2

-

1.6 eV. Authors of work /7/ c o n s i d e r these l e vels as corresponding t o broken Si-N bonds.

References

1. LUKIRSKII A.Po, BRYTOV I.A., KOMYAK M , I . , Apparatura i metody rentgenovskogo a n a l i z a , Leningrad,Mashinostroenie 2 (1967) 4.

2. BRYTOV I.A., OBOLENSKII EoAo, GOLDENBERG IVI0S., RABINOVICH LOG., ANTOEVA TOM., PTE f (1983) 2880

3. LUKIRSKII AoPo, BRYTOV I o A o , EHPT

&

(1964) 43.

4. SHANG-YULE FBN, CHING W.Y,, Phys. Rev, B.

a

(1981) 5454.

5. ROBERTSON J,, P h i l , Mago B 44 (1981) 217.

6 , KOMOLOV S.N., FTT

23

(1981) 827.

7. LIESKE N., HEZEL R., Thin S o l i d Films 6J (1 979) 217.

Références

Documents relatifs

Following these authors bulk effect represents a reversible conductivity change and surface effects can be attributed to a variable charge density. at the surface as

R6sumB. - On discute les modkles thhriques employes pour l'interpretation des spectres elec- troniques de mol6cules triatomiques. I1 est possible qu'un molecule plie est

Abstract.- In this approach to the electronic structure of amorphous and liquid metals, we represent the system by molecular clusters which are embedded in an external

The relaxed structuralmodels of amorphous metallic alloy FelO0-, P , havebeen const- ructed and analyzed1). The analysis of Voronoi poly- hedra can be understood in terms of the

Experiments : All experiments were performed in a ultra high vacuum (U.H.V.) vessel equipped with various surface techniques as Auger electron spec- troscopy (AES), low

experiments. Many proteins which bind extraneous.. ligands to the heme iron undergo transitions to the low-spin ferrous states ; examples are the carbon monoxide

- The optical and transport properties of flash-evaporated amorphous GaSb thxn films are described as a function of preparation conditions.. The results for

The calculation of the LDOS at various atomic configuraions show that the difference in structural models are only weakly reflected in the electronic spectrum of A-GeS, and