• Aucun résultat trouvé

Locally homogeneous aspherical Sasaki manifolds

N/A
N/A
Protected

Academic year: 2021

Partager "Locally homogeneous aspherical Sasaki manifolds"

Copied!
41
0
0

Texte intégral

(1)

Locally

homogeneous

aspherical

Sasaki

manifolds

Oliver Bauesa,, Yoshinobu Kamishimab

aDepartmentofMathematics,UniversityofFribourg,CheminduMusée23,CH-1700Fribourg,

Switzerland

bDepartmentofMathematics,JosaiUniversity,Keyaki-dai1-1,Sakado,Saitama350-0295,Japan

a b s t r a c t MSC: 57S30 53C12 53C25 Keywords:

LocallyhomogeneousSasaki manifold

Asphericalmanifold Pseudo-Hermitianstructure CR-structure

LocallyhomogeneousKähler manifold

Let G/H be a contractible homogeneous Sasaki manifold. A compact locally homogeneous aspherical Sasaki manifold ΓG/H is by definition a quotient of

G/H by a discreteuniform subgroup Γ ≤ G. We show that a compact locally homogeneousaspherical Sasakimanifold is alwaysquasi-regular, thatis, ΓG/H

isanS1-SeifertbundleoveralocallyhomogeneousasphericalKählerorbifold.We discussthestructureoftheisometrygroupIsom (G/H) foraSasakimetricofG/H inrelation withthe pseudo-Hermitiangroup Psh (G/H) for theSasaki structure of G/H. We show that a Sasaki Lie group G, when ΓG is a compact locally homogeneousaspherical Sasakimanifold,iseithertheuniversalcoveringgroupof SL(2,R) ora modification of a Heisenberg nilpotent Lie group with itsnatural Sasakistructure.WealsoshowthatanycompactregularasphericalSasakimanifold withsolvablefundamentalgroupisfinitelycoveredbyaHeisenbergmanifoldand itsSasakistructuremaybedeformedtoalocallyhomogeneousone.Inaddition,we classifyallasphericalSasakihomogeneousspacesforsemisimpleLiegroups.

1. Introduction

LetM beasmoothcontactmanifoldwithcontactformω.Supposethatthereexistsacomplexstructure

J on thecontact bundle ker ω and thatthe Levi formdω◦ J is apositivedefinite Hermitian form.Then

{ω,J} iscalledapseudo-Hermitianstructure onM and{ker ω,J} isaCR-structureaswell.Thepair{ω,J}

assignsaRiemannianmetricg toM ,where

g = ω· ω + dω ◦ J. (1.1)

Therearetwotypical, closelyrelated,Liegroupson(M,{ω,J}).Thegroupofpseudo-Hermitian transfor-mationsofM is denotedby

* Correspondingauthor.

E-mailaddresses:oliver.baues@unifr.ch(O. Baues),kami@tmu.ac.jp(Y. Kamishima).

http://doc.rero.ch

Published in "Differential Geometry and its Applications 70(): 101607, 2020"

which should be cited to refer to this work.

(2)

Psh (M ) ={h ∈ Diff (M) | h∗ω = ω, h∗◦ J = J ◦ h∗ on ker ω}. AsusualIsom (M ) denotestheisometrygroupof(M,g).Obviously

Psh (M )≤ Isom (M) .

AssumethattheReebfieldA forω generatesaone-parametergroupT ofholomorphictransformationson aCR-manifold(M,{ker ω,J}),thatis,

T ≤ Psh (M) .

Then (M,{ω,J}) issaid to beastandard pseudo-Hermitian manifold.In thiscase, thevectorfieldA is a Killing fieldof unit lengthwith respect to g, and the Riemannianmanifold (M,g) is alsocalled aSasaki manifold equippedwithSasaki metricg andstructurefield A.IfA isacompletevectorfieldwithaglobal flowT whichactsfreelyandproperlyonM , (M,{g,A}) issaidto bearegularSasaki manifold.Notethat the Sasaki metric structure (M,{g,A}) determines the standard pseudo-Hermitian structure (M,{ω,J})

uniquely.

The pseudo-Hermitian group Psh (M ) and isometry group Isom (M ) of a Sasaki manifold are closely related.SincetheReebvectorfieldA isdeterminedbyω alone,wehave

h∗A = A , for all h ∈ Psh (M) . Therefore,theReebflowT belongstothecenterof Psh (M ),thatis,

Psh (M ) = CPsh (M)(T ) . (1.2)

Similarly,ifCIsom (M)(T ) denotesthecentralizer ofT inIsom (M ),using(1.1), Psh (M ) = CIsom (M)(T )

followseasily,as well.

Ingeneral,thegroupIsom (M ) actsontheset ofSasaki structures{g,A} withfixedmetricg. Further-more, if(M,g) is not isometrically coveredby around sphere,the set of Sasaki structures withmetric g

eitherconsistsoftwoelements{A,−A},orM isathree-Sasakimanifold,admittingthreelinearindependent Sasaki structuresfor g.Inthe lattercase,M iscompact withfinite fundamentalgroup.For these results, see[26,20,27].Thus,unlessM iscompactwithfinitefundamentalgroup,acompleteSasakimanifoldalways satisfies

Isom (M ) = Psh±(M ) ={h ∈ Isom (M) | h∗A = ±A} .

CallaSasakimanifoldM ahomogeneousSasakimanifold ifPsh (M ) actstransitivelyonM .Accordingly, ahomogeneousspace G/H iscalled ahomogeneous Sasaki manifold if G/H isaSasaki manifold and the action of G factors over Psh (G/H).Note thatany homogeneous Sasaki manifold is alsoa regularSasaki manifold.

1.1. LocallyhomogeneousasphericalSasaki manifolds

Inthefollowing we shallusually assumethatG acts effectivelyonG/H andthereby identifyG with a closedsubgroupof Psh (G/H) wheneversuitable.

(3)

A locallyhomogeneous Sasakimanifoldis aquotientspace

M = ΓG/H

ofahomogeneousSasakimanifoldG/H byadiscretesubgroupΓ ofG.ThemanifoldM iscalledaspherical

ifitsuniversalcoverX iscontractible.Inthispaperwetakeupthestructureofcompactlocallyhomogeneous aspherical SasakimanifoldsM .

Settingthestage forthemain structureresultoncompactlocallyhomogeneous aspherical Sasaki mani-folds,wenote thefollowing facts:

Let X = G/H be ahomogeneous Sasaki manifold. Then the Reeb flow T on X is isomorphic to the real line R or thecircle group S1 and itis acting freely and properly on X. Moreover, thehomogeneous

pseudo-HermitianstructureonX inducesauniquehomogeneous Kählerstructureonthequotientmanifold

W = X/T

such thatthe projection map X → W is a principal bundle projection which is pseudo-Hermitian (that is,X → W ishorizontallyholomorphic andhorizontallyisometric). Withthis structure thehomogeneous KählermanifoldW willbe calledtheKähler quotient ofX.

ThereisawellestablishedtheoryofhomogeneousKählermanifoldsandofthestructureoftheirisometry groups[12].As acornerstoneof thepresent paperwe usethis theoryto develop thestructure ofcompact locally homogeneous Sasaki manifolds. Recall that a Lie group is called unimodular if its Haar measure is biinvariant. Any Lie group G which admits a uniform lattice Γ is unimodular. Thus, in our context, homogeneousSasaki spaces andKähler manifolds of unimodularLie groupsare ofparticular importance. Thestructuretheory ofsuch spacesalreadyplays amajor roleinthepapers[1,16]. Asastartingpoint of thepresentworkwe refineandalso detailtheapproachthereinto study contractiblehomogeneousSasaki spacesofunimodularLiegroupsandtheircorrespondingKähler quotients.

1.1.1. Structure oflocallyhomogeneousasphericalSasaki manifolds

Let us first introduce some additional notation. For any Kähler manifold W , we denote Isom±h(W ) the subgroup of Isom (W ) that consists of isometries which are either holomorphic or anti-holomorphic. Furthermore,Isomh(W ) denotesthesubgroupofholomorphic(orKähler-)isometries ofW .

ThemainstructureresultonlocallyhomogeneousasphericalSasakimanifoldsandtheirisometrygroups isstatedinthefollowingtwo results:

Theorem 1.Let X = G/H be a contractible homogeneous Sasaki manifold of a unimodular Lie group G. Thenthefollowinghold:

(1) The KählerquotientW ofX is aproductofaunitary spaceCk witha boundedsymmetricdomainD.

(2) The Reeb flow T is isomorphic to thereal lineand it isa normal subgroup of Isom (X).There exists an inducedhomomorphism

φ : Isom (X)→ Isom±h(W ) ,

whichisonto andmapsPsh (X) onto Isomh(W ) with kernelT .

(3) Thereexistsan antipseudo-Hermitian involutionτ ofX such that

Isom (G/H) = Psh±(G/H) = Psh (G/H) τ .

(4)

(4) Theidentity component of thepseudo-Hermitiangroupof X satisfies

Psh (G/H)0= Isom (G/H)0= (N  U(k)) · S ,

where N is a 2k + 1-dimensional Heisenberg Lie group and S is a normal semisimple Lie subgroup whichcoverstheidentity component

S0= Isom (D)0

of the isometry group of the symmetricbounded domain D. Moreover, S has infinite cyclic centerΛ,

and

S∩ N = S ∩ T = Λ .

BuildingonTheorem 1wecan deduce:

Corollary1.LetM = ΓG/H beacompactlocallyhomogeneousasphericalSasakimanifold.Thenthecoset spaceΓG/H admitsan S1-bundle overalocallyhomogeneousasphericalKähler orbifold

S1 −−−−→ ΓG/H −−−−→ φ(Γ)W , (1.3)

inwhich S1 inducestheReebfield. In particular,theSasaki manifoldM isquasi-regular.

Remark 1.1. The bundle in (1.3) is called a Seifert fibering. Here, some finite covering space Γ0



G/H,

withΓ0≤ Γ afiniteindex subgroup,is anon-trivialS1-bundleoveraKählermanifold φ(Γ0)



W .Note, in addition,thatforanySasakimanifoldM = ΓG/H asabove,Psh (ΓG/H)0containstheflowoftheReeb field.Thisflowisacompactone-parametergroupS1actingalmostfreelyonM anditisgivingriseto the

bundle(1.3).Moreover,sincetheSasakistructureonM arisesfromaconnectionform,theKählerclassof

φ(Γ0)



W representsthecharacteristicclass ofthecirclebundle. Wefurtherremark:

(5) When the anti-holomorphic isometry τ ofX from Theorem 1normalizes Γ,we getIsom (ΓG/H)= Psh (ΓG/H) Z2, otherwisewehaveIsom (Γ



G/H)= Psh (ΓG/H).

LetN denotethe2n+ 1-dimensional Heisenberggroupwith itsnaturalSasakimetric.Using (5)above wealsoget:

(6) ThereexistsacompactlocallyhomogeneousasphericalRiemannianmanifold

M = π\N ,

whosemetricislocallyaSasakimetric(thatis,itisinducedfromtheleft-invariantSasakimetriconN ). ButM with metricg isnotaSasaki manifolditself.

1.1.2. The caseof solvablefundamental group

Wesuppose thatthefundamentalgroupofthe compactasphericalmanifold M is virtuallysolvable.In thiscase,ifM supportsalocallyhomogeneousSasakistructure,thenTheorem1impliesthatM isfinitely coveredbyaHeisenbergmanifold

(5)

Δ\ N ,

whereΔ≤ N isauniformdiscretesubgroupofN .Moreover,M isanon-trivialcirclebundleoveracompact flatKählermanifold, which inturnis finitely coveredby acomplextorusCk/Λ.As amatter offact, any

compactaspherical Kähler manifoldis biholomorphicto aflatKähler manifold (see [4, Theorem 0.2] and thereferencestherein).Asaconsequence,anyregularSasakimanifold M isoftheabovetypeaswell,and itadmitsalocally homogeneousSasakistructure:

Corollary 2.Let M be a regular compact aspherical Sasaki manifold with virtually solvable fundamental group.Then thefollowinghold:

(1) The manifold M is a circle bundle over a Kähler manifold that is biholomorphic to a flat Kähler manifold.

(2) A finitecover ofM is diffeomorphic toaHeisenbergmanifold.

Moreover,theSasakistructureonM canbedeformed(viaregularSasakistructures)toalocallyhomogeneous Sasakistructure.

1.2. ContractibleSasaki Liegroups andcompactquotients

We callaLiegroupG a Sasaki group ifitadmits aleft-invariant Sasakistructure.Equivalently,G acts

simplytransitivelybypseudo-Hermitian transformationsonaSasaki manifoldX.

A prominentexampleofaSasaki Liegroupisthe2n+ 1-dimensionalHeisenbergLie groupN .TheLie groupN arises asanon-trivialcentralextensionoftheform

R → N → Cn ,

andanaturalSasaki structureonN isobtainedbyaleft-invariantconnectionformwhichisassociated to thiscentralextension.

More generally,weshall introduceafamilyof simplyconnected2n+ 1-dimensionalsolvable Sasaki Lie groups

N (k, l) , k + l = n,

called Heisenberg modifications. These groups are deformations of N in N  Tk, where Tk ≤ U(n) is a compacttorus (cf.Definition7.7).

AnothernoteworthycontractibleLie groupwhichisSasakiis 

SL(2,R) ,

theuniversalcoveringgroupofSL(2,R).Indeed,takeany left-invariantmetricg onSL(2,R) withthe addi-tionalpropertythatg isalsoright-invariantbytheone-parametersubgroupSO(2,R).ThentheRiemannian submersionmap



SL(2,R) → SL(2,R) SO(2,R) = HC1

isdefinedanditisaprincipalbundlewithgroupSO(2,R) = R overaRiemannianhomogeneousspaceH1 Cof

constantnegativecurvature.Themetricg definesauniqueleft-invariantconnectionformω,whichsatisfies

(6)

(1.1) andhastheproperty thattheReebfieldisleft-invariantand tangentto thesubgroupSO(2,R). The isomorphismclassesof Sasakistructuresthusobtainedareparametrizedbythecurvatureofthebase.

In general, a simply connected unimodular Lie group that admits a left-invariant Sasaki structure is isomorphic to either of the Lie groups SU(2), N or the universal covering group of SL(2,R), see [16, Theorem4] andalso[8,Theorem5].(In[1,Theorem2.1] amoreprecisestatementisobtainedbydescribing left-invariantSasaki structuresuptoamodification process.)

Asanapplicationof ourmethodsweexplicitly statetheclassificationof contractibleunimodularSasaki Liegroupsasfollows:

Theorem2.LetG beaunimodularcontractibleSasakiLiegroup.ThenasaSasakiLiegroupG isisomorphic toeither N (k,l) orSL(2,R) with oneof theleft invariantSasaki structures asintroduced above. (Thatis, G admitsapseudo-Hermitian isomorphismtoeitherN (k,l) orSL(2,R) withastandardSasaki structure.)

Remark1.2.AsintroducedabovethefamilyofallSasakiLiegroupsN (k,l) isinonetoonecorrespondence with the set of isomorphismclasses of flatKähler Lie groups.Compare Section7.2.2. For adiscussion of thestructureofflatKählerLiegroups,seeforexample[13] or[3].

Remark1.3.Whendroppingtheassumptionofcontractibility,thecompactgroupSU(2) appearsasanother unimodularSasakiLie group.Thisgroupisfiberingovertheprojective lineP1C,and theexampleisdual

to theSasaki Lie groupSL(2,R). The twogroups areknownto be the onlysimply connected semisimple Liegroupswhichadmitaleft-invariant Sasakistructure,cf.[8,Theorem5].

AnyLiegroupG whichadmitsadiscreteuniformsubgroupΔ mustbeunimodular,andifsuchG admits

thestructureofaSasakiLiegroupthenthequotientmanifold ΔG

inheritsthestructure ofacompactlocally homogeneousSasaki manifold. Thus,combiningTheorem 2withCorollary 1weobtain:

Corollary3.EverycompactlocallyhomogeneousasphericalSasaki manifoldwhichisof theform

Δ\G

iseitheraSeifertmanifold,whichisanS1-bundleoverahyperbolictwo-orbifold,oritisaSeifertmanifold whichisan S1-bundleover aflatKähler manifold(whichisacomplex torusbundleoveracomplex torus). 1.3. Sasaki homogeneousspacesof semisimple Liegroups

HereweconsiderthequestionwhichsemisimpleLiegroupsacttransitivelybypseudo-Hermitian transfor-mationsonacontractible(or,moregenerally,aspherical)Sasakimanifold.Theclassificationofsuchgroups andofthecorrespondinghomogeneousspacesiscontainedinTheorem3followingbelow.

LetD be abounded symmetricdomain,equipped with itsnaturalBergman Riemannianmetric. Then itsisometrygroup

S0= Isom (D)0

isasemisimpleLiegroupwhichiscalled agroupofHermitiantype,and

(7)

D = S0/K0

isaRiemanniansymmetricspacewithrespecttothismetric,andahomogeneousKählermanifold,aswell. Moreover,K0 isamaximalcompactsubgroupofS0.

Theorem3.Forany symmetricboundeddomainD = S0/K0,thereexistsauniquesemisimple LiegroupS withinfinite cyclic center,which iscoveringS0,andgives risetoacontractibleSasaki homogeneousspace

XS= S/K

withKählerquotientD.Moreover,anycontractiblehomogeneousSasakimanifoldofasemisimpleLiegroup isofthis type.

Addendum: Inthetheorem,K isamaximalcompactsubgroupofS,andS≤ Psh (XS) isactingfaithfully onXS.TheKählerquotientD isahomogeneousKählermanifoldwhosecomplexstructureisbiholomorphic to a bounded symmetric domain. It carries an invariant symmetric Kähler Riemannian metric, which is uniqueuptoscaling onirreducible factorsofthehomogeneousspaceD.

As aconsequenceofTheorem 3anyLiegroupofHermitiantypeactsasatransitivegroupofisometries onanasphericalSasaki space:

Corollary4. Forany semisimpleLiegroupS0 ofHermitiantype,thereexistsauniqueSasakihomogeneous space

Y = S0/K1,

whereY isacircle bundleover thesymmetricboundeddomainD = S0/K0.

Note that,inTheorem3andCorollary4theSasaki structureonX,respectivelyY ,isuniqueuptothe choiceofanS0-invariant(andalsosymmetric)KählermetriconD.

Thepaperisorganizedasfollows. StartinginSection2,wecollectandexplainsomeusefulbasicfactson regularSasakimanifolds,includingtheBoothby-Wangfibrationandthejoinconstruction.

In Section 3 we discuss the lifting of Kähler isometries and the role of gauge transformations in the Boothby-WangfibrationofacontractibleSasaki manifold.

We use these facts to show thatevery contractible homogeneousKähler manifold determines aunique

contractiblehomogeneousSasakimanifold.AlsotheassociatedpresentationsofahomogeneousSasaki man-ifoldbytransitivegroupsof pseudo-Hermitiantransformationarediscussed inSection4.

Section5isdevotedtothestudyofhomogeneouscontractibleKählermanifoldsofunimodularLiegroups. Theirclassification is derivedfrom theDorfmeister-Nakajima fundamentalholomorphic fiber bundle of a homogeneousKähler manifold.

ThestructureoflocallyhomogeneousasphericalSasakimanifoldsispickedupinSection6.Weestablish inCorollary1thatacompactlocally homogeneousaspherical Sasakimanifoldisalwaysquasi-regularover acompact orbifoldwhichismodeledonahomogeneouscontractible Kählermanifold. Therelevantglobal resultsare summarizedinTheorem 1and itsproof.Wealso givetheproofofCorollary 2inSection6.4.1, seeinparticular Proposition6.10.

In Section7weturn ourinterest to theclassificationproblem forglobal modelspaces oflocally homo-geneousSasaki manifolds:inparticular,we classifycontractibleSasaki Lie groupsandcontractible Sasaki homogeneousspacesofsemisimpleLie groups.Inthecourse,weproveTheorem2and Theorem3.

InSection8weconstructfurtherexplicitexamplesof locallyhomogeneousasphericalSasakimanifolds. Referto [25],[7],[11] forbackgroundonSasaki metricstructures ingeneral.

(8)

2. Preliminaries

LetX = (X,{ω,J}) beaSasakimanifoldwithReebflowT . 2.1. Regular Sasakimanifolds

TheSasaki manifold X is called regularif theReeb flowT is complete and T acts freely andproperly onX.Inthis situation,eitherT =R,or T = S1isacirclegroup.Moreover,

W = X/T

isasmoothmanifoldandX isaprincipalbundleoverW withgroupT .

Example2.1. LetX = G/H beahomogeneousSasakimanifold. ThenX isregular.(See [8] andSection4 below.)

Forthefollowing,see[8]:

Proposition2.2(Boothby-Wangfibration). LetX bearegularSasakimanifoldwithReebflow T .Thenthere isan associatedprincipalbundle

T → X→ Wq

overaKähler manifold(W,Ω,J) suchthattheinducedisomorphism q∗: ker ω → T W

isholomorphicand theKähler formon thebaseissatisfying theequation

q∗Ω = dω . (2.1)

Furthermore,there isanaturalinducedhomomorphism

Psh (X)−→ Isomφ h(W ) (2.2)

with kernelT , whichissatisfying q◦ ˜h = φ(˜h)◦ q,forallh˜∈ Psh (X).

Withtheaboveconditionssatisfied,wecall(W,Ω,J) theKählerquotient oftheregularSasakimanifold X. Alsowelet

Isomh(W ) = Isom (W, Ω, J) denotethegroupofholomorphicisometriesoftheKählerquotientW .

Proof of Proposition2.2. The projectionq inducesanisomorphism

q∗ : ker ω−→T W

ateachpoint.Since ω isinvariantunderT ,ω inducesawelldefined2-formΩ onW suchthat

(9)

dω(X , Y) = Ω(q∗X , q∗Y) , forallhorizontalvectorfieldsX ,Y ∈ ker ω thatarehorizontallifts.As

ιAdω = 0 ,

itfollowsthatdω = q∗Ω and so= 0.SincetheReebflow T isholomorphic onker ω,usingJ onker ω,

q∗ inducesawelldefinedalmostcomplexstructureJ onˆ W suchthatΩ isJ-invariant.ˆ SinceJ isintegrable (thatis,[T1,0,T1,0]⊆ T1,0fortheeigenvaluedecompositionker ω⊗ C = T1,0⊕ T0,1),J becomesˆ acomplex structureonW .HenceΩ isaKählerformonthecomplexmanifold(W,J).ˆ Tosimplifynotation,fromnow on,thesamesymbolJ isusedforthecomplexstructureonW ,forwhichwerequirethatq isaholomorphic map onker ω,thatis, theinducedisomorphismq∗: ker ω → T W satisfiesq∗◦ J = J ◦ q∗.

Since it is commutingwith theprincipal bundleaction of T ,which is arising fromtheReeb flow, each holomorphicisometry

˜

h∈ Psh (X) = CPsh (X)(T ) inducesadiffeomorphismh: W → W ,suchthatthediagram

X −−−−→ X˜h

q⏐⏐ q⏐⏐

W −−−−→ Wh

(2.3)

is commutative. (We briefly verify that h∗Ω = Ω and h∗◦ J = J ◦ h∗ on W : Indeed, as ˜h∗dω = dω, it followsby(2.1) thatq∗(h∗Ω)= ˜h∗q∗Ω= q∗Ω.Thisshowsh∗Ω= Ω.SinceqJ = J q˜ onker ω,using(2.3) it followsh∗J q∗(Y)= h∗q∗J(Y)˜ = q∗˜h∗J(Y)˜ = q∗J ˜˜h∗(Y) = J h∗q∗(Y), for all vector fields Y ∈ ker ω,which arehorizontal liftsfor avector fieldonW . So h∗◦ J = J ◦ h∗ onW .) Thus h is aholomorphic isometry of W .

Furtheranylift˜h∈ Psh (X) of h isuniqueuptocompositionwith anelement oftheReebflow:Indeed, supposethath= idW.Since T actstransitively onthefibers,after compositionwithanelement of T ,we mayassume thatthere exists afixedpoint x∈ X for ˜h.Moreover, since˜h∗A=A, thedifferentialof ˜h at

x istheidentityofTxX.Noweveryisometry ˜h oftheRiemannianmanifoldX is determinedbyitsone-jet atonepoint x.Hence,ker φ= T . 

2.2. Holomorphic andanti-holomorphicisometries

Forany SasakimanifoldX withReebfieldA,webriefly recalltheinteractionof Psh±(X) ={h ∈ Isom (X) | h∗A = ±A}

with the pseudo-Hermitian structure of X. For any pseudo-Hermitian structure {ω,J}, the structure

{−ω,−J} is called theconjugate structure.Then the groupof isometries Psh±(X) permutesthe pseudo-HermitianstructureofX anditsconjugate:

Lemma 2.3 (Sasaki isometries).Let X be any Sasaki manifold and let h∈ Isom (X) satisfy h∗A = ±A,

whereA istheReeb fieldof X.Thenh∗ω =±ω andhJ =±Jh on ker ω.

(10)

Proof. Forany X ∈ ker ω,theequationg(h∗A,h∗X )= g(A,X ) shows 0 = g(X , A) = ω(X )ω(A) + dω(JX , A) = ω(X )

= g(h∗X , h∗A) = ±g(h∗X , A) = ±ω(h∗X ) . Inparticular,h∗ mapsker ω ontoitself.As

h∗ω(A + X ) = ω(±A) = ±ω(A + X ),

wededucethath∗ω =±ω.Nextforany X ,Y ∈ ker ω,

dω(JX , Y) = g(X , Y) = g(h∗X , h∗Y) = dω(Jh∗X , h∗Y) = dω(h∗(h−1∗ Jh∗)X , h∗Y) = h∗dω((h−1∗ Jh∗)X , Y) =±dω((h−1 Jh∗)X , Y).

Bythenon-degeneracy oftheLeviformdω◦ J itfollowsthat

hJ =±Jh on ker ω.  (2.4)

2.3. Joinof regularSasakimanifolds

WedescribeindetailanaturalprocedurewhichexplicitlyconstructsanewSasakimanifoldfromapair of given regular Sasaki manifolds. This corresponds to a variant of the join construction as is discussed in[10] for thecompact case. Inourcontext we apply the joininthe constructionof homogeneous Sasaki manifolds.

2.3.1. Sasaki immersions

LetX,Y beregularSasakimanifoldswithpseudo-Hermitianstructures{ω,J},{η,I},respectively.Also, letA,B denotetherespectiveReebvectorfieldsonX,Y .Animmersionofmanifolds

ι : Y → X

suchthat

i) the ReebvectorfieldA istangenttotheimageι(Y )⊆ X and

ii) thetangentbundleof ι(Y ) satisfiesJ T ι(Y )⊆ T ι(Y )

iscalled aSasaki immersion if

iii) {η,I}= ι∗{ω,J}

is satisfied.Thatis,for aSasaki immersion,{η,I} isobtainedby pullbackof {ω,J}.Letq : X → W and p: Y → V denotetherespectiveKählerquotients.ThentheSasakiimmersionι inducesauniqueKählerian immersion

j : V → W ,

suchthatj◦ p= q◦ ι.Notealsothatj determinestheSasakiimmersionι uniquely uptocompositionwith anelementoftheReebflowT .

(11)

2.3.2. The joinconstruction andSasaki immersions

Let

(Xi,{ωi, Ji}) , i = 1, 2 , beregularSasakimanifoldswithReebflows

Ti={φi,t}t∈R. Furthermore,let(Wi,Ωi) denotetheKählerquotientsofXi,and

qi: Xi→ Wi thecorrespondingBoothby-Wangfibrations.Nowconsider

¯

T = T1× T2={(φ1,s, φ2,t)}s,t∈R

anddefine Δ={(φ1,t,φ2,−t)}t∈Ras thediagonalinT .¯ Thenput

T = ¯TΔ .

Proposition2.4(Joinof Sasaki manifoldsX1 andX2).ThereexistsauniqueregularSasaki manifold X = X1∗ X2

withReeb flow T andKählerquotient

q : X1∗ X2 → W = (W1× W2, Ω1× Ω2) , whichadmitsSasaki immersions ιXi : Xi → X1∗ X2 suchthatthediagram

Xi X1∗ X2 Wi W1× W2 ιXi qi q pri (2.5) iscommutative(i= 1,2).

Proof. Observethat,viatheproductaction,T = T¯ 1×T2actsproperlyandfreelyonX1×X2withquotient

map

¯

q = q1× q2: X1× X2 → W = W1× W2.

Defineanotherquotientmap

p : X1× X2 → X := (X1× X2)/Δ , (2.6)

andlet

q : X→ W

betheinducedmapsuchthatq = q¯ ◦ p.

(12)

Letpri: X1× X2→ Xi,i= 1,2,denotetheprojectionmaps. Define

¯

ω = pr∗1ω1+ pr2ω2,

andconsider theKählerformΩ= Ω1× Ω2onW . Byconstruction,

¯

q∗(Ω) = d¯ω .

NextletA¯i denotethecanonicalliftsoftheReebfieldsAi toX1× X2,whereA¯iistangenttothefactor Xi,respectively.Theone-parametergroupsgeneratedbythesevectorfieldsarecontainedintheabelianLie groupT .¯ Inparticular,thesevectorfields areΔ-invariant.LetVΔdenote theone-dimensionaldistribution

onX1× X2,whichisspannedbythevectorfieldA¯1− ¯A2.ThenVΔisvertical(tangenttothefibers)with

respectto thequotientmapp in(2.6) inducedbytheactionofΔ.Therefore,bothvectorfields A¯iproject tothesamevectorfieldA onX.

Note that ω is¯ a T -invariant¯ one-form which vanishes on VΔ. Therefore, there exists on X a unique

inducedoneform

ω = ω1∗ ω2 satisfyingp∗ω = ¯ω.

Inparticular,ω satisfiesq∗Ω= dω,where Ω= Ω1× Ω2.Itfollows thatω isacontactformwithReebfield A.TheReebflowofω istheone-parametergroup

T = ¯T /Δ .

Summarizingtheconstruction,wenote thatω isaconnectionformfortheT -principalbundle q : X → W

andithascurvatureformΩ.

Let Ji denote the complex structures on ker ωi (canonically extended to tensors on Xi by declaring

Ji(Ai)= 0).Observethatthekernel ofω coincideswiththeprojectionof ker pr1ω1∩ ker pr∗2ω2

to(thetangentbundleof)X.Therefore,J = J¯ 1× J2goesdowntoanalmostcomplexstructureJ onker ω

suchthat

q : (X,{ker ω, J}) → (W, J)

isaholomorphicCR-map.Since(W,{Ω,J}) isKählerandω aconnectionformwithcurvatureΩ,thealmost CR-structure{ker ω,J} isintegrable,see[17,Theorem 2].Since

dω◦ J = (q∗Ω)◦ J

ispositive,{ω,J} definesapseudo-Hermitian structureonX.BytheconstructionT actsby holomorphic transformationsonX.Thisshowsthat(X,{ω,J}) isaregularSasakimanifoldwithKählerquotient(W,Ω). Choose a base point (xo,yo) ∈ X1 × X2 and define immersions ιi : Xi → X, ι1(x) = q(x,yo) and ι2(y) = q(xo,y). (Note that all such pairs of maps are equivalent by an element of T .) By the above construction, ιi are Sasaki immersions, and, in fact, they determine the Sasaki structure {ω,J} on the manifoldX1∗ X2 uniquely,together withtheconditionthatA istheReebfield. 

ThejoinofSasaki manifoldsenjoysthefollowing functorialproperty:

(13)

Proposition2.5. Foranypairof Sasaki immersionsτi: Yi→ Xi with inducedKähler immersionsji : Vi→

Wi,i= 1,2, thereexistsauniqueSasaki immersion

τ = τ1∗ τ2: Y1∗ Y2 → X1∗ X2 suchthattheassociated diagram

Y1∗ Y2 X1∗ X2 V1× V2 W τ p q j1×j2 (2.7)

iscommutativeand ιXi◦ τi andτ◦ ιYi coincideuptoan element ofT .

Proof. Sinceτi areSasakiimmersions,theproduct map ¯

τ = τ1× τ2: Y1× Y2→ X1× X2

inducesamap

τ1∗ τ2:= Y1∗ Y2→ X1∗ X2

withtherequiredproperties.  This gives:

Corollary2.6.The join ofX1 andX2 definesanatural homomorphism

Psh (X1)× Psh (X2) → Psh (X1∗ X2) , (φ1, φ2) → φ1∗ φ2 withkernel thediagonal groupΔ={(φ1,t,φ2,−t)}t∈R.

Proof. Indeed,bytheconstructioninProposition2.5,φ1∗ φ2∈ Psh (X) andtheabovemapisa

homomor-phismwithkernelΔ.  Wecall thegroup

Psh (X1)∗ Psh (X2) = (Psh (X1)× Psh (X2))

 Δ

thejoin ofthegroupsPsh (Xi).Bytheabove,thejoinofPsh (Xi) identifieswithasubgroupofPsh (X1∗X2).

Corollary2.7.LetX1andX2behomogeneousSasakimanifolds.ThenthejoinofgroupsPsh (X1)∗Psh (X2) isacting transitively by pseudo-Hermitian transformations on the Sasaki manifoldX1∗ X2.In particular, X1∗ X2 isa homogeneousSasakimanifold.

Proof. TheKählerquotientW1×W2ofX1∗X2isahomogeneousKählermanifoldforthegroupG= G1×G2,

whereGi denotes theBoothby-Wang imageof Psh (Xi) inIsomh(Wi).Since G isalso theBoothby-Wang imageofPsh (X1)∗Psh (X2),andthelatteralsocontainstheReeb-flowT ,itfollowsthatPsh (X1)∗Psh (X2)

actstransitivelyonX1∗ X2. 

(14)

3. Pseudo-HermitiangroupPsh (X) ofaregularSasakimanifoldwithvanishing Kählerclass

Suppose that(X,{ω,J}) is aregular Sasaki manifold with Reeb flow T isomorphic to the real line R. ThentheBoothby-WangfibrationProposition2.2givesaprincipalbundle

R −−−−→ X −−−−→ Wq

overtheKähler quotientW = (W,Ω,J).Here thegroupR={ϕt}t∈R oftheprincipalbundleisgenerated bytheReebfieldandtheKählerformonthebase issatisfyingtheequation

q∗Ω = dω . (3.1)

Chooseasmoothsection s: W → X ofq such thatthebundle X isequivalent tothetrivialbundle by abundlemap

f :R × W −→X

whichisdefinedby

f (t, w) = ϕts(w) . Wethushavethefollowing commutativediagram:

R × W −−−−→f X

pr  q

W

, q◦ s = idW . (3.2)

Declareaone-formθ onW byputting

θ = s∗ω . (3.3)

Notethenthatdθ = Ω from(3.1).Inparticular,theKählerformΩ on W is exact.

Nextextendθ toatranslationinvariantone-formonR× W bydeclaring

ω0= dt + pr∗θ, so that dω0= pr∗Ω holds. (3.4)

Notingf (0,w)= s(w)= s◦ pr(0,w),wehave

pr∗θ|{0}×W = ((s◦ pr)∗ω)|{0}×W = f|{0}×Wω.

Sinceboth formsf∗ω andω0 aretranslationinvariant,weconcludethat

f∗ω = ω0. (3.5)

Thenanalmostcomplexstructure J on˜ ker ω0 isdefinedby

pr◦ ˜J = J◦ pr. (3.6)

Byconstruction,theisomorphismf: ker ω0→ ker ω isholomorphic,thatis,

(15)

f∗◦ ˜J = J◦ f∗.

Inparticular,J is˜ acomplexstructureonker ω0.Summarizingtheaboveweobtain:

Proposition3.1.IdentifyingtheregularSasakimanifoldX withR×W viaf ,thepseudo-Hermitianstructure {ω,J,A} corresponds to{ω0,J,˜ ∂t∂} onthetrivialbundleR× W ,where ω0 isdefined asin(3.4).

Existenceof acompatibleregularSasaki manifold. Conversely,anyexact Kählerform Ω = dθ

onacomplexmanifoldW arisesasthecurvatureformofaconnectionform ω onthetrivialprincipalbundle

X =R × W .

In fact, such ω with Reeb field A = ∂t is given by (3.4). As aconsequence (employing [17, Theorem 2] to show the integrability of the almost CR-structure {ker ω,J}), there exists on X a pseudo-Hermitian structure

{ω, J, A} , (3.7)

whichhas the Kähler manifold (W,Ω) asits Kähler quotient. We call such apseudo-Hermitian structure

compatiblewiththeKähler manifold(W,Ω).

We remark now that, under a mild assumption on the Kähler manifold W , any compatible pseudo-HermitianstructureonX isessentiallydetermined uniquelybytheKähler structureonW .

Proposition 3.2. Suppose H1(W,R) = {0}. Then any two pseudo-Hermitian structures {ω,J,A} and {ω,J,A} on X, which are compatible with the Kähler manifold (W,Ω), are related by a gauge

trans-formationfortheprincipalbundleq : X → W .

Proof. Bythecompatibilityassumption,wehaveω− ω = q∗η,forsomeclosedone-formη∈ Ω1(W ).Since

H1(W,R)={0},there exists afunctionλ: W → R suchη = dλ. Intheviewof Proposition3.1, wemay

assumethat X =R× W andω = dt+ q∗θ,where dθ = Ω. We define agauge transformation G for the bundleq,byputting

G(t, w) = (t + λ(w), w) .

Wethen calculateG∗ω = G∗dt+ q∗θ = dt+ dq∗λ+ q∗θ = ω + q∗η = ω. 

Remark 3.3.For an analogous existence result for Sasaki manifolds in the more elaborate case of circle bundlesoverHodgemanifolds,see[8,Theorem3],respectively[21].

3.1. Lifting ofisometriesfrom theKählerquotient

We now proveastructure result forthegroupof holomorphicisometries Psh (X) of X ifthe Boothby-Wangfibrationhas contractible fiberR.Thatis, letX be aregularSasaki manifold with Boothby-Wang fibration

R → X → W . (3.8)

(16)

Asbeforelet

Isomh(W ) = Isom (W, Ω, J)

denotethegroupofholomorphicisometriesoftheKählerquotientW forX.

Proposition 3.4. Assume that the first cohomology of the Kähler quotient W , arising in (3.8), satisfies H1(W )={0}. ThentheBoothby-Wanghomomorphism (2.2) definesanaturalexact sequence

1 −−−−→ R −−−−→ Psh (X) −−−−→ Isomφ h(W ) −−−−→ 1 . (3.9)

In particular,Psh (X) acts transitivelyonX if andonly ifIsomh(W ) acts transitivelyonW .

Proof. IntheviewofProposition2.2itissufficienttoshowthatφ issurjective.Indeed,sinceH1(W )={0},

Lemma 3.5belowshowsthatfor anyh∈ Isomh(W ),there exists anisometry ˜h∈ Psh (X),which isalift ofh,thatis, φ(˜h)= h. 

Proposition 3.4 is implied by the following basic lifting result for holomorphic and anti-holomorphic isometriesoftheKählerquotient W :

Lemma 3.5. Assumethat H1(W )={0}, andlet h∈ Isom (W ) satisfy hΩ= μΩ, where μ∈ {±1}. Then

there existsan isometryh˜∈ Psh±(X) suchthat h induces˜ h on W andsatisfies ˜h∗ω = μω. Ifμ= 1 then ˜

h∈ Psh (X).

Proof. We may assume X = R × W . Define ˜h(t,w) = (t,h(w)) to be the canonical lift of h. Then

ω = μ· (˜h)∗ω defines another pseudo-Hermitian structure on X which is compatible with (W,Ω). By Proposition3.2,thereexists agaugetransformationG: X→ X withG∗ω = ω.Therefore,

˜

h = G◦ ˜h

satisfies˜h∗ω = μ·ω,anditisanisometricliftofh forthemetricg = ω·ω +dω ◦J.Italsofollows˜h∗A= μA. Thus,˜h∈ Psh±(X). 

4. HomogeneousSasakimanifolds

SupposethattheLiegroupG actstransitivelybypseudo-HermitianisometriesontheSasakimanifold X. Then

X = G/H

iscalled ahomogeneousSasaki manifold.SinceX isalsoacompleteRiemannianmanifoldwith respectto theSasaki metricg,the ReebfieldA for X,whichis aKillingfieldforthe metricg,is acompletevector field.Let

T ={ϕt}t∈R

denotethe1-parameter grouponG/H generatedbytheReebfield.

(17)

4.1. NaturalfiberingoverhomogeneousKähler manifold

Since T commuteswithG,there existsaone-parameter subgroup

A = {at}t∈R ≤ NG(H) (4.1)

suchthat

ϕt(xH) = xa−1t H , (4.2)

whereNG(H) denotesthenormalizerofH inG.

Proposition4.1. T isaclosed subgroup inPsh (G/H). Inparticular, T isisomorphic toS1 or R,anditis actingproperly onG/H.

Proof. TheReebfieldA isuniquelydeterminedbytheequations:

ω(A) = 1, ιAdω = 0.

LetD ={ϕt}t∈R≤ Psh (G/H) betheclosure.AsLgϕt= ϕtLg (for all g∈ G) from(4.2),everyelementof

D commuteswith G.Thusevery vectorfieldB inducedfromone-parameter groupsinD is left-invariant. Inparticular,ω(B) is constant.BytheCartanformula,it followsιBdω = 0. Ifω(B)= 0,byuniquenessof theReebfield,B = A upto aconstantmultipleonG/H.Whenω(B)= 0,thenon-degeneracy oftheLevi formdω◦ J onker ω implies B = 0 onG/H. ThisshowsD ={ϕt}t∈R. 

Lemma4.2. T actsfreely onG/H.

Proof. Ifϕt0(x0H)= x0a−1t0 H = x0H,forsomex0∈ G,thenat0 ∈ H andsoϕt0(xH)= xH (for all x∈ G).

SinceT actseffectively,ϕt0= 1. 

Inparticular,anyhomogeneousSasakimanifoldX = G/H isaregularSasakimanifold(cf.[8]).Moreover, byProposition2.2theKählerquotient

W = (G/H)T

isahomogeneousKählermanifoldforG.Thatis,G isactingtransitivelybyholomorphicisometriesonW .

Wethushave:

Theorem 4.3 (Boothby-Wang fibration [8]).Every homogeneous Sasaki manifold X = G/H arises as a principalT -bundleoverahomogeneousKähler manifoldW which takestheform:

T −−−−→ G/H −−−−→ W = G/HA .q (4.3)

Remark4.4.IfG/H iscontractible, soisG/HA,and inthiscaseT ∼=R.

The following existence and uniqueness result for contractible homogeneous Sasaki manifolds is now a directconsequenceofSection3:

(18)

Corollary4.5(ContractiblehomogeneousSasakimanifolds).Let(W,Ω,J) beahomogeneousKählermanifold which iscontractible. Then there existsa contractiblehomogeneous Sasaki manifold(X,{ω,J}) which has Kählerquotient(W,Ω,J).Moreover,withtheseproperties,theBoothby-Wangfibration(4.3) forX hasfiber

R,and X isuniquelydefined uptoapseudo-Hermitian isometry.

Proof. Indeed,wemaychooseonthetrivialprincipalbundleX =R× W ,thepseudo-Hermitianstructure (3.7), which has Reeb field A = ∂t and Kähler quotient (W,Ω,J). By Proposition 3.4, (X,{ω,J,A}) is

ahomogeneous Sasaki manifold. Let (X,{ω,J,A}) beanother contractible Sasaki manifold which has (W,Ω,J) asaKählerquotient.ThentheBoothby-WangfibrationforXhasfiberR,and,byProposition3.1, thereexistsapseudo-HermitianisometryfromX to(X,{ω,J,A}).ByProposition3.2,thelatteradmits apseudo-Hermitian isometry to(X,{ω,J,A}) whichis given byagaugetransformationof thebundle X.

Thisimpliestheclaimeduniqueness. 

4.2. Pseudo-Hermitianpresentations of W

LetX beahomogeneousSasakimanifoldwithgroupG andW itsKählerquotient.Wedescribenowthe typesofhomogeneouspresentations

W = G/HA

whichcanarise intheassociatedBoothby-Wang fibration(4.3).Forthiswe assumethat

G ≤ Psh (X)

is aclosed subgroup. Inparticular,G is acting faithfullyon X.With this assumption the stabilizer H is

alwayscompact,sinceG isaclosed groupofisometriesforX.

Lemma 4.6.Let Δ denote the kernel of the induced G-action on the Kähler quotient W of X. Then the followinghold:

(1) HA= H A decomposesasasemi-direct product.

(2) Δ≤ HA, and,L = H¯ AΔ iscompact.

(3) Δ= T∩ G,in particular,Δ iscentralinG.

(4) If A is non-compact then theprojection homomorphismπA : HA→ A maps Δ injectively toa closed subgroupof A.

(5) IfA is normalin G thenA is centralinG.

Proof. SinceT actsfreelyonG/H,weinferfrom(4.2) that A∩ H = {1}.Thisimpliesthat

HA = H  A

isasemi-directproduct,proving(1).Let

πA: HA → A

denote the projection homomorphism. Since H is compact, the homomorphism πA is proper. Therefore,

the image G of¯ G in Isom (GHA) is closed and acts properly on W = G/HA = ¯G/ ¯L. We deduce that ¯

L = HAΔ isacompactsubgroupofG = G/Δ.¯ Thus,(2)holds.

(19)

Since thehomomorphismφ in(2.2) whichmapsG toG has¯ kernelT ,

Δ = G∩ T ,

where theintersectionis takeninPsh (X). Recall thatT is central inPsh (X).Therefore, Δ iscentralin

G.Hence,(3).

Next, consider C = ker πA∩ Δ= H∩ Δ. AssumingthatA is avectorgroup,C is theunique maximal

compact subgroup of Δ.Since Δ is normal in G, so is C. Since C is also a subgroup of H and G/H is

effective, we deduce thatC = {1}.This shows thatΔ is isomorphic to the closed subgroup πA(Δ) ≤ A,

proving(4).

Finally,assumethatA isnormalinG.Thentheleft-multiplicationorbitsofA onG/H coincidewiththe orbitsofT .Thatis,forallg∈ G:

T · gH = g · AH = A · gH .

In particular,the left-action of A on G/H (which is by pseudo-Hermitian isometries) induces the trivial actionontheKähler-quotient W bythe fibrationsequence(4.3).Thatis, A≤ Δ and by(3), A≤ T . This impliesthatA= T iscentralinG. 

Twoprincipalcasesarearising,accordingtowhetherΔ isacontinuousgrouporΔ isadiscretesubgroup ofG.RecallfirstthateitherA= S1 orA=R.Thenwehave:

CaseI (Δ = A,T is containedinG). We suppose herethatA can be chosento be anormal subgroup in

G.By(5) ofLemma4.6, itfollowsthattheisometriesinducedbytheleft-actionof A arecontainedinthe kernelofthehomomorphismφ: Psh (X)→ Isomh(W ),whichisjustT .SinceA isanon-trivialconnected (one-dimensional)group,thisimplies

T =A = Δ

as subgroupsof Psh (X). Then thefibration(4.3) turns into aprincipalbundle ofhomogeneous spacesof theform

A −−−−→ G/H −−−−→ W = (G/A) /H = ¯q G/ ¯H , (I)

whereH = H and¯ thegroupG is¯ describedbyanexactsequence ofgroups

1 −−−−→ A = R −−−−→ G −−−−→ ¯φ G −−−−→ 1 . (I)

CaseII(A = R, Δ = Z). WeareassumingthatA=R (forexample,ifG/H iscontractible).ByLemma4.6 (4), the central subgroup Δ of G is either infinite cyclic (and discrete) or Δ is a closed one-parameter subgroupinHA whichisprojecting surjectivelyontoA.SinceΔ iscontainedinT ,andT isonedimensional, wededuceΔ= T ,inthelattercase.This situationwasalreadydescribedinCaseIabove.

So for case II, Δ = T ∩ G is infinite cyclic and central in G. Moreover, Δ ≤ HA and by Lemma 4.6 (4)themapπA is projectingΔ injectivelyontoadiscretelatticeZ inA.Denote withA the¯ imageofA in

¯

G = G/Δ.ThentheBoothby-Wangfibration(4.3) can bewrittenintheform

A −−−−→ G/H −−−−→ W = ¯q GH ¯¯A , (II)

wherethegroupG is¯ described bytheexactsequence

(20)

1 −−−−→ Δ = Z −−−−→ G −−−−→ ¯φ G −−−−→ 1 . (II)

Recall also that L = ¯¯ H ¯A is a compact subgroup of G,¯ and H is¯ a compact normal subgroup in H ¯¯A.

Therefore,thesimplyconnectedone-parametergroupA maybechoseninsuchawaythatitsquotientA is¯ acompactcirclegroup,and theintersectionH¯∩ ¯A is finite.

5. HomogeneousKählermanifoldsofunimodulargroups

LetW be ahomogeneousKähler manifold. Thefundamentalconjecture forhomogeneous Kähler man-ifolds(as proved by Dorfmeisterand Nakajima [12])asserts thatW is aholomorphic fiberbundle over a homogeneousboundeddomainD withfibertheproductofaflatspaceCk withacompactsimplyconnected homogeneousKählermanifold.

Recall thataLie groupG iscalled unimodular ifitsHaar measure isbiinvariant. Letg denote theLie algebra of G. If G is connected, then G is unimodularif and only if the trace function over the adjoint representationofg iszero.

Proposition5.1. LetW be acontractiblehomogeneousKählermanifoldthatadmits aconnectedunimodular subgroup

G≤ Isomh(W )

whichactstransitively onW .Thenthere existsasymmetricboundeddomain D such W =Ck× D

isaKähler directproduct.

AmoregeneralresultforarbitraryhomogeneousKählermanifoldsofunimodularLiegroupsisstatedin [1,Proposition4.2] andProposition5.1canbederivedasaspecialcase.Forclarityandcompletenessofthe expositionwegiveadetailedandselfcontainedproof.TheconditionthatahomogeneousKähler manifold iscontractibleclarifiestheexistenceofsymmetricdomainintheproductdecompositionandalsosimplifies theproof.Thisresultwill beusedto determineisometrygroupsinthenextsection.

Proof of Proposition5.1. For the proof we require some constructions which are developed in the proof of the fundamental conjecture as it is given in[12]. The first main step inthe proof of the fundamental conjectureistomodifyG inordertoobtainasuitableconnectedtransitiveLiegroupG withˆ particularnice properties[12,Theorem2.1].ByamodificationprocedureonthelevelofLiealgebras(asisdescribedin[12, §2.4]),we obtainfromtheKähler Liealgebra g ofG aquasi-normal KählerLie algebraˆg.Moreover, itis shownthatthereexistsaconnectedsubgroupGˆ≤ Isomh(W ),whichhasLiealgebraˆg andactstransitively onW . As can be verifieddirectlyfrom[12,§2.4],the modifiedLie algebraˆg preserves unimodularityof g andalsosatisfies dim ˆg ≤ dim g.

Therefore, from thebeginning, we may assume thatthe connected unimodulartransitive Lie group G

of holomorphic isometries in question has a quasi-normal Lie algebra g. We can also replace G with its universalcoveringgroup,andweremarkthatK is connected (W = G/K issimplyconnected,sinceweare assumingherethatW iscontractible).Withtheseadditionalpropertiesinplace,accordingto[12,Theorem 2.5] combinedwith [12,§7],thefollowinghold:

(1) There exists a closed connected normal abelian subgroup A of G, such that G = AH is an almost semi-directproduct.

(21)

(2) Thereexistsareductive subgroupU ≤ H,with K≤ U,suchthat

D = H/U

isaboundedhomogeneousdomainand

U/K

iscompactwithfinite fundamentalgroup.

(3) PutL= AU .ThenL isaclosedsubgroupofG andthemap

W = G/K → G/L = H/U = D

isaholomorphicfiberbundle withfiberL/K = AU/K.

We prove now that, if G is unimodular then H is a unimodular Lie group: For this recall from [12, Theorem2.5] thatA istangenttoaKähler ideala oftheKähleralgebrawhichbelongstoW . (Recallthat theKähleralgebraforG/K isg togetherwith analternatingtwo-formρ whichisrepresentingtheKähler formonW .)SinceK intersectsA onlytrivially,theKählerideala isnon-degenerate,thatis,therestriction

ρa oftheKählerformρ ofg toa isnon-degenerate.Sincea isabelianandρ isaclosedformong,itfollows that ρa is invariant by the restriction of the adjoint representation of h (respectively H). In particular,

thisrestrictedrepresentationofH ona isbyunimodularmaps. SinceG isunimodular,itfollows fromthe semi-directproduct decompositionG= AH that H isunimodular.

LetK1denotethemaximalcompactnormalsubgroupofH.ThenthegroupH= H/K1 isunimodular.

Moreover H acts faithfully and transitively on D = H/K = H/K, K = K/K1. Hence, the bounded

domainD hasatransitivefaithfulunimodulargroupH ofisometries.ByresultsofHano[13,TheoremIII, IV],H must be semisimpleand D is asymmetric bounded domain. Wealso concludethatthere exists a semisimplesubgroupS≤ G,whichisofnon-compacttype,suchthatH = K1S isanalmostdirectproduct

andthehomomorphismS→ H isacoveringwithfinite kernel.

Contractibility ofW furtherimpliesU = K.Therefore,inthiscase,theholomorphicbundlein(3)isof theform

G/K → D = H/K ,

withfiberA=Ck,andD isasymmetricboundeddomain.

Finally the direct product decomposition follows: Note also that K1 acts faithfully on Ck by Kähler

isometries, and that S acts trivially on A, since it is of non-compact type. It follows thatS is a normal subgroupofG.Thereforeits tangentalgebramustbe orthogonalto A withrespect toρ.Since theKähler algebrag belongingto G isdescribing W ,we concludethatthere isanorthogonal productdecomposition

W =Ck× D. 

Wealsoobtain:

Corollary5.2. SupposethatW isacontractiblehomogeneousKählermanifold,andthatthereexistsadiscrete uniformsubgroupinIsomh(W ).ThenW is Kählerisometric toCk× D, whereD isasymmetricbounded domain.

Thefollowing isobtainedintheproofofProposition5.1:

(22)

Corollary 5.3. Assume that W is a homogeneous Kähler manifold which admits a transitive unimodular groupG.Thenthereexistsasymmetricboundeddomain D suchthatW is aholomorphicfiberbundleover D with fibertheproductof aflat spaceCk withacompactsimplyconnectedhomogeneousKählermanifold. Moreover, Isomh(W )0 contains a covering group of the identity component of the holomorphic isometry groupof D.

Proof. In fact, in the proof of Proposition 5.1 it is established that D is symmetric with a semisimple transitivegroupS contained inthe quasinormalmodification G of¯ G.It is alsoclearthatS is normalin

¯

G,anditisthemaximalsemisimplesubgroupofnon-compacttypeinG (in¯ fact,inIsomh(W )0),andS is

coveringIsomh(D)0. 

Werecallthatany symmetricboundeddomainD admitsaninvolutiveanti-holomorphicisometry: Proposition 5.4 (Isometry group of symmetric bounded domain).Let D be a symmetric bounded domain with Kählerstructure(Ω,J).If D is irreducible then

Isom (D) = Isomh±(D) .

Moreover, foranyD there existsanelement τ¯∈ Isom (D) such that

¯

τ2= 1, ¯τ∗Ω =−Ω, ¯τJ =−J ¯τ∗.

Forthe factthateveryisometry of an irreduciblebounded symmetric domain is eitherholomorphicor anti-holomorphic, see e.g.[18, Ch. VIII, Ex. B4]. For the existence of the anti-holomorphic involutionτ ,¯ recallfirst thatthe metriconanysymmetric boundeddomain D isanalytic (see[18]).Then thefollowing holds:

Proposition 5.5. Let W be a simply connected Kähler manifold with analytic Kähler metric. Then there existsan anti-holomorphicinvolutiveisometry ¯τ ofW .

Proof. Since W is a complex manifold and the Kähler metric is Hermitian with respect to the complex structure,thereexistlocal complex coordinatesforW suchthatthemetriccan bewrittenas

g0= 2

 α,β

gα ¯βdzαd¯zβ,

where gα ¯β is a Hermitian matrix, so that gα ¯β = gβ ¯α. In particular, the Kähler form Ω0 is obtained as

Ω0=−2i

 α,β

gα ¯βdzα∧ d¯zβ.

Letτ0:Cn→Cn bethecomplexconjugationmap,thatis,

τ0(z1, z2, . . . , zn) = (¯z1, ¯z2, . . . , ¯zn).

Thenτ0 satisfiesτ0Ω0=−Ω0, τ0∗JC=−JCτ0.Inparticular,τ0 definesalocalanti-holomorphicisometry

ofW .

Since W is simply connected, we may use analytic continuation to extend τ0 to an analytic map τ :¯ W → W . By the analyticityassumptions, τ is¯ an anti-holomorphic map and it is preserving the Kähler metric.Alsoitfollows¯τ2= id

W bythelocalrigidityofanalyticmaps.Therefore,¯τ isaninvolutiveisometry of W . 

(23)

Remark5.6.NotethattheholomorphicisometrygroupIsomh(D) hasfinitelymanyconnectedcomponents. Interestingly,evenifD isirreducibleIsomh(D) isnotnecessarilyconnected[18,Ch. X,Ex.8].

6. LocallyhomogeneousasphericalSasakimanifolds

Inthissection X denotesaregularcontractibleSasakimanifold.

6.1. HomogeneousSasaki manifoldsforunimodulargroups

Since X is regular with Reeb flow isomorphic to the real line, Proposition 3.4 implies that the Reeb fibering

R → X−→ Wq

givesrisetoanexactsequenceofgroups

1→ R → Psh (X)−→ Isomφ h(W )→ 1 , (6.1) whereW istheKählerquotientof X.

Proposition6.1. LetX be a homogeneousSasaki manifold suchthat itsKähler quotient W iscontractible. Supposefurtherthat X admitsaconnectedtransitiveunimodularsubgroup

G ≤ Psh (X) . Thenthefollowinghold:

(1) W =Ck× D istheKähler productof aflat spacewithasymmetricbounded domainD.

(2) If theReebflow of X isisomorphic toR,thenthepullback of

Ck U(k) ≤ Isomh(W )

along theexact sequence(6.1) isanormal subgroup

N  U(k) ≤ Psh (X) , where N isa 2k + 1-dimensionalHeisenbergLiegroup.

Proof. As the Reeb flow T is central in Psh (X)0, the associated Boothby-Wang homomorphism φ as in

(6.1) mapstheunimodulargroupG to

¯

G = φ(G) ≤ Isomh(W ) .

Since also G is¯ unimodular and transitive onthe contractible Kähler manifold W , Proposition5.1 states thatW =Ck× D,whereD isasymmetricboundeddomain.Thisproves(1). Italsofollowsthat

Isomh(W ) =Ck U(k)× Isomh(D) .

WemaythuspullbackthefactorCk U(k) byφ intheexactsequence(6.1).Aspullbackweobtainthe subgroupN  U(k) ≤ Psh (X),where N isthepreimageofthetranslationgroupCk.

(24)

Assuming T = R,we note that N is a centralextension of the Reeb flow R by the abelian Lie group Ck. We prove now thatN is a 2k + 1-dimensional Heisenberg Lie group by showing thatits Lie algebra n has one-dimensional center:Since N actsfaithfully as atransformation grouponX, wemay identifyn withasubalgebra ofpseudo-Hermitian Killingvectorfields onX.Thissubalgebra containstheReebfield

A (tangentto thecentral one-parametergroupT = R)inits center.Now, sinceN is thepullbackof Ck, givenany twovectorfieldsX ,Y ∈ n,wehave

[X , Y] = ω([X , Y])A . UsingLemma 6.2below,weobserve

q∗Ω (X , Y) = dω(X , Y) = ω([X , Y]) .

Since(Ck,Ω) isKähler,itfollowsthatdω definesanon-degeneratetwo-formonn/A.Thisshowsthatthe Liealgebran hasone-dimensional centerA.Thereforethe LiegroupN hasone-dimensional center.SoN isaHeisenberggroupofdimension2k + 1. 

A vector field on X with flow in Psh (X) will be called a pseudo-Hermitian vector field. The set of pseudo-Hermitian vectorfields forms asubalgebra ofthe LiealgebraofKilling vectorfields fortheSasaki metric g.

Lemma6.2. LetX ,Y be anytwopseudo-Hermitian Killingvector fieldson theSasakimanifoldX. Then q∗Ω (X , Y) = dω(X , Y) = ω([X , Y]) .

Proof. Sincetheflow ofX preservesthecontactformω,wehave

LXω = 0 . (Here,LX denotestheLiederivativewithrespectto X .)Thatis,

LXω(Z) − ω([X , Z]) = 0, forallvectorfieldsZ onX.Wecompute

0 = LXω(Y) − ω([X , Y]) − LYω(X ) + ω([Y, X ]) = LXω(Y) − LYω(X ) − ω([X , Y]) + ω([Y, X ]) = dω(X , Y) − ω([X , Y]) . 

LetX beacontractiblehomogeneousSasakimanifoldwithKählerquotientW =Ck× D,whereD isa symmetricboundeddomain.Then

Isomh(W ) =Ck U(k)× Isomh(D) . (6.2)

Note further that Isomh(D)0 = S

0 is the identity component of the holomorphic isometry group of a

Hermitiansymmetricspace

D = S0/H0

of non-compact type. Inparticular,S0 is semisimple of non-compact type[18, Ch. VIII,§7] and without

center.Therefore(6.2) alsogives:

(25)

Proposition6.3. Psh (X) hasfinitely manyconnectedcomponentsand

Psh (X)/ Psh (X)0= Isomh(D)/ Isomh(D)0.

Weadd:

Proposition6.4(Sasakiautomorphismgroup).Thereexistsasemisimple LiegroupS of non-compact type, whosecenterΛ isinfinitecyclic,anda2k +1 dimensionalHeisenberggroupsN ,suchthatthereisanalmost directproductdecomposition

Psh (X)0 = (N  U(k)) · S . Moreover,theReeb flowT of X isthecenterof N and

T∩ S = (N  U(k)) ∩ S = Λ (∼=Z).

Proof. ForthehomogeneousSasakimanifoldX,theexactsequenceofgroups(6.1) associatedto theReeb fiberingforX inducesacentralextension

1→ T → (N  U(k)) · S → (Cφ k U(k)) × S0→ 1 , (6.3)

wheretheReebflowT =R mapsto thecenterofN .Here

S≤ Psh (X)0

isasemisimplenormalsubgroupofnon-compacttype,whichiscoveringS0underφ.Inparticular,sinceS

isanormalsubgroup ofPsh (X)0,it commutes withN  U(k).(Notealso thatU(k) actsfaithfullyonN

andmapstoamaximalcompactsubgroupofAut(N ).) Thekernel Λ ofthecoveringS→ S0 is

ker φ∩ S = R ∩ S = (N  U(k)) ∩ S .

Moreover, Λ isthe center of S, since S0 has trivialcenter. We claim that Λ is an infinite cyclic discrete

subgroupand,inparticular,itisauniformsubgroupinT .Indeed,inthelightofCorollary4.5,thereexists aunique contractible homogeneous Sasaki manifold X1 with Kähler quotient Ck, and similarly aunique

homogeneousSasakimanifold X2 with Kähler quotientD.Let Ti ≤ Psh (Xi) denotetheReebflow ofXi.

Then(seeSection2.3,Corollary2.7)thejoinX1∗X2isahomogeneousSasakimanifoldwithKählerquotient

Ck× D. Accordingtotheabove,Psh (X

1)=N  U(k),and byProposition6.9belowPsh (X2)0= T2· S,

whereS isaclosedsemisimple LiesubgroupcoveringS0 with infinitecyclickernelΛ= Z(S),T2∩ S = Λ.

ItfollowsthatPsh (X)0= Psh (X

1)∗ Psh (X2)0hastheclaimedproperties.  6.2. ApplicationtolocallyhomogeneousSasaki manifolds

Weconsider acompactasphericalSasaki manifoldoftheform

M = Γ\X ,

whereX is acontractibleSasaki manifold andΓ isatorsion freediscrete subgroupcontained inPsh (X). IfX isahomogeneousSasakimanifoldthenM iscalled alocallyhomogenousSasaki manifold.

(26)

Theorem6.5. Supposethat X isacontractible homogeneousSasaki manifoldandthat X admits adiscrete subgroup ofisometrieswith

Γ\X

compact. Then:

(1) TheKähler quotientofX isaKähler product

W =Ck× D ofaflat spaceCk with asymmetricboundeddomainD.

(2) LetT denotetheReebflow ofX. ThenΓ∩ T isadiscreteuniformsubgroupof T (inparticular,Γ∩ T

isisomorphic toZ).

(3) Let φ: Psh (X)→ Isomh(W ) betheBoothby-Wang homomorphismin (6.1).Thenthesubgroup φ(Γ) ≤ Isomh(W )

isdiscreteanduniform.

Corollary 6.6. Let M = X/Γ be a compact locally homogeneous Sasaki manifold. Then M is a Sasaki manifold with compact Reeb flow T = S1. Moreover, a finite covering space of M is a regular Sasaki manifold.

Remark 6.7. Certain linear flows on the sphere give rise to irregular compact Sasaki manifolds, cf. [11, Chapters2,7].

ForthepreparationoftheproofofTheorem6.5weshall recallsomestandardfactsabout:

Levidecompositionanduniformlattices. Ingeneralaconnected LiegroupG admitsaLevidecomposition G = R · S ,

where R is the solvable radical of G and S is asemisimple subgroup. Let K denotethemaximal compact and connected normal subgroup of S,then put S0 =G/(RK). Note thatS0 is semisimpleof non-compact

type.Wewillneedthefollowingfact(see[28,Chapter 4,Theorem 1.7],forexample):

Proposition6.8. LetΓ beauniformlatticeinG.Thentheintersection(RK)∩ Γ isauniformlattice inRK. In particular,intheassociatedexact sequence

1 −−−−→ RK −−−−→ G −−−−→ Sν 0 −−−−→ 1, (6.4) theimage ν(Γ) isa uniformlatticein thesemisimpleLie groupS0.

Remarkinaddition thefollowing:Asthesubgroup ν(Γ)≤ S0 isdiscrete anduniform,and sinceS0 has

nocompactnormalconnectedsubgroup,theimageofν(Γ) is aZariskidensesubgroupintheadjointform ofS0(byBorel’sdensitytheorem,cf.[24]).ConsideranyconnectedclosedsubgroupG ofS0,whichcontains ν(Γ).ThenG isuniformandZariski-dense.ThisimpliesthatG = S0.

Nowweareready forthe

Références

Documents relatifs

In fact, on a manifold with a cylindri- cal end, the Gauss–Bonnet operator is non-parabolic at infinity; harmonic forms in the Sobolev space W are called, by Atiyah–Patodi–Singer, L

For k > p, L −k minus the zero section admits a gradient expanding soliton such that the corresponding K¨ ahler-Ricci flow g(t) converges to a Ricci-flat K¨ ahler cone metric

Given a 3-manifold represented by a simplicial complex (a tetrahedral mesh) M, our goal is to compute its fundamental group π 1 (M), represented as generators and rela- tions hS;

In this paper we have presented two simple necessary conditions for existence of a Ricci–flat K¨ahler cone metric on a given isolated Gorenstein singularity X with specified Reeb

In the global theory with irreducible automorphic representations, if we fix the archimedean data (the “weight”) then the space of invariant vectors under a compact open subgroup of

Altogether (s, p) is the modification of the semidirect product of an abelian ideal and a normal 7-algebra. It is now very easy to finish the proof of the algebraic main theorem.

— Let M", n^3, be a compact manifold without boundary, having a handle decomposition and such that there exists a basis of Hi (M", R) represented by imbedded curves

This generalises both Deligne et al.’s result on the de Rham fundamental group, and Goldman and Millson’s result on deforming representations of K¨ ahler groups, and can be regarded