• Aucun résultat trouvé

Ecological intensification of banana cropping systems. Accompanying plants and agro-ecological services

N/A
N/A
Protected

Academic year: 2021

Partager "Ecological intensification of banana cropping systems. Accompanying plants and agro-ecological services"

Copied!
31
0
0

Texte intégral

(1)

Ecological intensification of banana cropping systems

-

Accompanying plants and agro-ecological services

RTB Workshop - Abidjan

Marc Dorel - Charles Meynard - Raphaël Achard CIRAD-UR 26

(2)

Adapted from M. Griffon 2013 Natural Ecosystems Intensive conventional systems high inputs Ecologically intensified systems Diversification Simplification Technical Management Natural dynamics Traditional systems low inputs Ecological intensification

(3)

Banana

(4)

Accompanying plants

Services

Régulation - Support

- Pests control

- Soil fertility improvement

Banana Service Cash-crop production Technical system - Cultural practices - arrangement of species in space and time

Agro-system representation

Environment (soil – climate)

(5)

Expected agro-ecological services

. Pest control (nematode, weevil borer,….)

. Weed control

. Soil fertility improvement Soil structure

Nutrients bio-availability

. Effect on production

Low competitiveness with banana for resources uptake

Accompanying plants can provide agro-ecological services => “Service plants”

(6)

1. Installation of cover-crop competing with weeds during fallow period

H2O, N, K, Ca, Mg,..

Use of service plants for weed control

Competition for light

(7)

Highly competitive plants . Brachiaria

Rapid covering

High root density and biomass

. Pueraria, Neonotonia, Mucuna

Rapid covering climbing habit

These plants also compete with banana => Use only during fallow period

(8)

2. Installation of cover-crop under banana canopy

. Cover-crop competing with weeds but not with banana

Low size or creeping plant Low root density

(9)

0 5 10 15 20 25 30 35 60 à 70 cm 50 à 60 cm 40 à 50 cm 30 à 40 cm 20 à 30 cm 10 à 20 cm 0 à 10 cm nombre d'impact/dm2 Banana / Paspalum Banane Paspalum 0 5 10 60 à 70 cm 50 à 60 cm 40 à 50 cm 30 à 40 cm 20 à 30 cm 10 à 20 cm 0 à 10 cm nombre d'impacts/dm2 Banana / Arachis Banane Arachis Root density

(10)

Banana/cover-crop competition

Bunch fruits number

Banana/ Arachis 189 A Banana /Bare soil 172 AB Banana/Paspalum 143 B 0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 23/12/11 11/02/12 01/04/12 21/05/12 10/07/12 29/08/12 18/10/12 07/12/12 P se udo -s tem g ir th ( cm) Banane growth (1st cycle) Banana/Arachis Banane/bare soil Banana/Paspalum

(11)

30 35 40 45 50 55 60 65 70 16/01/12 14/02/12 14/03/12 17/04/12 16/05/12 12/06/12 Banana nitrogen nutrition indicator

(SPAD chlorophyll-meter) 1st cycle

(12)

. Shade tolerance

=> Plants with optimal growth at low light

intensity

Banana on Impatiens cover

0 20 40 60 80 100 120 140 0 10 20 30 40 50 0% Ombrage 60%Ombarge 90% Ombrage Biomasse fraiche (g/plte)

Jours après reprise

a)

60 % shading =

under banana canopy light intensity

(13)

Banana on Arachis Pintoï cover

Shade tolerance

=> Adaptability to low light intensity

0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 0% d'ombrage 60% d'ombrage 90% d'ombrage Jours après reprise Biomasse fraiche/plante (g) a) Effect of shading on Arachis Pintoï growth

60 % shading =

(14)
(15)

1. Sanitation during fallow period

Use of service plants for plant-parasitic nematodes regulation

Installation of cover-crop non-host of banana nematodes

(16)

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 C ro ta la ri a Pa l. Di gi ta ri a Dec . Pa sp al u m N o t. C ro ta la ri a Ret. N e o n o to n ia W ig . Pu e ra ri a Ph a. Ri z SB T 1 C ro ta la ri a Za n . Ac ac ia Aur. M o ri n ga C aj an u s C . G u ad C ro ta la ri a Ju n . Ta ge te s Pa t. C ro ta la ri a Sp e . Ri ci n u s C o m. Impa ti e n s N e e m G lir ic id ia S e p . B ra ch ia ri a Dec . El e u si n e C o r. sa me La o s cc C yn o d o n Da c. Ri z SBT 17 5 M ac ro p ti liu m At r. Pa n ic u m M ax. B ra ch ia ri a Ruz . sa me La o s cm Ar ac h is P. G u ad Axo n o p u s Aff. Sty lo sa n th e s G u i. Ri z IRA T 1 7 7 Do lic h o s La b . C e n tr o se m a Pa s. Se sb an ia S e r. C aj an u s ka ki 1 M ac ro p ti lo n a axil ai re Ar ac h is P. Am ar V ig n a In g. M o n d Sa rr as in So rg h o p ap e ti e r M s C ri sta l V ig n a In g. Da v V ig n a In g. C N C So rg h o M u sl B al V ig n a In g. U4 6 2 So rg h o BF80 C aj an u s C . M an d V ig n a In g. S PLM Log d u t au x d e mul ti p lic ati on

Multiplication rate of nematodes (Radopholus Similis) by cover-crops

(17)
(18)

Nematode-free plants on nematode-free soil

(19)

3. Favoring nematodes predation

Comparison of free-living soil nematodes communities in :

• Bare soil

(20)

Djigal et al. 2011  Cover-crops increase predators populations

Nb. / 100g of soil

Carnivores & omnivores

BS SC PN NW PP SG 0 100 200 300 400 500 BS: Bare Soil SC: Spontaneous Cover PN: Paspalum N. NW: Neonotonia W. PP: Pueraria P. SG: Stylosanthes G.

(21)

Effect of cover-crops on weevil-borer control CINHP / G . Mc Co rm ac k Cosmopolites sordidus

(22)

In soil litter general predators contribute

to weevil borer control:

• Ants

• Earwigs…

Camponotus E. caraibea

(23)

Cover-crops increase predators abundance

Mollot et al. 2012

Site 1 Site 2 Bare soil

B. decumbens + C. dactylon cover

Captures of ants Solenopsis geminata 5 times more ants in plots with cover-crops

(24)

Predators increase the predation rate of weevil borer eggs

Site 1 Site 2

Predation rate by ants Predation rate of weevil borer eggs by ants

2 to 7 times more predation in plots with cover-crops Bare Soil

B. decumbens + C. dactylon cover

(25)

Crotalaria:

. Atmospheric N2 fixation

=> Symbiosis with Rhizobium

. Increase of P bioavailability

Mycorrhiza

Root nodules

Use of service plants to improve nutrients recycling and bioavailability

(26)

Neonotonia Wigthii => cover-crop with

deep root system (tap root)

Banana

Sub-horizontal root system

Use of service plant to improve nutrients recycling and bioavailability

(27)

C/N et mineral nitrogen release Species C/N Stylosanthes G. 16 Pueraria P. 18 Banana 66 Crotalaria 29 Cajanus 23 Neonotonia W. 14 Brachiaria 90 Paspalum N. 33

(28)

Brachiaria root system

Earthworms, ants, Termites

Biological prosity

1. Action of roots

2. Indirect action : favoring macro-fauna (earthworms,

ants, termites,…) involved in soil structure building

(29)

. Biological soil structure

=> Tubular porosity (root path,… )

=> Aggregates created by biological activity

=> Better stability than structure created by soil tillage

Dorel et al. 2010 2 2,2 2,4 2,6 2,8 3 3,2 3,4 0 2 4 6 8 10 V o id In d ic e

Months after plantation

Soil porosity

No-Till under cover soil

(30)

Installation of shade tolerant cover-crop

Banana plantation on the cover -crop

Crotalaria / Brachiaria

Arachis Pintoï

Banana / Arachis Pintoï

Fallow : 12 months

Soil fertility improvement Sanitation (pest

suppression)

(31)

Thank you for your

attention

Références

Documents relatifs

La question des liens entre engagement associatif et politisation renvoie à deux angles d’approche complémentaires, celui des effets à moyen et long terme de l’engagement

If such a system has a cycle, then the explicit form of its general integral of motion enables us to describe this cycle as a zero-level set of the square of this integral function,

The state-of-the-art approach for locating crops and/or weeds in precision agriculture images (Milioto et al., 2018) is the use of semantic segmentation algorithms, i.e.,

Little dissemination outside pilot intervention areas Substantial abandonment in pilot intervention areas on the completion of projects ABP: Agro-Biodiversity Project; AGPC:

– climate regulating services, with work on carbon sequestration in agroforestry systems, as also emissions of other greenhouse gases (Hergoualc’h et al., 2012); – regulating

CABEP Center for Agricultural Biology and Environment Protection Vietnam Research CABI Centre for Agriculture and Biosciences International International Research CANSEA

The companion modelling approach was created to treat the management of renew- able natural resources as the management of a complex system. This form of collective action,

Pour notre part, nous allons parler des métabolites secondaires les plus distribués dans les différentes espèces de la famille et qui sont les alcaloïdes, les coumarines, les