• Aucun résultat trouvé

DISORDER AS PROJECTION FROM IDEAL, CURVED SPACE

N/A
N/A
Protected

Academic year: 2021

Partager "DISORDER AS PROJECTION FROM IDEAL, CURVED SPACE"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225206

https://hal.archives-ouvertes.fr/jpa-00225206

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

DISORDER AS PROJECTION FROM IDEAL,

CURVED SPACE

N. Rivier, A. Lawrence

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C8, supplément au n°12, Tome 46, décembre 1985 page C8-409

DISORDER AS PROJECTION FROM I D E A L , CURVED SPACE

N. R i v i e r and A. Lawrence

Blaskett Laboratoryj Imperial College, London, SW7 2BZ, U.K.

Résumé - Le concept (Kléman et Sadoc) d ' un matériau amorphe comme cristal dans un espace courbe idéal et projeté dans notre espace euclidien ordinaire, incorpore plusieurs de ses propriétés structurelles, mais ou se trouve le désordre? Nous démontrons ici que le désordre correspond à un arbitraire local dans la projection, un pivot aléatoire, et que des desinclinaisons de 2TT apparaissent naturellement comme sources d'incompatabilitê dans l'espace euclidien. Cet arbitraire est une invariance de jauge. Ce fait relie la méthode de projection à d'autres descriptions de la structure du verre comme continu élastique sans symétrie, ou comme un matériel invariant de jauge, par Duffy et l'un d'entre nous. Il suggère aussi une interprétation plus souple de la théorie de l'élasticité classique.

Abstract - Kleman and Sadoc's concept of an amorphous material as a crystal in some curved, ideal space, projected into our ordinary Euclidean space, has many attractive features, but where does disorder come in? We show that disorder corresponds to a specific local arbitrariness in the projection (random pivot), and that

(2TT) disclinations occur naturally as cores of incompatibility in Euclidean space. This arbitrariness is a gauge invariance. The projection method is thereby related to other descriptions of the structure of glass, as an elastic continuum (without genera-tive symmetry), or as a gauge-invariant material, by Duffy and one of us. It also suggests a broader interpretation of the classical theory of elasticity.

I - STRUCTURE OF GLASS BY PROJECTION METHOD

In 1979 Kleman and Sadoc fl] suggested that the structure of an amorphous material could be represented as a crystal in some ideal,

curved space, projected into our ordinary, Euclidean space |R3. This

idea gives a direct geometrical interpretation of frustration, i.e. competition between the requirements of best possible local packing of atoms [2] (corresponding in metallic glasses to combining tetrahedra or icosahedra together in curved space to form a polytope) and

(Euclidean) space-filling. When dealing with covalent glasses, one should replace the word "best" by "most probable" local arrangement of tetrapods, in order to account for entropy.

Projection from curved to Euclidean space means decurving. This is done by (disclination) lines, as can be easily seen by partitioning space into simplices (e.g. regular tetrahedra of 4 atoms) and noticing that it is their common edge which carries the mismatch (5.1 such edge-sharing tetrahedra would fill a region of Euclidean space). This is

identical, in one less dimension, to Regge's £3; ch 4 2] skeleton

(3)

C8-410 J O U R N A L D E PHYSIQUE

geometry i n g e n e r a l r e l a t i v i t y . 'That l i n e s a r e an e s s e n t i a l i n g r e d i e n t of t h e s t r u c t u r e of g l a s s h a s been r e c o g n i s e d i n d e p e n d e n t l y [4]

.

P r o j e c t i o n s h o u l d somehow map t h e g e n e r a t i v e homogeneity of t h e

c r y s t a l i n c u r v e d s p a c e i n t o t h e o v e r a l l , n o n - g e n e r a t i v e homogeneity of t h e random s t r u c t u r e i n E u c l i d e a n s p a c e . Sadoc [ 5 ] and Nelson [6],

i n t h e method's g r e a t e s t triumph t o d a t e , have d e s c r i b e d a l l t e t r a - h e d r a l l y c l o s e - p a c k e d ( T C P ) o r Frank-Kasper p h a s e s (Laves, A 1 5 e t c . ) by p r o j e c t i o n op p o l y t o p e s , a l t h o u g h a l l t h e s e p h a s e s a r e c r y s t a l l i n e . S e t h n a [ 7 ] models b l u e p h a s e s i n c h o l e s t e r i c l i q u i d c r y s t a l s by con- tinuum e l a s t i c i t y w i t h a uniform d e n s i t y of d i s c l i n a t i o n s of i n f i n i t e s i - mal magnitude, b u t t h e l o c a l s t r u c t u r e , which imposes t h e f r u s t r a t i o n i n t h e f i r s t p l a c e , i s l o s t . F i n a l l y , i n Mosseri and S a d o c ' s [8] h i e r a r - c h i c a l d e c u r v i n g , t h e end p r o d u c t i s a q u a s i c r y s t a l w i t h long-range o r i e n t a t i o n q l o r d e r and Bragg peaks. A l l of t h e s e a r e examples of f r u s t r a t i o n w i t h o u t d i s o r d e r . We s h a l l prove h e r e , by u s i n g t h e p r o j e c t i o n method, t h a t t h e n o n - g e n e r a t i v e homogeneity i s a gauge, o r l o c a l i n v a r i a n c e of t h e d i s o r d e r e d s t r u c t u r e , a r e s u l t which h a s been h i t h e r t o no more t h a n a j u s t i f i a b l e working h y p o t h e s i s [ 9 , 1 0 ]

.

I1

-

DISORDER AS RANDOM PIVOT

I n o r d e r t o u n d e r s t a n d how t o c a r r y o u t t h e p r o j e c t i o n , suppose we wish t o i m p r i n t t h e s u r f a c e of a f o o t b a l l , complete w i t h seams, on a p l a n e

( o f i n f i n i t e e x t e n t ) i n a c o n s i s t e n t manner. A n a t u r a l way t o b e g i n would be t o r o l l t h e b a l l a l o n g one o f i t s seams u n t i l a j u n c t i o n

between t h r e e seams i s reache-d, where an a r b i t r a r i n e s s i s i n t r o d u c e d a s one i s f a c e d w i t h a c h o i c e of d i r e c t i o n s i n which t o proceed. Hence a p i v o t motion i s r e q u i r e d , t o r e p e a t t h e p a t t e r n c o n s i s t e n t l y . I n f a c t , a t any p o i n t d u r i n g t h e p r o j e c t i o n , a p i v o t c a n be added which i s a r b i t r a r y e x c e p t f o r t h e r e q u i r e m e n t of s a t i s f y i n g c o m p a t i b i l i t y c o n d i t i o n s .

The seam c o r r e s p o n d s t o t h e l o c a l frame ( t e t r a p o d , t e t r a h e d r o n , s h o r t r a n g e o r d e r ) i n g l a s s . I t must be mapped i n t o E u c l i d e a n s p a c e (which

i s t a n g e n t t o t h e c u r v e d s p a c e ) i n a c o m p a t i b l e f a s h i o n . A p i v o t ( f r a m e r o t a t i o n , o r r o t a t i o n of t h e t a n g e n t p l a n e ) i s n e c e s s a r y t o g u a r a n t e e c o m p a t i b i l i t y . D i s o r d e r i m p l i e s t h a t t h i s p i v o t i s random and i t s a r b i t r a r i n e s s i s a gauge i n v a r i a n c e . P r o j e c t i o n from curved s p a c e i m p l i e s t h a t frame o r i e n t a t i o n i n t h e t a n g e n t p l a n e c a n n o t be d e f i n e d u n i q u e l y . P h y s i c s must b e i n d e p e n d e n t of such a r b i t r a r i n e s s and i n v a r i a n t under l o c a l r o t a t i o n o f t h e t a n g e n t frame.

P r o j e c t i o n a l s o i m p l i e s d i s t o r t i o n , and hence s t r a i n , and c a n be r e l a t e d t o c l a s s i c a l e l a s t i c i t y t h e o r y . I n d e e d , b o t h t h e o r i e s a r e n a t u r a l mappings between s p a c e s w i t h frames, t h e c u r v e d s p a c e c o r r e s p o n d i n g t o t h e a c t u a l , s t r a i n e d c o n f i g u r a t i o n of t h e e l a s t i c s o l i d , c o m p a t i b l e w i t h g l o b a l boundary c o n d i t i o n s (which h a s E u l e r o r holonomic c o - o r d i n a t e s ) and t h e t a n g e n t s p a c e i n t o which i t i s mapped c o r r e s p o n d i n g t o t h e l o c a l r e l a x e d c o n f i g u r a t i o n s of t h e s o l i d (which h a s non-holonomic o r Lagrange c o - o r d i n a t e s ) . A c o m p a t i b l e frame must r e t u r n t o t h e same o r i e n t a t i o n a f t e r c i r c u m n a v i g a t i o n , modulo an e l e m e n t of t h e s p a c e group. I n g l a s s t h e s p a c e group i s t r i v i a l , s o t h a t o n l y r o t a t i o n s by 0 o r 2 % ( 2 W -

d i s c l i n a t i o n s ) a r e a l l o w e d

-

t h e s e a r e a l g e b r a i c a l l y i d e n t i c a l t o odd l i n e s [ 4 , 1 0 ] and a r e t h e s o u r c e s of s t r a i n .

I11

-

THEORY OF SURFACES

The m a t h e m a t i c a l framework f o r t h e p r o j e c t i o n method i s p r o v i d e d by t h e t h e o r y of s u r f a c e s [ 3 , c h . 2 1 1

.

There a r e two a l t e r n a t i v e t r e a t m e n t s :

(4)

T h i s i s c h a r a c t e r i s e d by a c o n n e c t i o n ,

r

,

r e l a t i n g f r a m e s a t d i f f e r - e n t p o i n t s , and t o r s i o n and c u r v a t u r e (which measure t h e d e n s i t y of d i s l o c a t i o n s and d i s c l i n a t i o n s ) a r e e x p r e s s e d d i r e c t l y i n t e r m s o f t h i s c o n n e c t i o n .

( b ) E x t r i n s i c ( G a u s s , C o d a z z i , W e i n g a r t e n )

.

The s u r f a c e i s embedded i n

R 3

( c o n s i d e r i n g j u s t t h e 2 D c a s e f o r t h e moment) and c h a r a c t e r i z e d by t h e s e c o n d f u n d a m e n t a l q u a d r a t i c form t e n s o r

where e-. l i e s i n t h e t a n g e n t p l a n e a n d

n

i s t h e normal t o t h e s u r f a c e i n t h e embedding s p a c e

R3.

The two t r e a t m e n t s a r e l i n k e d by ~ a u s s ' e ~ u a t i o n ( i i i ) , s t a t i n g t h a t c u r v a t u r e s o b t a i n e d i n e i t h e r ( a ) o r ( b ) a r e i d e n t i c a l . L e t

Z

b e t h e c u r v e d s u r f a c e , T i t s t a n g e n t p l a n e a t a p o i n t P , w i t h a n a t u r a l t a n g e n t frame

ed

,

a n d Q i t s normal a t P ( s e e f i g . ) F i g . S u r f a c e

x,

t a n g e n t p l a n e T, and embedding When embedded i n

lR3

t h e s u r f a c e i s g i v e n by

r

( x d )

-

Then

e4

-

=

,

A,

i s t h e n a t u r a l t a n g e n t frame a n d i t s v a r i a t i o n i n t h e d i r e c t i o n i of

R3

i s g i v e n by t h e Gauss-Weingarten e q u a t i o n where

I

' i s t h e c o n n e c t i o n . Note t h a t t h e r e a s o n f o r t h e u n c o n v e n t i o - n a l d i s t i n c t i o n between Greek i n d i c e s , l a b e l l i n g t h e frame {Qc

(5)

C8-412 JOURNAL

DE

PHYSIQUE

The main e q u a t i o n s o f s u r f a c e t h e o r y a r e i v e n below. T h e i r g e n e r a l i s a t i o n t o

3

-space embedded i n

fi4

i s s t r a i h t f o r w a r d

( a l t h o u g h l e s s e a s i l y v i s u a l i s e d ! )

-

s i m p l y r e p l a c e ' + by

"r

and l e t O( = 1 , 2 , 3 [ 3 7

.

Codazzi e q u a t i o n ( c o m p a t i b i l i t y a u t o m a t i c i n t h e f o r m a l i s m ) Gauss' e q u a t i o n ( r e l a t i n g i n t r i n s i c t o e x t r i n s i c c u r v a t u r e ) which, on s u b s t i t u t i o n , c a n b e w r i t t e n e x p l i c i t l y a s For a 20 s u r f a c e embedded i n

R3

t h e n t h i s c a n be w r i t t e n a s which i s gauge i n v a r i a n t under r o t a t i o n of t h e t a n g e n t p l a n e ( c . f . B = c u r l

&

i n SO ( 2 ) gauge t h e o r i e s )

.

-

E q u a t i o n ( i v ) i s s t i l l v a l i d i n 3D (embedded i n R4 ) and

i s SO(3) gauge c o v a r i a n t ( c f F i j i n Yang-Mills gauge t h e o r i e s )

.

The t h e o r y h a s m a n i f e s t gauge i n v a r i a n c e . I t s l i n k s w i t h e l a s t i c i t y t h e o r y [ l o ] and w i t h m e a s u r a b l e q u a n t i t i e s l i k e s t r a i n a r e e s t a b l i s h e d t h r o u g h

r

and Gauss' e q u a t i o n . I V

-

CONCLUSIONS D i s o r d e r i s SO(3) gauge i n v a r i a n c e . I t s s o u r c e s a r e 2 r t - d i s c l i n a t i o n l i n e s which a p p e a r n a t u r a l l y i n E u c l i d e a n s p a c e a s v e s t i g e s of t h e c u r v e d s p a c e , i n t r o d u c e d t o r e p r e s e n t f r u s t r a t i o n . They c a r r y c u r v a - t u r e , a r e f r o z e n a t random, t h e i r d e n s i t y c o r r e s p o n d s t o t h e c u r v a t u r e of Kleman and S a d o c ' s i d e a l s p a c e , and t h e y a r e r e s p o n s i b l e f o r t h e n o n - c o l l i n e a r i t y of l o c a l r e f e r e n c e f r a m e s e " . Here i s t h e paradox of qauge i n v a r i a n c e : f r a m e s a r e e s s e n t i a l t o e s t a b l i s h t h e p r o j e c t i o n and j u s t i f y f r u s t r a t i o n , b u t t h e i r a c t u a l o r i e n t a t i o n i s p h y s i c a l l y i r r e l e v a n t . A s we have s e e n , t h e e x t r i n s i c f o r m u l a t i o n y i e l d s gauge i n v a r i a n c e w h i l s t t h e i n t r i n s i c f o r m u l a t i o n r e l a t e s it t o m e a s u r a b l e e l a s t i c i t y . The l i n k between t h e two f o r m u l a t i o n s i s t h r o u g h c u r v a t u r e (Gauss' e q u a t i o n ( i i i ) ) , which a l s o i n d i c a t e s t h a t 2 T - d i s c l i n a t i o n s a r e e s s e n t i a l i n g r e d i e n t s i n g l a s s . T h i s e n t i r e l y r e c o n c i l e s t h e p r o - j e c t i o n method C1

]

w i t h two o t h e r t h e o r i e s o f g l a s s by Duffy and one of u s : a m a n i f e s t l y gauge i n v a r i a n t f o r m u l a t i o n [ g ] and a c l a s s i c a l e l a s t i c i t y t h e o r y , i n c l u d i n g d i s c l i n a t i o n s [I 0,11]. ( D i s c l i n a t i o n s can o c c u r i n 3D g l a s s e s b e c a u s e t h e i r s t r a i n i s s c r e e n e d by d i s -

(6)

anholonomic and o n l y gauge c o v a r i a n t .

F i n a l l y , t h e p r o j e c t i o n method [ I

2

s u g g e s t s a new g e n e r a l a p p r o a c h t o e l a s t i c i t y t h e o r y , i n v o l v i n g s o l i s l a r g e enough, o r d i s o r d e r e d enough, f o r g l o b a l boundary c o n d i t i o n s n o t t o permeate t h r o u g h t h e m a t e r i a l . One r e p l a c e s t h e g l o b a l , s t r a i n e d frame by a c r y s t a l i n c u r v e d s p a c e e x p r e s s i n g s t r e s s e s o r f r u s t r a t i o n s i m p l y , and t h e n works, and measures, a s u s u a l i n t h e l o c a l , E u c l i d e a n , r e l a x e d frame.

We would l i k e t o e x p r e s s o u r t h a n k s t o t h e main a u t h o r s [ I , 5 , 6 , 7 , 8 , 1 2 ] of t h e p r o j e c t i o n method f o r i n t r o d u c i n g a s i m p l e , e l e g a n t , i m p o r t a n t and p o t e n t i a l l y u s e f u l i d e a .

REFERENCES

/ I / Kleman, M. and Sadoc, J . F . , J . Physique L e t t r e s

40

(1979) L569 /2/ Sadoc, J . F . , Dixmier, J . and G u i n i e r , A . , J. Non C r y s t . S o l i d s 12 (1973) 4 6

T5/

Misner, C.W., Thorne, K.S., Wheeler, J . A . , G r a v i t a t i o n , W.H. Freeman 1970

/ 4 / R i v i e r , N . , P h i l o s . Mag. 40 (1979) 859

/ 5 / Sadoc, J . F . , J . Physique c t t r e s

44

(1983) L707

/ 6 / Nelson, D . R . , Phys. Rev. L e t t e r s

50

(1983) 983 / 7 / S e t h n a , J . , Phys. Rev. L e t t e r s 51 (1983) 2198

/ 8 / Sadoc, J . F . and Mosseri, R . , H i z r a r c h i c a l I n t e r l a c e d Networks of D i s c l i n a t i o n L i n e s i n Non-Periodic S t r u c t u r e s , t o a p p e a r i n J . Physique / 9 / R i v i e r , N. and Duffy, D.M., J . Physique

43

(1982) 293

Références

Documents relatifs

In the next section, we give the rigorous statements of our main results: well-posedness of the quasi-homogeneous ideal MHD system (1) in the B ∞,r s framework, a continuation

More concretely, on Intel core i7- 3540M with 3.0 GHz×4 processing speed and 7.7 GB RAM running Ubuntu 14.04 64-bit, MATLAB implementation of the proposed metric, given in (16),

In particular the number of edges (resp, faces) of a Voronoi cell surrounding a given point is equal to the number of simplicial cell edges connected to this point.. Moreover, in

We show existence of minimizers under a given topological knot type and develop a regularity theory by analyzing different touching situations.. @ Elsevier,

The purpose of these notes is to give an introduction to some recent aspects of Quantum Field Theory on curved space-times, emphasizing its relations with partial differential

The investigation of the asymptotic behav- ior of stretch lines involves a series of estimates on the length functions of simple closed geodesics and of geodesic laminations

As long as the mapped region remains small (in any case restricted to the northern hemisphere), the configuration on the plane is a rather faithfull image of the geometry on

By comparison to physical space reference solutions and experimental measurements of the literature, it is demonstrated that effects of unsteadiness, strain and curvature are