• Aucun résultat trouvé

MA1112: Linear Algebra II

N/A
N/A
Protected

Academic year: 2022

Partager "MA1112: Linear Algebra II"

Copied!
2
0
0

Texte intégral

(1)

MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad) Lecture 7

Case ϕ

k

= 0

Suppose that ϕ is a linear transformation of a vector space V for which ϕk = 0. We shall adapt the argument that we had fork=2to this general case. We assume thatkis actually the smallest power of ϕ that vanishes, so thatϕk−16=0.

Let us put, for eachp,Np=ker(ϕp). Of course, we haveNk=Nk+1=Nk+2=. . .=V.

We shall now construct a basis of V of a very particular form. It will be constructed in ksteps. First, we find a basis ofV=Nk relative toNk−1. Lete1, . . . ,es be vectors of this basis.

The following result is proved in the same way as the one from the previous class:

Lemma 1. The vectors e1, . . . , es,ϕ(e1), . . . ,ϕ(es)are linearly independent relative toNk−2. Proof. Indeed, assume thata1e1+. . .+ases+b1ϕ(e1) +. . .+bsϕ(es)∈Nk−2.

Sinceei∈Nk, we haveϕ(ei)∈Nk−1, so

a1e1+. . .+ases∈−b1ϕ(e1) −. . .−bsϕ(es) +Nk−2⊂Nk−1,

which means thata1=. . .=as=0. Thus,

ϕ(b1e1+. . .+bses) =b1ϕ(e1) +. . .+bsϕ(es)∈Nk−2,

sob1e1+. . .+bses∈Nk−1,and we deduce thatb1=. . .=bs=0, thus the lemma follows.

Now we find vectors f1, . . . ,ftwhich form a basis of Nk−1 relative to span(ϕ(e1), . . . , ϕ(es)) +Nk−2. Absolutely analogously one can prove

Lemma 2. The vectors e1, . . . , es,ϕ(e1), . . . , ϕ(es),ϕ2(e1), . . . , ϕ2(es),f1, . . . , ft, ϕ(f1), . . . , ϕ(ft) are linearly independent relative toNk−3.

Proof. Let us assume that

a(1)1 e1+. . .+a(1)s es+a(2)1 ϕ(e1) +. . .+a(2)s ϕ(es) +a(3)1 ϕ2(e1) +. . .+a(3)s ϕ2(es)+

b(1)1 f1+. . .+b(1)t ft+b(2)1 ϕ(f1) +. . .+b(2)t ϕ(ft)∈Nk−3.

We note that

a(2)1 ϕ(e1) +. . .+a(2)s ϕ(es)∈Nk−1, a(3)1 ϕ2(e1) +. . .+a(3)s ϕ2(es)∈Nk−2

b(1)1 f1+. . .+b(1)t ft∈Nk−1, b(2)1 ϕ(f1) +. . .+b(2)t ϕ(ft)∈Nk−2,

1

(2)

so we have a(1)1 e1+. . .+a(1)s es ∈ Nk−1, and hencea(1)1 = a(1)s = 0 since the vectors e1, . . . , es form a relative basis. Thus, we have

a(2)1 ϕ(e1) +. . .+a(2)s ϕ(es) +a(3)1 ϕ2(e1) +. . .+a(3)s ϕ2(es)+

b(1)1 f1+. . .+b(1)t ft+b(2)1 ϕ(f1) +. . .+b(2)t ϕ(ft)∈Nk−3. Now,

a(2)1 ϕ(e1) +. . .+a(2)s ϕ(es)∈span(ϕ(e1), . . . , ϕ(es)), a(3)1 ϕ2(e1) +. . .+a(3)s ϕ2(es)∈Nk−2

b(2)1 ϕ(f1) +. . .+b(2)t ϕ(ft)∈Nk−2,

so b(1)1 f1+. . .+b(1)t ft ∈span(ϕ(e1), . . . , ϕ(es)) +Nk−2, and hence b(1)1 = b(1)t = 0 since the vectorsf1, . . . ,ft form a relative basis. Our original assumption simplifies to

a(2)1 ϕ(e1) +. . .+a(2)s ϕ(es) +a(3)1 ϕ2(e1) +. . .+a(3)s ϕ2(es) +b(2)1 ϕ(f1) +. . .+b(2)t ϕ(ft)∈Nk−3, which can be rewritten as

ϕ(a(2)1 e1+. . .+a(2)s es+a(3)1 ϕ(e1) +. . .+a(3)s ϕ(es) +b(2)1 f1+. . .+b(2)t ft)∈Nk−3, implying

a(2)1 e1+. . .+a(2)s es+a(3)1 ϕ(e1) +. . .+a(3)s ϕ(es) +b(2)1 f1+. . .+b(2)t ft∈Nk−2,

which by the previous lemma and the relative basis property off1, . . . ,ftshows that all the coefficients are equal to zero.

Next we find a basis of Nk−2 relative to span(ϕ2(e1), . . . , ϕ2(es), ϕ(f1), . . . , ϕ(ft)) +Nk−3, etc. We continue that extension process until we end up with a basis ofV of the following form:

e1, . . . , es, ϕ(e1), . . . , ϕ(es), ϕ2(e1), . . . , ϕk−1(e1), . . . , ϕk−1(es), f1, . . . , ft, ϕ(f1), . . . , ϕk−2(f1), . . . , ϕk−2(ft),

. . . , h1, . . . , hp,

where the first line contains several “threads”ei, ϕ(ei), . . . , ϕk−1(ei)of lengthk, the second line — several threads of lengthk−1, . . . , the last line — several threads of length1, that is several vectors fromN1.

Let us rearrange the basis vectors so that vectors forming a thread are all next to each other:

e1, ϕ(e1), . . . , ϕk−1(e1), . . . , es, ϕ(es), . . . , ϕk−1(es), f1, ϕ(f1), . . . , ϕk−2(f1), . . . , ft, ϕ(ft), . . . , ϕk−2(ft),

. . . , g1, . . . , gu.

Relative to that basis, the linear transformationϕhas the matrix made ofJordan blocks

Jl=

0 0 0 0 . . . 0 0

1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

... ... ... . .. . .. ... ... ... ... ... ... . .. 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 1 0

 ,

one blockJl for each thread of lengthl.

2

Références

Documents relatifs

These two threads together contain four vectors, so since our space is 4-dimensional, we have

From our proof, one sees that for computing the Jordan normal form and a Jordan basis of a linear trans- formation ϕ on a vector space V, one can use the following plan:.. • Find

The key point of linear algebra is exactly that: an informed choice of a coordinate system can simplify things quite

We shall temporarily take the out- look which views symmetric matrices in the spirit of one of the proofs from last week, and looks at the associated bilinear forms (and

Today we shall prove various theorems on quadratic forms stated without proof last week..

Intuitively, orthogonal matrices with det(A) = 1 are transformations that can distinguish between left and right, or clockwise and counterclockwise (like rotations), and

We proved that every normal linear transformation admits an orthonormal basis of eigenvectors, so the first part follows.. This theorem can be used to deduce the theorem on

(The degree of the extension is 3, hence the group is cyclic of order 3, hence we just need to find one nontrivial automorphism to