• Aucun résultat trouvé

Rupture risk estimation in thoracic aortic aneurysms

N/A
N/A
Protected

Academic year: 2022

Partager "Rupture risk estimation in thoracic aortic aneurysms"

Copied!
78
0
0

Texte intégral

(1)

Institut Mines-Télécom

Rupture risk estimation in thoracic aortic aneurysms

Prof Stéphane AVRIL (avril@emse.fr)

Eugenie Lamothe Colloquium Series

(2)

Where do I come from?

PARIS

RHONE-ALPS AREA

LYON-SAINT-ETIENNE

Historical site Founded in 1816

Demanget et al., Perrin et al.

(3)

Institut Mines-Télécom

Rupture risk estimation in ATAAs using distensibility measurements

Dr Olfa TRABELSI, Dr Ambroise DUPREY,

Prof Stéphane AVRIL (avril@emse.fr)

(4)

What is an ATAA and why is serious?

dissection

(5)

Institut Mines-Télécom

Epidemiology statistics

5

Incidence : 10.4 per 100 000 persons

Elevated mortality without treatment for acute aortic dissection:

50% in 48 hours / 90% in 3 months BAV patients: ½ develops an ATAA

Stéphane Avril - McGill - Oct 20, 2016

(6)

Risk management

The International Registry of Acute Aortic Dissection (IRAD):

among 591 type A aortic dissection, 59% had a diameter <5.5 cm (Pape, 2007)

5.5 cm

Possible complication Possible

stability

Decision of surgical repair based on a measure if the Maximal Diameter

(7)

Institut Mines-Télécom 7

Recent developments in computational modeling and challenges

Index of Rupture?

Peak Wall Stress

Strength

Stéphane Avril - McGill - Oct 20, 2016

Finite-element modeling

O. Trabelsi, et al, Patient specific stress and rupture analysis of ascending thoracic aneurysms, J. Biomech. (2015).

G. Martufi, et al, Is There a Role for Biomechanical Engineering in Helping to Elucidate the Risk Profile of the Thoracic Aorta?, Ann. Thorac. Surg. 101 (2016) 390–398.

S. Pasta et al., Constitutive modeling of ascending thoracic aortic aneurysms using microstructural parameters, Med. Eng. Phys. 38 (2016) 121–130.

(8)

SAINT-ETIENNE PROTOCOL

31 Patients with ATAA

Preoperative dynamic

imaging

Dynamic CT Scanner

4D MRI

Collection of intraoperative aortic segment

Mechanical inflation tests

Histological Analysis

2014

2016

(9)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 9

Inverse membrane analysis + digital image correlation  stress

& strain reconstruction.

biaxial failure properties

Trabelsi, O., Davis, F.M., Rodriguez-Matas, J.F., Duprey, A., Avril, S. Patient specific stress and rupture analysis of ascending thoracic aneurysms.

Journal of Biomechanics, 2015.

Bulge inflation tests

Blood flow

(10)

Bulge inflation tests

(11)

Institut Mines-Télécom 11

Stress strain analysis in the bulge test

σ

rup

: Rupture stress, λ

rup

: Rupture stretch,

Physiological Stress

Stretch Stretch/Stress Curve

Rupture Stress

Physiological elastic modulus

Ca uchy Stre ss (MPa)

1 1.1 1.2 1.3

Physiological Stretch

1.4 1.5 1.6 1.7

Rupture Stretch

Stéphane Avril - McGill - Oct 20, 2016

(12)

Results

Rupture properties in function of:

Age

Type of test: inflation, axial and circumferential tensile tests

Physiological circumferential modulus E physio

Aortic valve: 8 BAV / 23 TAV

31 patients :

• Mean age 65 (24-80)

• 84% male

• Mean in vivo diameter 54 mm (49-65)

Rupture mode:

• Only Intima/media in 55% of cases, similar to dissection

σ rup and λ rup not correlated with the diameter or the type of

aortic valve

(13)

Institut Mines-Télécom 13

Rupture profiles

50% of aortas r uptured wi th an ang le θ equ al to 9 0 °

Stéphane Avril - McGill - Oct 20, 2016

Bl oo d flow

(14)

(p<0,01)

(p<0,01)

σ rup

λ rup

Age dependence of rupture properties

Corr elation with age

(15)

Institut Mines-Télécom 15

Comparison of mechanical tests

Duprey A, et al. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomaterialia 2016.

Stéphane Avril - McGill - Oct 20, 2016

(16)

Comparison with other studies

0 1 2 3 4 5 6

0 10 20 30 40 50 60 70 80 90 100

σ rup

Age

R.J. Okamoto et al,, Ann. Biomed. Eng. 30 (2002) 624–635.

D.A. Vorp et al,, Ann. Thorac. Surg. 75 (2003) 1210–1214.

C.M. García-Herrera et al., Med. Biol. Eng. Comput. 50 (2012) 559–566.

D.P. Sokolis et al, Med. Biol. Eng. Comput. 50 (2012) 1227–1237 C. Forsell et al, Ann. Thorac. Surg. 98 (2014) 65–71

S. Sugita. Card Eng Tech. 3:1 (2011) 41-51.

J.E. Pichamuthu et al., Ann. Thorac. Surg. 96 (2013) 2147–2154 A. Duprey at al. Acta Biomater 2016)

(17)

Institut Mines-Télécom

Comparison with other studies

Stéphane Avril - McGill - Oct 20, 2016 17

1 1,2 1,4 1,6 1,8 2 2,2

0 10 20 30 40 50 60 70 80 90 100

λ rup

Age

R.J. Okamoto et al,, Ann. Biomed. Eng. 30 (2002) 624–635.

D.A. Vorp et al,, Ann. Thorac. Surg. 75 (2003) 1210–1214.

C.M. García-Herrera et al., Med. Biol. Eng. Comput. 50 (2012) 559–566..

D.P. Sokolis et al, Med. Biol. Eng. Comput. 50 (2012) 1227–1237 C. Forsell et al, Ann. Thorac. Surg. 98 (2014) 65–71

S. Sugita. Card Eng Tech. 3:1 (2011) 41-51.

J.E. Pichamuthu et al., Ann. Thorac. Surg. 96 (2013) 2147–2154 A. Duprey at al. Acta Biomater 2016)

(18)

Rupture risk estimation

Physiological Stress

Stretch Stretch/Stress Curve

Rupture Stress

E

physio

= Physiological elastic modulus

Ca uchy Stre ss (MPa)

1 1.1 1.2 1.3

Physiological

1.4 1.5 1.6 1.7

Rupture Stretch

γ stress = Physiological stress Rupture stress γ stretch = Physiological stretch

Rupture stretch

(19)

Institut Mines-Télécom 19

Age dependence of rupture risks

γ stress γ stretch

Duprey A, et al. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomaterialia 2016.

Stéphane Avril - McGill - Oct 20, 2016

(20)

E physio is correlated to the risk of rupture

MPa MPa MPa MPa

Duprey A, et al. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomaterialia 2016.

(21)

Institut Mines-Télécom 21

Correlation between γ stretch and E physio

Duprey A, et al. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomaterialia 2016.

Stéphane Avril - McGill - Oct 20, 2016

(22)

31 Patient with ATAA

Preoperative dynamic

imaging

Dynamic CT Scanner

4D MRI

Collection of intraoperative aortic segment

Mechanical inflation tests

Histological Analysis

2014

2016

SAINT-ETIENNE PROTOCOL

(23)

Institut Mines-Télécom

Histological interpretation

ATAA enlargement is a consequence of elastin damage

More and more collagen tends to be recruited in the physiological range

Stéphane Avril - McGill - Oct 20, 2016 23

Patient with smallest γ stretch

Patient with largest γ stretch

elast col

M.R. Hill et al,, J. Biomech. 45 (2012) 762–771

(24)

31 Patient with ATAA

Preoperative dynamic

imaging

Dynamic CT Scanner

4D MRI

Collection of intraoperative aortic segment

Mechanical inflation tests

Histological Analysis

2014

2016

SAINT-ETIENNE PROTOCOL

(25)

Institut Mines-Télécom

Distensibility measurements using the dynamic CT scan

D = (A max -A min )/A min /(P max -P min )

E physio = 2R/Dh

Stéphane Avril - McGill - Oct 20, 2016 25

(26)

Correlation between γ stretch and E physio

R² = 0,7709 R² = 0,6959

0,8 0,82 0,84 0,86 0,88 0,9 0,92 0,94 0,96 0,98 1

in vivo in vitro

Linéaire (in vivo) Linéaire (in vitro)

g stretch

E physio (MPa)

(27)

Institut Mines-Télécom 27

Summary

 2 ways of defining rupture:

 PWS – but unknown patient-specific strength

 γ stretch correlated with in vivo distensibility

Stéphane Avril - McGill - Oct 20, 2016

Higher distensibility  less risk because the aneurysm can more easily withstand volume variation

C. Martin et al., Acta Biomater. 9 (2013) 9392–9400

(28)

Future work

Extend the analysis to other patients

Define a threshold for the new risk of rupture

Predict the long-term evolution of this

criterion for small aneurysms using

mechanobiological models

(29)

Institut Mines-Télécom

Acknowledgements

Stéphane Avril - McGill - Oct 20, 2016 29

Funding:

ERC-2014-CoG BIOLOCHANICS

Olfa Trabelsi

Ambroise Duprey

Aaron Romo

Pierre Badel

Frances Davis

Jean-Pierre Favre

Victor Acosta

Jamal Mousavi

Solmaz Farzeneh

Francesca Condemi

Miguel Angel Gutierrez

Oscar Alberto Mendoza

(30)

Inverse characterization of regional, nonlinear and anisotropic properties of arteries

MR Bersi, C Bellini, P Di Achille, K Genovese, JD Humphrey, S Avril

(31)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 31

INTRODUCTION AND RATIONALE:

EXAMPLE OF ATAA PHYSIOPATHOLOGY

Disturbed

hemodynamics

Laminar flow

(32)

POINT OF VIEW OF MECHANOBIOLOGY

Altered mechanics induce biological responses, including gene

expression, protein activation and cell phenotype

(33)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 33

POINT OF VIEW OF BIOMECHANICS

Macroscopic manifestations ultimately dictate the mechanical functionality and structural integrity of the aortic wall

Martufi et al. Biomech. Model.

Mechanobio. pp. 917–928, 2014.

(34)

CHALLENGES AND OBJECTIVES

Fundamentally understand local structure–function relationships in aortic aneurysms.

This requires an approach permitting:

1. To reconstruct the regional distribution of mechanical properties of the aorta during aneurysm growth.

2. To investigate their correlation with the underlying

microstructure and its evolutions.

(35)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 35

APPROACH

1. Experiments

2. Material model

3. Inverse method

(36)

APPROACH

1. Experiments

2. Material model

3. Inverse method

(37)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 37

TENSION – INFLATION OF MICE AORTAS

Gleason, et al. J. Biomech. Eng.

126(6), p. 787, 2004.

Humphrey , Cardiovascular Solid Mechanics, 2002

(38)

MEASUREMENT OF THE RESPONSE USING DIGITAL IMAGE CORRELATION

classical panoramic

(39)

Institut Mines-Télécom

PANORAMIC DIGITAL IMAGE CORRELATION - pDIC

Stéphane Avril - McGill - Oct 20, 2016 39

Genovese et al, CMBBE, 14, p. 213- 237, 2011.

(40)

Full-field strain measurement across the outer surface of the artery

Anterior

Posterior Posterior Anterior

ANT

POST

Circumferential Green Strain

(41)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 41

APPROACH

1. Experiments

2. Material model

3. Inverse method

(42)

CONSTITUTIVE MODEL

Bellini, et al., Ann. Biomed. Eng., 42(3), pp. 488–502, 2014

(43)

Institut Mines-Télécom

CONSTITUTIVE MODEL

Stéphane Avril - McGill - Oct 20, 2016 43

FE implementation

Bellini, et al., Ann. Biomed. Eng., 42(3), pp. 488–502, 2014

(44)

PARAMETERS TO BE IDENTIFIED

(45)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 45

APPROACH

1. Experiments

2. Material model

3. Inverse method

(46)

Inverse approach – traditional approach

Set of materials properties

Resolution of forward problem

Deviation between predictions and measurements minimization

initialization

Identification of

material properties

(47)

Institut Mines-Télécom

Inverse approach – traditional approach

Stéphane Avril - McGill - Oct 20, 2016 47

Set of materials properties

Resolution of forward problem

Deviation between predictions and

measurements minimization

initialization

Identification of material properties 1. Write the weak form of the problem:

𝑅 𝑢, 𝑤, µ = 0 ∀𝑤

2. Discretize and represent as a linear

combination of piecewise bilinear functions 𝑢 = 𝑈 𝑖 𝜑 𝑖 (x)

𝑤 = 𝑊 𝑖 𝜑 𝑖 (x) µ = µ 𝑖 𝜑 𝑖 (x)

3. Implement a finite-element implicit

resolution using the BFGS algorithm

(48)

Inverse approach – traditional approach

Set of materials properties

Resolution of forward problem

Deviation between predictions and measurements minimization

initialization

Identification of material properties

J(µ)= 𝑇 𝑢 − 𝑇(𝑢 𝑒𝑥𝑝 ) 2 + 𝛼 2 𝐵(µ)

Oberai et al., Inverse problems, 19, pp. 297-313, 2003

(49)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 49

Set of materials properties

Resolution of forward problem

Deviation between predictions and measurements minimization

initialization

Identification of material properties

1. Use a gradient based method (steepest descent or BFGS)

2. Need to derive the gradient of J with respect to µ at each iteration. With the adjoint method, this requires the resolution of 2 forward problems

3. Very unstable with hyperelastic models: many risks that the forward problems have a poor convergence

Inverse approach – traditional

approach

(50)

Alternative inverse approach:

the virtual fields method

Set of materials properties

3D estimation of

stresses

Deviation to the principle

of virtual power minimization

initialization

Identification of material properties

Bersi et al., J Biomech Eng, 2016

(51)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 51

A FE model of each artery is built

Each artery is meshed with 5x40x25 hexahedrons

A quasi incompressible Neo-Hookean material is set

The measured displacements are assigned on the nodes of the outer surface as BCs

The Dirichlet problem is solved

3D estimation of

stresses

3D estimation of

strains

Alternative inverse approach:

the virtual fields method

(52)

Set of materials properties

3D estimation of

stresses

Deviation to the principle

of virtual power minimization

initialization

Identification of

material properties Simple application of

the constitutive model for each element

Alternative inverse approach:

the virtual fields method

(53)

Institut Mines-Télécom

We are looking for the material properties at a position x 0 . 2 virtual fields are considered.

1. A local virtual radial “bulge”: u(x) = [f(x-x 0 ) /r 2 ] e r

2. Local virtual axial extension: v(x) = f(x-x 0 ) (z e z –x/2 e x –y/2 e y ) Where f(x-x 0 ) = exp(-||x-x 0 || 2 /d²)

Stéphane Avril - McGill - Oct 20, 2016 53

Deviation to the principle

of virtual power

Alternative inverse approach:

the virtual fields method

Avril et al. J. Biomech. 43 (15), p 2978-2985, 2010 www.camfit.fr

(54)

J =

c

31

,c

32,3

min ,c

34

,𝛼,𝛽 min

c

𝑒

,c

21

,c

22,3

,c

24

J u

𝐴 + J v 𝐵

minimization

2

p 

Linear least-squares Resolution:

Alternative inverse approach:

the virtual fields method

Bersi et al., J Biomech Eng, 2016

(55)

Institut Mines-Télécom

Summary of the inverse approach

Set of materials properties

3D estimation of

stresses

Deviation to the principle

of virtual power minimization

initialization

Identification of material properties

Stéphane Avril - McGill - Oct 20, 2016 55

(56)

RESULTS

1. Validation on control arteries 2. Application to ATAAs

3. Future work on dissected aneurysms

Con tro l

ctio n A T A A

(57)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 57

RESULTS

1. Validation on control arteries 2. Application to ATAAs

3. Future work on dissected aneurysms

Con tro l

Di sse ctio n A T A A

(58)

Local estimation of the quality of the minimization

Bersi et al., J Biomech Eng, 2016

(59)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 59

Examples of identified material parameters

Bersi et al., J Biomech Eg, 2016

(60)

Reconstruction of local strain energies

Bersi et al., J Biomech Eg, 2016

(61)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 61

Reconstruction of local linearized stiffnesses

Bersi et al., J Biomech Eg, 2016

(62)

Validation against traditional stress strain analysis

Bersi et al., J Biomech Eg, 2016

(63)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 63

RESULTS

1. Validation on control arteries 2. Application to ATAAs

3. Future work on dissected aneurysms

Con tro l

Di sse ctio n A T A A

(64)

Study Design

Fibrillin 1 mgR/mgR Fibulin 4 SMC KO

Control

(65)

Institut Mines-Télécom

pDIC measurements

Stéphane Avril - McGill - Oct 20, 2016 65

Fibrillin 1 mgR/mgR Fibulin 4 SMC KO

dorsal

ventral inflation

6852 6913 CS79 CS38

dorsal ventral

𝜆

𝑧𝑖𝑣

= 1.31 𝑂𝐷

𝑚𝑎𝑥

= 3.62 mm

𝜆

𝑧𝑖𝑣

= 1.20 𝑂𝐷

𝑚𝑎𝑥

= 3.15 mm

𝜆

𝑧𝑖𝑣

= 1.43 𝑂𝐷

𝑚𝑎𝑥

= 2.93 mm

𝜆

𝑧𝑖𝑣

= 1.41

𝑂𝐷

𝑚𝑎𝑥

= 3.02 mm

inflation

(66)

Fibrillin 1 mgR/mgR Fibulin 4 SMC KO

Full-Field Thickness Estimation using OCT

(67)

Institut Mines-Télécom

Fibrillin 1 mgR/mgR Fibulin 4 SMC KO

Full-Field Thickness Estimation using OCT

Stéphane Avril - McGill - Oct 20, 2016 67

(68)

• Stored Energy (@ 𝜆 𝑧 𝑖𝑣 and 80 mmHg)

Fibrillin 1 mgR/mgR Fibulin 4 SMC KO

Full-Field Material Parameter Estimation

(69)

Institut Mines-Télécom

• Circumferential linearized stiffness (@ 𝜆 𝑧 𝑖𝑣 and 100 mmHg)

Fibrillin 1 mgR/mgR Fibulin 4 SMC KO

Full-Field Material Parameter Estimation

Stéphane Avril - McGill - Oct 20, 2016 69

(70)

• Axial linearized stiffness (@ 𝜆 𝑧 𝑖𝑣 and 100 mmHg)

Fibrillin 1 mgR/mgR Fibulin 4 SMC KO

Full-Field Material Parameter Estimation

(71)

Institut Mines-Télécom

Fibrillin 1 mgR/mgR

Lower energy on the outer curvature for mgR

The location of ulceration for mouse CS38

Heterogeneity of the strain energy

Stéphane Avril - McGill - Oct 20, 2016 71

(72)

RESULTS

1. Validation on control arteries 2. Application to ATAAs

3. Future work on dissected aneurysms

Con tro l

ctio n A T A A

(73)

Institut Mines-Télécom

Angiotensin-II Infusion Model of AAD

• Male ApoE -/- mice at 16-20 weeks of age surgically implanted with subcutaneous osmotic pump lateral to dorsal midline at mid-scapular region

• Maintained constant infusion of ANG-II at a rate of 1000 ng/kg/min

Anterior Posterior

Aortic Dissection

Dissecting Aortic Aneurysm

Suprarenal Descending Thoracic

Posterior Anterior

Intact Aorta

Stéphane Avril - McGill - Oct 20, 2016 73

(74)

Experimental Approach

Angiotensin-II Infusion Model of AAD

Timeline

Peak in macrophage activity at day 4 with dissection occurring between days 1 and 4 followed by associated remodeling from days 4 to 10.

Day 0 4 6 8 10 12 14 21 28

ANG-II Infusion

IHC showing medial infiltration of macrophages after 48 hours

of treatment

(75)

Institut Mines-Télécom

Material discretization

O

W AD

O

AD L

Wall Lumen

Thrombus

L

L

AD

L

FL

H

AD

O

AD L

B A

Contours of model through planes A and B:

Segmented 3D model: Clipping planes:

Along A: Along B:

Stéphane Avril - McGill - Oct 20, 2016 75

(76)

Optical Coherence Tomography (OCT) data are available from the experiments

Requires further developments of the inverse approach to be employed

Future work

0 °

+90 °

180 ° -90 °

OC T Laser

Merged Cross-Section

x y

(2D)

Male ApoE -/- 21d ANG-II

(77)

Institut Mines-Télécom Stéphane Avril - McGill - Oct 20, 2016 77

SUMMARY

- Inverse approach permitting to reconstruct the regional distribution of mechanical properties of the aorta.

- Towards correlations between mechanical properties and underlying microstructures during aneurysm growth.

- Another step for G&R computational predictions.

- Potential clinical applications of the inverse approach.

(78)

Acknowledgements

Funding:

NIH grants: R01 HL086418, R01 HL105297, U01 HL116323

ERC-2014-CoG BIOLOCHANICS

Matthew R Bersi

Chiara Bellini

Paolo Di Achille

Jay D Humphrey

Katia Genovese

Références

Documents relatifs

Whereas the peak wall stress was shown to estimate patient risk with a higher accuracy, sensitivity, and specificity for patients with abdominal aortic aneurysms (AAAs)

Wall stress analysis and identification of patient-specific material properties of abdominal aortic aneurysms using 4D ultrasound were performed to improve rupture risk

After positions at Arts et Métiers ParisTech (France) and Loughborough University (UK) where he developed the Virtual Fields Methods, Stéphane returned to his

In particular, the analysis of aortic hemodynamics, with the as- sessment of distinguishable intravascular flow features and wall shear stress (WSS) distribution on the luminal

• How patient-specific factors like aging, aortic valve morphology and function, ascending aorta geometry can influence hemodynamics, vascular biology

Davies et al, Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size, Annals of Thoracic Surg, 2002 Stéphane Avril - Santiago Chile - Jan

O. Trabelsi, et al, Patient specific stress and rupture analysis of ascending thoracic aneurysms, J. Martufi, et al, Is There a Role for Biomechanical Engineering in Helping

In order to identify the respective role of biological and physical processes, we address in this article these questions of the localization and growth using a simplified