• Aucun résultat trouvé

No Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity

N/A
N/A
Protected

Academic year: 2021

Partager "No Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01701549

https://hal.archives-ouvertes.fr/hal-01701549

Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

regulation of protein transport and the maintenance of

axonal identity

Christophe Leterrier, Bénédicte Dargent

To cite this version:

Christophe Leterrier, Bénédicte Dargent. No Pasaran! Role of the axon initial segment in the

regula-tion of protein transport and the maintenance of axonal identity. Seminars in Cell and Developmental

Biology, Elsevier, 2014, 27, pp.44 - 51. �10.1016/j.semcdb.2013.11.001�. �hal-01701549�

(2)

SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx

ContentslistsavailableatScienceDirect

Seminars

in

Cell

&

Developmental

Biology

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / s e m c d b

Review

No

Pasaran!

Role

of

the

axon

initial

segment

in

the

regulation

of

protein

transport

and

the

maintenance

of

axonal

identity

Christophe

Leterrier

,

Bénédicte

Dargent

AixMarseilleUniversité,CNRS,CRN2MUMR7286,13344MarseilleCedex15,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Available online xxx Keywords: Axoninitialsegment Neuronalpolarity Neuronaltransport Proteintraffic Diffusionbarrier AnkyrinG Cytoskeleton

a

b

s

t

r

a

c

t

Thetransmissionofinformationinthebraindependsonthehighlypolarizedarchitectureofneurons. Anumberofcellulartransportprocessessupportthisorganization,includingactivetargetingof pro-teinsandpassivecorrallingbetweencompartments.Theaxoninitialsegment(AIS),whichseparatesthe somatodendriticandaxonalcompartments,hasakeyroleinneuronalphysiology,asboththe initia-tionsiteofactionpotentialsandthegatekeeperoftheaxonalarborization.Overtheyears,theAISmain componentsandtheirinteractionshavebeenprogressivelyunraveled,aswellastheirroleintheAIS assemblyandmaintenance.Twomechanismshavebeenshowntocontributetotheregulationofprotein transportattheAIS:asurfacediffusionbarrierandanintracellulartrafficfilter.However,amolecular understandingoftheseprocessesisstilllacking.IntheviewofrecentresultsontheAIScytoskeleton structure,wewilldiscusshowabetterknowledgeoftheAISarchitecturecanhelpunderstandingitsrole intheregulationofproteintransportandthemaintenanceofaxonalidentity.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1. Introduction... 00

2. AISstructureandcomponents... 00

2.1. Ankyrin,spectrinandactin ... 00

2.2. Membrane-partnersofankG... 00

2.3. RegulatedcomponentinteractionsattheAIS... 00

2.4. LinkbetweenankGandmicrotubules... 00

3. AISassemblyandmaintenance... 00

3.1. AISassembly... 00

3.2. AISmaintenance... 00

4. TrafficandtargetingofAIScomponents ... 00

4.1. TrafficofintracellularAIScomponents... 00

4.2. TargetingmechanismsofAISmembraneproteins... 00

5. RoleoftheAISinthemaintenanceofpolarity... 00

6. ThediffusionbarrierattheAIS... 00

6.1. RoleofankG-bindingproteins... 00

6.2. Roleofspectrinandactin... 00

7. TheintracellularfilterintheAIS... 00

7.1. Theintracellularfilter... 00

7.2. Roleofactin... 00

7.3. Roleofmicrotubules... 00

8. AdditionalrolesformicrotubulesintheAIS ... 00

8.1. TheAISasalaunchpad ... 00

∗ Correspondingauthorat:FacultédeMédecine–SecteurNord,Aix-MarseilleUniversitéCS80011,BdPierreDramard,13344MarseilleCedex15,France. Tel.:+33491698930;fax:+33491090506.

E-mailaddress:christophe.leterrier@univ-amu.fr(C.Leterrier). 1084-9521/$–seefrontmatter © 2013 Elsevier Ltd. All rights reserved.

(3)

2 C.Leterrier,B.Dargent/SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx 8.2. Moretodiscover ... 00 9. Conclusion ... 00 Acknowledgements... 00 References... 00 1. Introduction

Thedirectionalityof signaltransmissioninthe brainis sup-portedbytheexquisiteasymmetryofneurons.Neuronsaredivided intwo main compartments that differin theirmolecular com-positionand organization:the somaanddendrites that receive andintegratesynapticinputs(somatodendriticcompartment),and theaxonthatsendsthesignalstodownstreamcellsthroughan extensivearborization(axonalcompartment,Fig.1A).Anumber ofstudieshave progressivelyuncoveredhowcellularpolarityis established during neuronal development [1]. Once polarity is established,a sequential growthphase leadstothe buildingof axonalanddendriticarborizations.Matureneuronsthenfacethe dauntingtaskofmaintainingtheasymmetryofthisintricate archi-tectureforyearsinrodents,anddecadesinhumans[2].

A key player for the maintenance of neuronal polarity lies between the somatodendritic and axonal compartments: the axoninitialsegment(AIS,Fig.1A).Itslocalizationalongthefirst 20–40␮moftheaxonunderpinsitstwomainfunctions:the gener-ationoftheactionpotential,andthepreservationofaxonalidentity

[3].ThisreviewwillfocusonhowtheAISmaintainsneuronal polar-itybyregulatingproteinmobilityandtrafficbetweenthesomaand theaxon.WefirstdescribetheAISmaincomponents,howtheAISis assembled,andhowitscomponentsaretargetedandconcentrated. Then,wereviewhowtheAIScontrolsproteintransportinthecell

viatheformationofasurfacediffusionbarrierandan intracellu-lartrafficfilter.Wefinallydiscusshowtheexpandingrepertoireof identifiedproteinsandinteractionattheAIS,togetherwithrecent resultsontheAIScytoskeletonstructure,sparknewhypotheseson themoleculardetailsoftheseprocesses.

2. AISstructureandcomponents 2.1. Ankyrin,spectrinandactin

FirstdescribedbyKöllikerandRemakinthemiddleofthe19th century[4],theAISmorphologywascharacterizedbythepioneers ofelectronmicroscopyinthe1960s[5].Theydefined morpholog-icalcriteriaforidentifyingtheAISonbrainelectronmicroscopy images,includingfasciclesofmicrotubules,andadenselayerof materialundercoatingtheplasmamembrane.Likeintherestof theaxon,AISmicrotubulesareuniformlyorientedwithplus-ends towardthedistalaxon.TheAISmicrotubulefasciclesareclearly seenontransversesections,wheretheyappearassmallrings con-nectedbyfilaments(Fig.1B).

The plasma membrane undercoat is composed of an ankyrin–spectrin scaffolding complex that defines the iden-tity and functions of the AIS. The main component of the AIS scaffoldis ankyrinG[6](ankG,Fig.1Cand D).Themammalian ankyrinfamilyiscomposedofthreegenesencodingforankyrinR

Fig.1. Theaxoninitialsegment(AIS).(A)Theneuronintegratesinputsreceivedinthesomatodendriticcompartment(blue).TheAIS(red),locatedatthebeginningofthe axon,generatestheactionpotentialthatpropagatesuptotheterminals(lightred),andisregeneratedatnodesofRanvier(red)acrossinternodes.(B)TheAISofaPurkinje cell(transversesection,right).ThiselectronmicroscopyimagedemonstratestwomorphologicalfeaturesoftheAIS:microtubulefascicles(arrows)andthemembrane undercoat(arrowheads).AdaptedwithpermissionfromSynapseWeb(J.SpacekandK.Harris,PI,http://synapses.clm.utexas.edu).Scalebar,0.5␮m.(C)TheAISofacultured rathippocampalneuronlabeledforankG(red)and␤IV-spectrin(green).Map2(blue)isexcludedfromtheaxonanddelineatesthesomatodendriticcompartment.Scale bar,20␮m.(D)TheAIScomponents.ThemainAISscaffoldisankG(orange),linkedto␤IV-spectrin(green)thatinturnbindstoactinfilaments(darkgray).AnkGbindsto Nav1.xchannelsandKv7.2/7.3channels(darkblue),aswellasadhesionproteinsNF-186andNrCAM(blue).EB1/3proteins(lightorange)linkankGtomicrotubules(light gray).AnkGalsobindstoSCHIP1(purple).OtherchannelspresentattheAISareKv1.xchannelslinkedtoPSD-93(pink),andCav2/3channels.Kinasesareshowninyellow (seedetailsinmaintext).

(4)

C.Leterrier,B.Dargent/SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx 3 (ankR,firstidentifiedinerythrocytes),ankyrinB(ankB,isolated

from brain), and ankG (initially characterized as a component of nodes of Ranvier). Although the short isoformsof ankGare ubiquitous,thetwolongankGisoformsof 270and480kDaare uniquelyfoundinneurons,concentratedattheAISandnodesof Ranviermembrane undercoat [7–9]. Thelongest isoform, ankG 480,isalarge4400aminoacidsproteincomposedofamembrane bindingdomain,aspectrin-bindingdomain,aserine-richdomain, alongtail(2200aa),andacarboxy-terminaldomain.Thesecond longisoformofankGfoundattheAIS,ankG270,lacksthelast 1900amino-acidsofthetailcomparedtoankG480[7].Theother largeankyrinexpressedinneurons,ankB,isfoundastwo440and 220kDaisoformsthatarenotconcentratedintheAIS,butlocalize tothedistalpartofunmyelinatedaxons[6].

Similarlytotheankyrin–spectrincomplexliningthe erythro-cytemembrane,ankGisboundviaitsspectrin-bindingdomainto aspecificmemberofthespectrinfamily,identifiedas␤IV-spectrin in theAIS [10] (Fig. 1C and D). Classically, spectrins are found ashetero-tetrameric complexesof two ␣-spectrinsand two ␤-spectrins,with␤-spectrinsboundtoactinfilaments[6].Although ␣II-spectrinisfoundalongthewholeaxon,aspecific␣-spectrinhas notyetbeencharacterizedattheAIS.ItisthusunknownifAIS spec-trinsexistasclassical␣–␤tetramersorasadifferentcomplex.The ␤IV-spectrinisoformsconcentratedattheAISarethe1and6 ␤IV-spectrins.The␤IV6isoformisnecessaryforproperAIS orga-nization[11,12]althoughitlackstheactin-bindingdomainfound onotherisoforms,questioningwhetherthisAISspectrincomplex islinkedtoactin.Inlinewiththisquestion,actinenrichmentin theAIShasbeenreportedinahandfulofstudies[13–15],butonly detectedafterspecificdetergentextractionforothers[16,17]. How-ever,evenwithnoconcentration,specificactinorganizationoccurs intheAIS[15],consistentwithitsmajorroleinestablishingtheAIS mobilitybarrier(seebelow).Finally,ankGhasbeenshownto inter-actwithschwannomin-interactingproteinSCHIP1,aproteinthat concentratesintheAIS,butwhosefunctionremainsunknown[18]. 2.2. Membrane-partnersofankG

AnkGalsobinds viaitsmembrane-binding domainto mem-braneproteinsthataccumulate attheAIS(Fig.1C).AnkG binds tovoltage-gatedsodium(Nav)channels[19]viaa motiflocated intheirintracellularloopbetweentransmembranedomainsIIand

III[20,21].ItleadstotheconcentrationofNavchannelsintheAIS

comparedtothesoma,withanenrichmentestimatedbetween

3-[22]and40-fold[23,24],dependingoftheexperimentalapproach. NavchannelaccumulationunderliestheroleoftheAISinthefinal integrationofsomatodendriticinputsand thegenerationofthe actionpotentialinmostneuronaltypes(reviewedin[4,25]).The mainNavchanneltypespresentintheAISareNav1.6andNav1.2, althoughNav1.1isalsofoundatbeginningoftheAISincertain neurons(reviewedin[26]).Additionally,adevelopmentalswitch occursbetweenNav1.2andNav1.6[27],aswellasa proximodis-talcomplementarydistributionofNav1.2and Nav1.6inmature neurons[28].How differentNav channelsbearing similarankG bindingsitecanbeselectivelyenrichedalongtheAISisan inter-estingandstillopenquestion.PotassiumchannelsKv7.2andKv7.3 (KCNQ2/KCNQ3)shareabindingsitetoankGthatisanalogousto theNavchannelmotif,andaccumulateattheAISasheteromers, where theydampen excitability [29]. Ion channels that do not possessanidentifiedankyrin-bindingsitehavealsobeenlocalized totheAIS.PotassiumchannelsKv1.1/1.2localizeatthedistalAIS, bindtopost-synapticdensityproteinPSD-93[30,31],andcan mod-ulateAPinitiation,asdoCav2/3calciumchannelspresentalongthe AIS[32].

AnkGalsobindsviaitsmembrane-bindingdomaintocell adhe-sionmoleculesfromtheL1-CAMfamily[6].BindingtoankGresults

intheAISandnodalconcentrationoftwofamily members,the 186kDaisoform of neurofascin(NF-186), and theneuronalcell adhesionmolecule(NrCAM)[33].Notably,asingleankGprotein cansimultaneouslybindtwoCAMsandoneionchannel[6]. NF-186hasbeenshowntorecruitcomponentsoftheextracellular matrixsuchasbrevicantotheAISofhippocampalneurons[34],and ankG-directedconcentrationofNF-186isimportantforGABAergic innervationofthepinceauterminalaroundthePurkinjecellsAIS

[35].

2.3. RegulatedcomponentinteractionsattheAIS

Althoughitisastablecomplex,theAISis notstatic: a num-berofkinasesregulatetheinteractionbetweenAIScomponents. NF-186and NrCAMcanbephosphorylated attheircytoplasmic FIGQYmotif,inhibitingtheirinteractionwithankG[36].Protein kinaseCK2phosphorylatestheankGbindingsiteonNavchannels tostrengthentheirinteractionwithankG[37],and participates in AISformation[38].Cyclin-dependent kinasescdk2 and cdk5 phosphorylatetheKv␤subunit, regulatingtheirsurface expres-sion in the distal AISKv complex [39], whereas cdk5 controls the lengthof an AIS-like compartment in Drosophila[40].The Ca2+/calmodulindependentproteinkinaseCaMKIIassociateswith

␤IV-spectrin andphosphorylates Navchannels[41].Finally, the glycogensynthasekinaseGSK3␤phosphorylates␤-catenininthe AIS,regulatingthemaintenanceoftheAIS[42],andcontrolsthe interactionofNavchannelswithfibroblastgrowthfactorFGF14, participatinginchannelsconcentrationintheAIS[43].

2.4. LinkbetweenankGandmicrotubules

ThelargesizeoftheankGisoformsfoundattheAISsuggests thattheycouldinteractwithintracellulartargets.Potential part-nersforankGinsidetheAISaremicrotubules,asankRandankBbind microtubulesinvitro,directlyorindirectly[44,45].Sobotziketal. studiedtheAISstructureinPurkinjecellslackingankG,thankstoa cerebellum-specificankGknockoutmouse[46].Theyshowedthat thecharacteristicmicrotubulefasciclesattheAISaredispersedin theabsenceofankG,suggestinginterplaybetweenankGand micro-tubules[47].Leterrieretal.thussearchedforpotentialpartnersin thisinteractionandidentifiedtheend-bindingproteinsmembers EB1andEB3aslinksbetweenmicrotubulesandankG[48].EB pro-teinsareusuallyassociatedwithgrowingmicrotubuleplus-ends, wheretheyorganizeacompleximplicatedininteractionswiththe cellularcortexstructures[49].EB1and EB3interactwithankG, andarestabilizedalongthemicrotubulelatticeintheAIS.Thislink betweenankGandmicrotubulescouldhaveimportantimplications forthefilteringofintracellulartransport[48](seebelow). 3. AISassemblyandmaintenance

3.1. AISassembly

HowisthelargeAISmacromolecularcomplexbuiltand main-tained?In neuronal cultures,allcomponentsassemble inquick successionbetween3and4daysinculture[34,50].Invivo stud-iesofmicelackingankGinPurkinjecells[35,46,51],togetherwith knockdownofAIScomponentsindeveloping neurons[34]have demonstratedthatankGisnecessaryfortherecruitmentofother AIScomponents:Navchannels,␤IV-spectrin,NF-186andNrCAM. Conversely,theankG-bindingmotifofNavchannels[20,21,52],Kv7 channels[29,53],NF-186[50]and␤IV-spectrin[54]isnecessaryfor theirconcentrationintheAIS.Interestingly,Navchannel knock-downcanpreventformationoftheAISinmotoneurons,suggesting thattheycouldalsoplayaroleinAISassemblyforcertainneuronal

(5)

4 C.Leterrier,B.Dargent/SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx types[55].TheankG-dependent“inside–out”AISformation

con-trastswiththe“outside–in”assemblyofnodesofRanvier,where extracellularglialsignalsfirstbindtoNF-186,whichrecruitsankG, allowingNavchannelconcentration[56–58].IfankGrecruitsall othercomponentstotheAIS,howisankGisrecruitedtotheAISin thefirstplace?TheRasbandlabrecentlydemonstratedthe exist-enceofanantagonisticmechanismbetweenankGandankB[59]. Aftertheinitialspecificationoftheaxon,ankBistargetedtothe distalaxonandprogressivelyfillstheaxontowardthesoma.The lateronsetofankGexpressionresultsinthedistributionofankG alongtheremainingproximalstretchoftheaxonthatbecomesthe AIS[59].Indevelopingmotoneurons,theearlyexpressionofankG couldleadtoadifferentAISformationpattern:ankGappearsalong thewholeaxonatembryonicdayE9.5andconcentratesintheAIS afterE11.5,ankBbeingpresentalongthewholeaxon[9].

3.2. AISmaintenance

AnkGalsohasaveryimportantroleforAISmaintenance: deplet-ingankGin matureneurons resultsin AISdisassembly,with a dispersionoftheaccumulated␤IV-spectrin,ionchannelsandCAMs

[60].However,onceassembled,theintegrityoftheAISalsodepends onthepresenceoftheothercomponents.Long-termabsenceof ␤IV-spectrininknockoutmicedecreasesankGand Navchannel accumulationintheAIS[11,12,61].Invivo depletionof NF-186 inPurkinjecellsresultsinaprogressivedisappearanceoftheAIS

[62,63]. Finally, depletionof themicrotubule-ankG linkformed

byEB1orEB3resultsinapartialdisassemblyoftheAISin cul-turedneurons[48].Theseresultssuggest thatalthoughankGis theprimaryorganizer oftheAIS,itscomponentsareultimately interdependent.

4. TrafficandtargetingofAIScomponents 4.1. TrafficofintracellularAIScomponents

BeyondtheinteractionsandhierarchiesbetweenAIS compo-nents,howeachcomponentistargetedanddeliveredtotheAIS remainselusive.HowdoesankGentertheaxonbeforecompeting withankBasproposedbyGalianoetal.[59]?SeveralankGdomains, notably the serine-rich domain, seem to be important for its axonaltargeting[64].PalmitoylationoftheankGmembrane bind-ingdomain,togetherwiththelinkerbeforethespectrin-binding domain,areimplicatedinankGsubmembranelocalizationinaxons

[65,66].WeknowthatankGrecruitsitspartnerstotheAIS, but

whetheritassociateswithanyofthemandisco-transportedbefore arrivingattheAISremains anopenquestion.In particular,this includesotherAISintracellularcomponentssuchas␤IV-spectrin andEB1/3.

4.2. TargetingmechanismsofAISmembraneproteins

Two general mechanisms participate in the concentration of membrane proteins the AIS: selective endocytosis from the somatodendritic compartment, and capture by ankG. Using chimerasbearingvariousintracellularpartsofNavchannels,the DargentlabhasshownthattheC-terminusandtheloopbetween transmembranedomainsIIandIIItargetNavchannelstotheaxon. Interestingly,thereisnodirecttargetingtotheaxon,butrather unpolarizedexporttotheplasmamembranefollowed by selec-tiveendocytosisfromthesomatodendriticcompartment[67,68].It wouldbeinterestingtotestwhetheraxonaltargetingofKv7.2/7.3 heteromers,whichoccursviamotifsintheC-terminusdomain[69], alsodependsonaselectiveendocytosisstep.Interestingly,NF-186 alsoaccumulatesattheAISafterselectiveendocytosisfromthe

somatodendriticcompartment,inadoublecortin-dependent man-ner[70].OnceAISmembraneproteinshavereachedtheaxonal surface,bindingtoankGisthoughttodrivetheirconcentrationat theAISbycapturingproteinsthatdiffusealongtheplasma mem-brane.IthasbeenobservedthatNavchanneldiffusionisblocked

attheAIS[13,71].Brachetetal.usingNav–Kvchimerasbearing

mutantsoftheNavankyrin-bindingdomain,havedemonstrated thatchannelimmobilizationintheAISiscausedbytheirinteraction withankG[72].BindingtoankGisalsoabletoslowdownNF-186 diffusion[36],resultinginitsimmobilizationattheAIS[50],and preventsNF-186endocytosismediatedbydoublecortin[70]. 5. RoleoftheAISinthemaintenanceofpolarity

Onceassembled,theAISseparatestheaxonfromtherestof theneuron and thus helps maintainingneuronal polarity. First proposedafterthediscoveryofthediffusionbarrierbetweenthe

somaandtheaxon[71,73],thefunctionalevidenceconfirmingthis

hypothesis wasprovidedonly afew years ago.Hedstrom etal. usedlong-termdepletionofankGinculturedneurons,andshowed thatitnotonlyinducesdisassemblyoftheAIS,butalsoleadsto aprogressivelossofaxonalidentity,withappearanceof somato-dendriticmarkersintheproximalaxon[60].Theseresultswere confirmedinvivobyexaminingtheaxonalmorphologyofmice lackingankGinPurkinjecells. Theproximalaxonofthesecells exhibitsspinescontaining post-synapticassembliesthat appear graduallyduringmaturation[47].HowistheAISkeeping somato-dendriticproteinsfrominvadingtheaxon?Studieshaveshown thattheAISregulatesproteintransportbetweenthesomaandthe axonthroughtwomechanisms:asurfacediffusionbarrier,andan intracellulartrafficfilter(Fig.2AandB).

6. ThediffusionbarrierattheAIS

Lipidsandmembraneproteinscannotfreelydiffusethroughthe AIS,butaresloweddownorimmobilized,resultingintheisolation ofthesomaticandaxonalmembranecomposition(Fig.2A).This diffusionbarrierwasfirstidentifiedbyKobayashietal.,who dis-coveredthatfluorescentlipidscannotdiffusefromtheaxonbackto thesoma[73],beforebeingconfirmedatthesinglemoleculelevel byvideo-ratetrackingofmembranelipids[74].Restricteddiffusion ofaxonalproteinsattheAISwasfirstshownbyexperiments mea-suringtractabilityofL1orThy-1attachedbeads[17]andconfirmed bysingleparticletrackingofproteinslabeledwithquantumdots

[14,72].

6.1. RoleofankG-bindingproteins

Theimmobilizationoflipidsintheproximalaxonistemporally correlatedtotheAISformation[13].Furthermore,disassemblyof theAISthroughankGdepletionleadstothedisappearanceofthe diffusionbarrier[14].HowdoestheAISrestrictthediffusionof membranecomponents?Theanchored-proteins“pickets”model fromtheKusumilabproposesthatasubsetofmembraneproteins interactswiththecytoskeletalelementsunderlyingthemembrane, resultingin rows of immobilized picketsthat slow diffusionof membraneproteinsandlipids[13].IntheAIS,thepicketswouldbe themembraneproteinsimmobilizedbytheirinteractionwiththe ankG/spectrinundercoat:ionchannelsandCAMs[50,71,72]. Bra-chetetal.showedthatankG-bindingproteinswereimmobilized assoonasankGaccumulatedintheAIS,beforetheestablishment ofthediffusionbarrier[72].Thus,ankG-bindingmembrane pro-teinsarerecruitedasapreliminarystep,suggestingtheyarethe picketsoftheAISdiffusionbarrier[13].Interestingly,the phospho-regulationofchannelsandCAMsthatmodulatetheirbindingto

(6)

C.Leterrier,B.Dargent/SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx 5

Fig.2. RegulationofproteinmobilityandactinstructuresintheAIS.(A)TheAISdiffusionbarrier.Lipidsandmembraneproteins(red)diffusionisimpededintheAIS,due tocorrallingfromthesubmembranescaffold(green)andtheconcentrationofAISmembraneproteins(gray).Diffusionalongdistalaxonandsomaislessrestricted,as measuredfromtrajectoriesofindividualmolecules(above,red),despitethepresenceofthedistalaxonankB/␤II-spectrinscaffold(orange).(B)TheAIStrafficfilter.Vesicles containingsomatodendriticproteins(blue)areexcludedfromenteringtheaxon(bluearrow),whereasvesiclestransportingaxonalproteins(orange)canproceedthrough theAIS(orangearrow).Specificrecruitmentofaxonalkinesinsishelpedbycuesonmicrotubulesuchaspost-translationalmodifications(lightorange).(C)Actinringsalong theaxon[15].Ringsofactinfilaments(gray)cappedbyadducing(red)arespacedregularlyevery∼180nmalongtheaxon.Longitudinal␤-spectrindimers(␤IV-spectrin intheAIS,green,and␤II-spectrininthedistalaxon,orange)jointwoadjacentrings.(D)Actinpatchessize(∼1␮minsize)insidetheAIS[16].Somatodendriticvesicles transportedalongmicrotubules(bluearrow)bykinesins(blue)alsobearmyosins(green),causingthemtostopattheseactinpatchesandkeepingthemfromenteringthe axon(greenarrow).Alsodepictedisthehypotheticalroleofdyneinintransportingnon-axonalcargoesbacktothesoma(orange).

ankGalsomodifytheirdiffusiveproperties[36,72],suggestingthat thestrengthofthediffusionbarriercouldbedynamicallyregulated. 6.2. Roleofspectrinandactin

Actinisnecessaryforthepresenceofthediffusionbarrier,as actinfilamentsdisruptionleadstoitsdisappearance[13,14,17]. ␤IV-SpectrinplaysaroleinrestrictingthediffusionofL1intheAIS comparedtothedistalaxon[75].Inerythrocytes,spectrinconnects complexesofactinandankyrinwitha∼100nmhexagonalpattern thatlimitsdiffusionofmembraneproteins[6].AttheAIS,what specificorganizationofthespectrin/actincytoskeletonleadstothe immobilizationofmembranecomponents?Recently,Xuetal.used super-resolutionmicroscopytorevealthelocalizationofactinand spectrininaxonswitha∼20nmresolution.Theyshowedthatactin isformingring-likestructuresspaced∼180nmapartaroundthe circumferenceoftheaxons.Themiddlepartofspectrintetramers ispreciselylocatedbetweentheactinrings,resultingina comple-mentarybandspattern.Thissuggeststhatspectrinsliealongthe plasmamembrane,connectingsuccessiveactinrings[15](Fig.2C). Thisorganizationisstrikinglyreminiscentoftheperiodicannular structurepreviouslyobservedinelectronmicroscopyimagesofthe AISundercoat[76].

Dothesesuccessiveactin/spectrinhurdlescausetheAIS diffu-sionbarrier?Theactinringsaredetectedalongthewholeaxon, linkedby␤IV-spectrinintheAISandby␤II-spectrininthedistal axon[15](Fig.2C).Thus,thepresenceoftheseringscannotexplain thediffusivepropertiesoftheAIScomparedtothedistalaxon.The diffusionbarrierislikelycausedbyadditionalAISproteins associ-atedtothesestructures,suchastheionchannelsandCAMsacting aspickets.Itwouldneverthelessbeinterestingtoextendthese find-ingsinrelationtotheknownAISstructure.Isthereadifferencein thearrangementsofthetwoAIS␤IV-spectrinisoforms,giventhat oneofthemlacksanactin-bindingdomain?IsankGalsoorganized

inring-likestructures?Howaretheactin/spectrinringsassembled duringdevelopment,giventhatankGrecruits␤IV-spectrinduring AISformation[54]?Interestingly,impairmentoftheAISstructure hasbeenreportedafteractinfilamentsdisruptioninyoungneurons

[14,55],whereasAISofolderneuronsdonotseemtobeaffected

[38,77].

7. TheintracellularfilterintheAIS 7.1. Theintracellularfilter

Besidesthesurfacediffusionbarrier,theAISparticipatesinthe maintenanceofaxonalidentitybyregulatingtheintracellular traf-fic.Live-cell imaging of GFP-fused proteinsshows that vesicles transportingaxonalproteinscanenterinbothaxonanddendrites, whereasthosecontainingsomatodendriticproteinsareexcluded fromenteringtheaxon[78,79].Theintracellulardiffusionoflarge moleculesandvesiculartransporttowardtheaxonissignificantly slowedattheAIS,demonstratingtheexistenceofanAIStransport filter[14].Importantly,thisfilteractslikeasieve,astheentryof macromoleculesdependsontheirsize,andthepassageof vesi-clesdependsontheprocessivityofthemotorproteinspropelling them(Fig.2B).ThisfilterisestablishedatthesametimeastheAIS (between3and5daysinculture),anddependsonAISintegrity,as shownbyitsdisappearanceafterankGdepletion[14].

7.2. Roleofactin

Disruption ofactin filamentsimpairsthe AISfilter,allowing theentryoflargemacromoleculesandsomatodendriticvesicles

intotheaxon[14,80].Howcanactinregulate intracellular

traf-ficin the AIS? Lewiset al. have shown that myosin V binding cantargetmembrane proteinstothesomatodendritic compart-ment[80].SubsequentworkshowedthatmyosinVI,whichtravels

(7)

6 C.Leterrier,B.Dargent/SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx towardtheoppositesideofactinfilaments,canconversely

partici-pateinthetargetingofaxonalprotein[81].Thisledtheauthorsto proposethattheAIScontainsactinfilaments,whichstop somato-dendriticvesiclesenteringtheaxonviamyosinV-basedinteraction andmaybringthembacktothesoma[79].Strikingly,scanning electronmicroscopyimagesofdetergent-extractedcellsshowed anaccumulation of actin into∼1␮m globular clusterstheAIS. Somatodendriticvesicleswereoftenstoppedattheseclusters[16], supportinga role of actin as a selective road block in theAIS

(Figure2D).Itisnotcleariftheseclusterscouldmediateselective

retrievalofvesiclestowardthesoma,andtheyareclearly differ-entfromtheringsobservedbyXuetal.[15].Observingthefine structureofactinintheAISoflivingcells,forexampleusing photo-activatedlocalizationmicroscopy(PALM)couldhelptoconciliate thesefindings.Coupledwithimagingofvesicularcargoes,PALM ofactincouldfurtherclarifytheroleofactininfilteringtransport throughtheAIS.

7.3. Roleofmicrotubules

Recentresultssuggest thatmicrotubules, besidessupporting vesiculartransport,couldplay arole intheAISsieveassembly. Acutemicrotubuledisruptionorstabilizationdoesnot disassem-bletheAISofmatureneurons[26,77,82].However,microtubules arenecessaryforblockingretrogradediffusionofthe microtubule-associated protein Tau from the axon to the soma [77]. The discoveryofaninteractionbetweenankGandmicrotubulesvia EBproteins[48] revigoratesthehypothesisthat thelargeankG isoformscouldstretchacrosstheAISbetweentheplasma mem-braneandthecytoplasm,andconnecttheundercoatcomplexto microtubules[33].TheankGtailisflexibleandunstructured,and couldstretchupto0.5␮minlengthiffullyextendedinthecase ofthelongestisoform[6].ThiscouldexplainhowtheAISscaffold regulatestraffictowardtheaxon:anaccumulationofankG teth-ersbetweenmembraneproteinpartnersandmicrotubuleswould formasieveandimpedeentryoflargemacromoleculesandweakly poweredvesiclesintotheaxon[14].

This physical link between membrane proteins and micro-tubulesviaankG,anditsrelevanceforfilteringtrafficthroughthe AIS,hasyettobetested.Importantly,thedetails ofan interac-tionbetweenankGand microtubulesarestill largelyunknown. AlthoughitisknownthatankGbindstothehydrophobicpocket of EBs [26], what part of ankG binds to EBs is not. The large ankG480 contains a putative SxIP EB-binding motif in its tail

[83], but it does not seem to be present in the shorter ankG 270. Besides EBs, it is likely that ankG can bind microtubules directlyorvia otheryet unidentifiedpartners. Antibodies reac-tingwithmicrotubule-associatedepitopesintheAISsuggestthat unknownmicrotubule-boundAIScomponentsremaintobe dis-covered[82,84].Interestingly,arecentstudyfoundthattheankyrin repeatsoftheDrosophilanomechanoreceptorpotentialC(NOMPC) channelareboundtomicrotubules,thismembrane-microtubule tetheringresultinginthemechanosensitivepropertiesofthe chan-nel[85].CombiningthedetailsoftheankG-microtubulelinkage andtheankGinteractionwiththespectrinringsdiscoveredbyXu etal.[15]wouldhelptestingamolecularmodelwheretheAIS traf-ficfilterisformedbyanaccumulationofankGtethersacrossthe axon.

8. AdditionalrolesformicrotubulesintheAIS 8.1. TheAISasalaunchpad

Agrowingbody ofevidencesuggeststhatmicrotubules con-tributetoaxonalcargoes steeringviaspecificmodifications and

selectiverecruitment of kinesins[2].Kinesins are microtubule-associatedmotorsthatdrivetransportoforganellesandvesicular cargoes.Mostkinesinstraveltowardthemicrotubuleplusends, resultingin anterogradetransportin axons,which contain uni-formplusend-outmicrotubules[86].ThekinesinKIF5/kinesin-1 has been shown to transport several axonal cargoes, and also a few somatodendritic ones [86]. KIF5, when expressed as a motorheadfragment,isselectivelytargetedtoaxons,anda non-processiveKIF5headrigormutantaccumulatesselectivelyalong theAISmicrotubules,suggestingthatthesemicrotubulesharbor aspecificcueforKIF5recruitment[74].Whatarethesignalson AISmicrotubules thatare recognized bythe KIF5 motor head? AISmicrotubulesareenrichedinpost-translationalmodifications (PTMs)typicalofstablemicrotubulessuchasacetylation, detyrosi-nationandpolyglutamylation [87–89].AsKIF5 preferablybinds toPTM-rich,stabilizedmicrotubules[90,91],itwasproposedthat PTMsdirecttherecruitmentofKIF5totheAIS.However,reports differonwhereasdetyrosination[87],acetylation[89,90]ora com-binationofmultiplePTMs[88]havea roleforKIF5 preferential recruitment.AlternativecandidatesformicrotubulecuesareGTP remnantsalongtheAISmicrotubules.Amicrotubuletypicallyhas tubulinmonomersboundtoGTPatthegrowingplus-end,andto GDPalongtheshaft,reflectingprogressivehydrolysisofGTP.But microtubulescanalsocontainsmallstretchesofnon-hydrolyzed GTPalongtheirlengththatarecalledGTPremnants[92].Nakata etal.showedthattheseremnantsareenrichedalongtheaxonal microtubules,andplayaroleinrecruitingKIF5towardtheaxon

[93].Moreover,astheplus-endGTPcapisalsothepreferred loca-tionofEBproteinsinteractions,onecouldspeculatethattheseGTP remnantshavearoleintheenrichmentofEBsattheAIS,allowing themtolinkthemicrotubuleshafttoankG[48].

8.2. Moretodiscover

Resultsinmodelorganismssuggestthatkeymechanismsmay bestillmissinginourunderstandingofpolarizedtargeting.Dynein is a molecularcomplex that moves along microtubules toward theirminusend,anddrivesretrogradetransportinaxons[2].In mammalianneurons,dyneinhasaroleintargetingproteinsto den-dritesviatransportalongtheminusend-outmicrotubulesfoundin proximaldendrites,wheremicrotubuleorientationismixed[94]. Furthermore,dyneincontributestothepolarizedorganizationof theGolgi apparatus[95], and organizesaxonal microtubulesin Drosophilaneurons[96].Onecouldhypothesizethatdyneinalso excludessomatodendriticcargoesfromtheaxonbybringingthem backtothesomaalongAISmicrotubules,similarlytowhatwas proposedfor myosinValong actinfilaments[80].Inthe nema-todeCaenorhabditis elegans,theankyrinhomologunc-44allows theaxonaltargetingofunc-33/CRMP(collapsinresponsemediator protein),theestablishmentofuniformmicrotubulepolarity,and thepropertargetingofunc-116/KIF5totheaxon[97].Finally,the C.elegansunc-16/SundayDriver/JIP3(JNKinteractingprotein),an adaptorthatinteractswithbothkinesinanddynein,ispresentin theproximalaxonandnecessaryforregulatingorganelleentryinto theaxon[98].Altogether,theseresultssuggestthatfurther inter-playbetweentheAISscaffold, microtubulesandmotor proteins mayexistandcouldplayacrucialroleinshapingpolarizedtraffic andaxonalidentity.

9. Conclusion

TheAISisnowrecognizedasakeycompartmentinneuronal physiology.Itisinstructivetodrawaparallelwithanotherneuronal structurethathasbeenthoroughlystudiedin thepastdecades: the neuronal synapse. Both structures are characterized by an

(8)

C.Leterrier,B.Dargent/SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx 7 accumulation of channelsand adhesionproteins, controlledby

interactionswithspecializedscaffolds.However,atthelevelofthe cell,thesynapseisanendpoint,whereastheAISisagatebetween theneuron’smainpolarizeddomains.Thisunderliesitsroleinthe organizationofthecellandinthemaintenanceofpolarity.Multiple componentsmaybestillmissinginourviewoftheAISarchitecture, andhowcomponentsarearrangedislargelyunknown. Decipher-ingthe finestructure of theAISwill allowunderstandinghow theAISshapesintracellulartrafficandmaintainsaxonalidentity. Moreover,similartothesynapse,theAISmacromolecularcomplex isnotastaticassembly.Recentresultshaveshownthatitiscapable ofstructuralplasticity,allowingadaptationtophysiological and pathologicalconditions[99–101].Thisplasticitylikelyimplicates kinasesandphosphatasesregulatingtheinteractionsbetweenAIS components.Itwillbeveryinterestingtotestiftheseregulations, andthisplasticityoftheAISstructure,haveanimpactontheneuron organizationviatheregulationofproteintrafficandmobility.

Acknowledgements

TheauthorswouldliketothankKirstenHarrisfortheuseof theAISelectronmicroscopyimage,FrancisCastetsandAmapola Autillo-Touatiforreadingthemanuscript,andthemembersofthe Dargentlab for helpfuldiscussions. We apologizetothose col-leagueswhoseworkcouldnotbecitedbecauseofspaceconstraints.

References

[1]BarnesAP,PolleuxF.Establishmentofaxon-dendritepolarityindeveloping neurons.AnnuRevNeurosci2009;32:347–81.

[2]KapiteinLC,HoogenraadCC.Whichwaytogo?Cytoskeletalorganizationand polarizedtransportinneurons.MolCellNeurosci2011;46:9–20.

[3]RasbandMN.Theaxoninitialsegmentandthemaintenanceofneuronal polarity.NatRevNeurosci2010;11:552–62.

[4]ClarkBD,GoldbergEM,RudyB.Electrogenictuningoftheaxoninitial seg-ment.Neuroscientist2009;15:651–68.

[5]PetersA,PalaySL,WebsterHD.Thefinestructureofthenervoussystem. OxfordUniversityPress:USA;1991.

[6]BennettV,BainesAJ.Spectrinandankyrin-basedpathways:metazoan inven-tionsforintegratingcellsintotissues.PhysiolRev2001;81:1353–92.

[7]KordeliE,LambertS,BennettV,AnkyrinG.Anewankyringenewith neural-specificisoformslocalizedattheaxonalinitialsegmentandnodeofRanvier. JBiolChem1995;270:2352–9.

[8]IwakuraA,UchigashimaM,MiyazakiT,YamasakiM,WatanabeM.Lack ofmolecular–anatomicalevidenceforGABAergicinfluenceonaxoninitial segmentofcerebellarpurkinjecellsbythepinceauformation.JNeurosci 2012;32:9438–48.

[9]LeBrasB,FréalA,CzarneckiA,LegendreP,BullierE,KomadaM,etal.Invivo assemblyoftheaxoninitialsegmentinmotorneurons.BrainStructFunct 2013.

[10]BerghsS,AggujaroD,DirkxR,MaksimovaE,StabachP,HermelJM,etal. BetaIVspectrin, a new spectrinlocalized ataxon initial segmentsand nodesofRanvierinthecentralandperipheralnervoussystem.JCellBiol 2000;151:985–1002.

[11]Lacas-GervaisS,GuoJ,StrenzkeN,ScarfoneE,KolpeM,JahkelM,etal. BetaIVSigma1spectrinstabilizesthenodesofRanvierandaxoninitial seg-ments.JCellBiol2004;166:983–90.

[12]UemotoY,SuzukiS-I,TeradaN,OhnoN,OhnoS,YamanakaS,etal.Specific roleofthetruncatedbetaIV-spectrinSigma6insodiumchannelclusteringat axoninitialsegmentsandnodesofRanvier.JBiolChem2007;282:6548–55.

[13]NakadaC,RitchieK,ObaY,NakamuraM,HottaY,IinoR,etal. Accumula-tionofanchoredproteinsformsmembranediffusionbarriersduringneuronal polarization.NatCellBiol2003;5:626–32.

[14]SongA-H,WangD,ChenG,LiY,LuoJ,DuanS,etal.Aselectivefilterfor cytoplasmictransportattheaxoninitialsegment.Cell2009;136:1148–60.

[15]XuK,ZhongG,ZhuangX.Actin,spectrin,andassociatedproteinsforma periodiccytoskeletalstructureinaxons.Science2013;339:452–6.

[16]WatanabeK,Al-BassamS,MiyazakiY,WandlessTJ,WebsterP,ArnoldDB. Networksofpolarizedactinfilamentsintheaxoninitialsegmentprovidea mechanismforsortingaxonalanddendriticproteins.CellRep2012:1–13.

[17]WincklerB,ForscherP,MellmanI.Adiffusionbarriermaintainsdistribution ofmembraneproteinsinpolarizedneurons.Nature1999;397:698–701.

[18]MartinP-M,CarnaudM,GarciadelCa ˜noG, IrondelleM,IrinopoulouT, GiraultJ-A,etal.Schwannomin-interactingprotein-1isoformIQCJ-SCHIP-1 isalatecomponentofnodesofRanvierandaxoninitialsegments.JNeurosci 2008;28:6111–7.

[19]SrinivasanY,ElmerL,DavisJQ,BennettV,AngelidesKJ.Ankyrinand spec-trinassociatewithvoltage-dependentsodiumchannelsinbrain.Nature 1988;333:177–80.

[20]GarridoJJ,GiraudP,CarlierE,FernandesF,MoussifA,FacheM-P,etal.A targetingmotifinvolvedinsodiumchannelclusteringattheaxonalinitial segment.Science2003;300:2091–4.

[21]LemailletG,WalkerB,LambertS.Identificationofaconserved ankyrin-bindingmotifinthefamilyofsodiumchannelalphasubunits.JBiolChem 2003;278:27333–9.

[22]FleidervishIA,Lasser-RossN,GutnickMJ,RossWN.Na+imagingrevealslittle

differenceinactionpotential-evokedNa+influxbetweenaxonandsoma.Nat

Neurosci2010;13:852–60.

[23]KoleM,IlschnerS,KampaB,WilliamsS,RubenP,StuartG.Actionpotential generationrequiresahighsodiumchanneldensityintheaxoninitialsegment. NatNeurosci2008;11:178–86.

[24]LorinczA,NusserZ.Molecularidentityofdendriticvoltage-gatedsodium channels.Science2010;328:906–9.

[25]KoleMHP,StuartGJ.Signalprocessingintheaxoninitialsegment.Neuron 2012;73:235–47.

[26]LeterrierC,BrachetA,DargentB,VacherH.Determinantsofvoltage-gated sodiumchannelclusteringinneurons.SeminCellDevBiol2011;22:171–7.

[27]BoikoT,VanWartA,CaldwellJH,LevinsonSR,TrimmerJS,MatthewsG. Func-tionalspecializationoftheaxoninitialsegmentbyisoform-specificsodium channeltargeting.JNeurosci2003;23:2306–13.

[28]HuW,TianC,LiT,YangM,HouH,ShuY.DistinctcontributionsofNa(v)1.6 andNa(v)1.2inactionpotentialinitiationandbackpropagation.NatNeurosci 2009;12:996–1002.

[29]PanZ,KaoT,HorvathZ,LemosJ,SulJ-Y,CranstounS,etal.Acommon ankyrin-G-basedmechanismretainsKCNQandNaVchannelsatelectricallyactive domainsoftheaxon.JNeurosci2006;26:2599–613.

[30]OgawaY,HorreshI,TrimmerJS,BredtDS,PelesE,RasbandMN.Postsynaptic density-93clustersKv1channelsataxoninitialsegmentsindependentlyof Caspr2.JNeurosci2008;28:5731–9.

[31]DuflocqA,ChareyreF,GiovanniniM,CouraudF,DavenneM.Characterization oftheaxoninitialsegment(AIS)ofmotorneuronsandidentificationofa para-AISandajuxtapara-AIS,organizedbyprotein4.1B.BMCBiol2011;9:66.

[32]BenderKJ,TrussellLO.Thephysiologyoftheaxoninitialsegment.AnnuRev Neurosci2012;35:249–65.

[33]DavisJQ,LambertS,BennettV.Molecularcompositionofthenodeof Ran-vier:identificationofankyrin-bindingcelladhesionmoleculesneurofascin (mucin+/thirdFNIIIdomain−)andNrCAMatnodalaxonsegments.JCellBiol 1996;135:1355–67.

[34]HedstromK,XuX,OgawaY,FrischknechtR,SeidenbecherC,ShragerP,etal. Neurofascinassemblesaspecializedextracellularmatrixattheaxoninitial segment.JCellBiol2007;178:875–86.

[35]AngoF,diCristoG,HigashiyamaH,BennettV,WuP,HuangZ. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein,directsGABAergicinnervationatpurkinjeaxoninitialsegment.Cell 2004;119:257–72.

[36]GarverTD,RenQ,TuviaS,BennettV.Tyrosinephosphorylationatasite highlyconservedintheL1familyofcelladhesionmoleculesabolishesankyrin bindingandincreaseslateralmobilityofneurofascin.JCellBiol1997;137: 703–14.

[37]BréchetA,FacheM-P,BrachetA,FerracciG,BaudeA,IrondelleM,etal. ProteinkinaseCK2contributestotheorganizationofsodiumchannelsin axonalmembranesbyregulatingtheirinteractionswithankyrinG.JCellBiol 2008;183:1101–14.

[38]Sanchez-Ponce D, Mu ˜noz A, Garrido JJ. Casein kinase 2 and micro-tubulescontrolaxoninitialsegmentformation.MolCellNeurosci2011;46: 222–34.

[39]VacherH,YangJ-W,Cerda O, Autillo-TouatiA,DargentB, Trimmer JS. Cdk-mediatedphosphorylationoftheKv␤2auxiliarysubunitregulatesKv1 channelaxonaltargeting.JCellBiol2011;192:813–24.

[40]TrunovaS,BaekB,GinigerE.Cdk5regulatesthesizeofanaxon initial segment-likecompartmentinmushroombodyneuronsoftheDrosophila centralbrain.JNeurosci2011;31:10451–62.

[41]Hund TJ,Koval OM,Li J, WrightPJ, Qian L,Snyder JS,et al. A ␤(IV)-spectrin/CaMKIIsignalingcomplexisessentialformembraneexcitabilityin mice.JClinInvest2010;120:3508–19.

[42]TapiaM,DelPuertoA,PuimeA,Sanchez-PonceD,Fronzaroli-MolinieresL, Pallas-BazarraN,etal.GSK3and␤-catenindeterminesfunctional expres-sionof sodiumchannels attheaxon initialsegment.Cell MolLife Sci 2012;70:105–20.

[43]ShavkunovAS,WildburgerNC,NenovMN,JamesTF,BuzhdyganTP, Panova-ElektronovaNI,etal.Thefibroblastgrowthfactor14(FGF14)/voltage-gated sodiumchannelcomplexisanewtargetofglycogensynthasekinase3(GSK3). JBiolChem2013;288:19370–85.

[44]DavisJQ,BennettV.Brainankyrin.Amembrane-associatedproteinwith bind-ingsitesforspectrin,tubulin,andthecytoplasmicdomainoftheerythrocyte anionchannel.JBiolChem1984;259:13550–9.

[45]BennettV,DavisJ.Erythrocyteankyrin:immunoreactiveanaloguesare asso-ciatedwithmitoticstructuresinculturedcellsandwithmicrotubulesinbrain. ProcNatlAcadSciUSA1981;78:7550–4.

[46]ZhouD,LambertS,MalenPL,CarpenterS,BolandLM,BennettV.AnkyrinGis requiredforclusteringofvoltage-gatedNachannelsataxoninitialsegments andfornormalactionpotentialfiring.JCellBiol1998;143:1295–304.

(9)

8 C.Leterrier,B.Dargent/SeminarsinCell&DevelopmentalBiologyxxx (2013) xxx–xxx [47]SobotzikJ-M,SieJM,PolitiC,DelTurcoD,BennettV,DellerT,etal.AnkyrinG

isrequiredtomaintainaxo-dendriticpolarityinvivo.ProcNatlAcadSciUSA 2009;106:17564–9.

[48]LeterrierC,VacherH,FacheM-P,d’OrtoliSA,CastetsF,Autillo-TouatiA,etal. End-bindingproteinsEB3andEB1linkmicrotubulestoankyrinGintheaxon initialsegment.ProcNatlAcadSciUSA2011;108:8826–31.

[49]Akhmanova A,Steinmetz MO.Microtubule+TIPsata glance. JCell Sci 2010;123:3415–9.

[50]Boiko T, Vakulenko M, Ewers H, Yap CCC, Norden C, Winckler B. Ankyrin-dependentand-independentmechanismsorchestrateaxonal com-partmentalizationofL1familymembersneurofascinandL1/neuron-gliacell adhesionmolecule.JNeurosci2007;27:590–603.

[51]JenkinsSM,BennettV.Ankyrin-Gcoordinatesassemblyofthespectrin-based membraneskeleton,voltage-gatedsodiumchannels,andL1CAMsatPurkinje neuroninitialsegments.JCellBiol2001;155:739–46.

[52]GasserA,HoTS-Y,ChengX,ChangK-J,WaxmanSG,RasbandMN,etal. AnankyrinG-bindingmotifisnecessaryandsufficientfortargetingNav1.6 sodiumchannelstoaxoninitialsegmentsandnodesofRanvier.JNeurosci 2012;32:7232–43.

[53]Rasmussen HB,Frøkjaer-Jensen C, Jensen CS,JensenHS, Jørgensen NK, MisonouH,etal.Requirementofsubunitco-assemblyandankyrin-Gfor M-channellocalizationattheaxoninitialsegment.JCellSci2007;120:953–63.

[54]YangY,OgawaY,HedstromK,RasbandMN.BetaIVspectrinisrecruited to axon initialsegmentsandnodes ofRanvierby ankyrinG.JCellBiol 2007;176:509–19.

[55]XuX,ShragerP.DependenceofaxoninitialsegmentformationonNa+channel

expression.JNeurosciRes2005;79:428–41.

[56]EshedY,FeinbergK,PoliakS,SabanayH,Sarig-NadirO,SpiegelI,etal. Gliomedin mediates Schwann cell–axon interaction and the molecular assemblyofthenodesofRanvier.Neuron2005;47:215–29.

[57]DzhashiashviliY,ZhangY,GalinskaJ,LamI,GrumetM,SalzerJL.Nodesof RanvierandaxoninitialsegmentsareankyrinG-dependentdomainsthat assemblebydistinctmechanisms.JCellBiol2007;177:857–70.

[58]ZhangY,BekkuY,DzhashiashviliY,ArmentiS,MengX,SasakiY,etal. Assem-blyandmaintenanceofnodesofRanvierrelyondistinctsourcesofproteins andtargetingmechanisms.Neuron2012;73:92–107.

[59]GalianoMR,JhaS,HoTS-Y,ZhangC,OgawaY,ChangK-J,etal.Adistalaxonal cytoskeletonformsanintra-axonalboundarythatcontrolsaxoninitial seg-mentassembly.Cell2012;149:1125–39.

[60]HedstromK,OgawaY,RasbandMN.AnkyrinGisrequiredformaintenanceof theaxoninitialsegmentandneuronalpolarity.JCellBiol2008;183:635–40.

[61]KomadaM,SorianoP.[Beta]IV-spectrinregulatessodiumchannelclustering throughankyrin-GataxoninitialsegmentsandnodesofRanvier.JCellBiol 2002;156:337–48.

[62]ZontaB,DesmazieresA,RinaldiA,TaitS,ShermanDL,NolanMF,etal.A criticalroleforneurofascininregulatingactionpotentialinitiationthrough maintenanceoftheaxoninitialsegment.Neuron2011;69:945–56.

[63]ButtermoreED,PiochonC,WallaceML,PhilpotBD,HanselC,BhatMA.Pinceau organizationinthecerebellumrequiresdistinctfunctionsofneurofascin inPurkinjeandbasketneuronsduringpostnataldevelopment.JNeurosci 2012;32:4724–42.

[64]ZhangX,BennettV.Restrictionof480/270-kDankyrinGto axon prox-imal segmentsrequiresmultipleankyrinG-specific domains.JCellBiol 1998;142:1571–81.

[65]HeM,TsengW-C,BennettV.Asingledivergentexoninhibitsankyrin-B asso-ciationwiththeplasmamembrane.JBiolChem2013.

[66]HeM,JenkinsP,BennettV.Cysteine70ofankyrin-GisS-palmitoylatedand isrequiredforfunctionofankyrin-Ginmembranedomainassembly.JBiol Chem2012;287:43995–4005.

[67]GarridoJJ,FernandesF,GiraudP,MouretI,PasqualiniE,FacheM-P,etal. Iden-tificationofanaxonaldeterminantintheC-terminusofthesodiumchannel Na(v)1.2.EMBOJ2001;20:5950–61.

[68]FacheM-P,MoussifA,FernandesF,GiraudP,GarridoJJ,DargentB. Endo-cytoticeliminationanddomain-selectivetetheringconstituteapotential mechanismofproteinsegregationattheaxonalinitialsegment.JCellBiol 2004;166:571–8.

[69]ChungHJ,JanY-N,JanLY.Polarizedaxonalsurfaceexpressionofneuronal KCNQchannelsismediatedbymultiplesignalsintheKCNQ2andKCNQ3 C-terminaldomains.ProcNatlAcadSciUSA2006;103:8870–5.

[70]Yap CC, Vakulenko M,KruczekK, Motamedi B,Digilio L, Liu JS,etal. Doublecortin(DCX)mediatesendocytosisofneurofascinindependentlyof microtubulebinding.JNeurosci2012;32:7439–53.

[71]Angelides KJ, Elmer LW, Loftus D, Elson E. Distribution and lateral mobility of voltage-dependentsodium channelsin neurons. JCell Biol 1988;106:1911–25.

[72]BrachetA,LeterrierC,IrondelleM,FacheM-P,RacineV,SibaritaJ-B,etal. AnkyrinGrestrictsionchanneldiffusionattheaxonalinitialsegmentbefore theestablishmentofthediffusionbarrier.JCellBiol2010;191:383–95.

[73]KobayashiT,StorrieB,SimonsK,DottiCG.Afunctionalbarriertomovement oflipidsinpolarizedneurons.Nature1992;359:647–50.

[74]NakataT,HirokawaN.Microtubulesprovidedirectionalcuesforpolarized axonaltransportthroughinteractionwithkinesinmotorhead.JCellBiol 2003;162:1045–55.

[75]NishimuraK,AkiyamaH,KomadaM,KamiguchiH.BetaIV-spectrinformsa diffusionbarrieragainstL1CAMattheaxoninitialsegment.MolCellNeurosci 2007;34:422–30.

[76]Chan-PalayV.Thetripartitestructureoftheundercoatininitialsegmentsof Purkinjecellaxons.ZAnatEntwicklungsgesch1972;139:1–10.

[77]LiX,KumarY,ZempelH,MandelkowE-M,BiernatJ,MandelkowE.Novel diffusionbarrierforaxonalretentionofTauinneuronsanditsfailurein neurodegeneration.EMBOJ2011;30:4825–37.

[78]BurackM,SilvermanM,BankerGA.Theroleofselectivetransportinneuronal proteinsorting.Neuron2000;26:465–72.

[79]Al-BassamS,XuM,WandlessTJ,ArnoldDB.Differentialtraffickingof trans-portvesiclescontributestothelocalizationofdendriticproteins.CellRep 2012;2:89–100.

[80]LewisTL,MaoT,SvobodaK,ArnoldDB.Myosin-dependenttargetingof trans-membraneproteinstoneuronaldendrites.NatNeurosci2009;12:568–76.

[81]LewisTL,MaoT,ArnoldDB.AroleformyosinVIinthelocalizationofaxonal proteins.PLoSBiol2011;9:e1001021.

[82]BuffingtonSA,SobotzikJM,SchultzC,RasbandMN.I␬B␣isnotrequiredfor axoninitialsegmentassembly.MolCellNeurosci2012;50:1–9.

[83]JiangK,ToedtG,MontenegroGouveiaS,DaveyNE,HuaS,derVaartvanB,etal. Aproteome-widescreenformammalianSxIPmotif-containingmicrotubule plus-endtrackingproteins.CurrBiol2012;22:1800–7.

[84]Shams’iliS,deLeeuwB,HulsenboomE,JaarsmaD,SmittPS.Anew para-neoplasticencephalomyelitisautoantibodyreactivewiththeaxoninitial segment.NeurosciLett2009;467:169–72.

[85]LiangX,MadridJ,GärtnerR,VerbavatzJ-M,SchiklenkC,Wilsch-Bräuninger M,etal.ANOMPC-dependentmembrane-microtubuleconnectorisa can-didateforthegatingspringinflymechanoreceptors.CurrBiol2013;23: 755–63.

[86]HirokawaN,NodaY,TanakaY,NiwaS.Kinesinsuperfamilymotorproteins andintracellulartransport.NatRevMolCellBiol2009;10:682–96.

[87]KonishiY, SetouM.Tubulintyrosinationnavigates thekinesin-1motor domaintoaxons.NatNeurosci2009;12:559–67.

[88]HammondJW,HuangC-F,KaechS,JacobsonC,BankerGA,VerheyKJ. Post-translationalmodificationsoftubulinandthepolarizedtransportofkinesin-1 inneurons.MolBiolCell2010;21:572–83.

[89]TapiaM,WandosellF,GarridoJJ.ImpairedfunctionofHDAC6slowsdown axonalgrowthandinterfereswithaxoninitialsegmentdevelopment.PLoS ONE2010;5:e12908.

[90]ReedNA, CaiD, BlasiusTL,JihGT,MeyhoferE,GaertigJ, etal. Micro-tubuleacetylationpromotes kinesin-1 bindingand transport. Curr Biol 2006;16:2166–72.

[91]DunnS,MorrisonEE,LiverpoolT,Molina-ParísC,CrossR,AlonsoM,etal. Dif-ferentialtraffickingofKif5contyrosinatedanddetyrosinatedmicrotubules inlivecells.JCellSci2008;121:1085–95.

[92]DimitrovA,QuesnoitM,MoutelS,CantaloubeI,PoüsC,PerezF.Detectionof GTP-tubulinconformationinvivorevealsaroleforGTPremnantsin micro-tubulerescues.Science2008;322:1353–6.

[93]NakataT,NiwaS,OkadaY,PerezF,HirokawaN.Preferentialbindingofa kinesin-1motortoGTP-tubulin-richmicrotubulesunderliespolarizedvesicle transport.JCellBiol2011;194:245–55.

[94]KapiteinLC,SchlagerMA,KuijpersM,WulfPS,vanSpronsenM, MacKin-toshFC,etal.Mixedmicrotubulessteerdynein-drivencargotransportinto dendrites.CurrBiol2010;20:290–9.

[95]YeB,ZhangY,SongW,YoungerSH,JanLY,JanY-N.Growingdendrites andaxonsdifferintheirrelianceonthesecretorypathway.Cell2007;130: 717–29.

[96]ZhengY,WildongerJ,YeB,ZhangY,KitaA,YoungerSH,etal.Dyneinis requiredforpolarizeddendritictransportanduniformmicrotubule orienta-tioninaxons.NatCellBiol2008;10:1172–80.

[97]ManiarTA, KaplanM,WangGJ,ShenK,WeiL,ShawJE,etal.UNC-33 (CRMP)andankyrinorganizemicrotubulesandlocalizekinesintopolarize axon–dendritesorting.NatNeurosci2012;15:48–56.

[98]EdwardsSL,YuS-C,HooverCM,PhillipsBC,RichmondJE,MillerKG.An organellegatekeeperfunctionforCaenorhabditiselegansUNC-16(JIP3)atthe axoninitialsegment.Genetics2013;194:143–61.

[99]KubaH,OichiY,OhmoriH.PresynapticactivityregulatesNa(+)channel dis-tributionattheaxoninitialsegment.Nature2010;465:1075–8.

[100] GrubbMS,BurroneJ.Activity-dependentrelocationoftheaxoninitial seg-mentfine-tunesneuronalexcitability.Nature2010;465:1070–4.

[101] SchaferDP,JhaS,LiuF,AkellaT,McCulloughLD,RasbandMN.Disruption oftheaxoninitialsegmentcytoskeletonisanewmechanismforneuronal injury.JNeurosci2009;29:13242–54.

Figure

Fig. 2. Regulation of protein mobility and actin structures in the AIS. (A) The AIS diffusion barrier

Références

Documents relatifs

From the results above, it is concluded that although critical pedagogy curriculum was supposed to change the relationship between teachers and students by

The prion protein may also function as a metal binding protein such as copper, yielding cellular antioxidant capacity suggesting a role in the oxidative stress home- ostasis..

Consistently, while pHluoTM fluorescence was depleted in and around the cell body but could still be detected in distal neurites 60 min after the onset of photobleaching (t 0 + 60

Even if there is a mean stoichiometric mixture inside the pre- chamber, the first hot products to be exhausted, are produced by combustion of the lean gases initially present in

La réhabilitation s’effectue le plus souvent dans le cadre d’une démarche systémique, centrée sur les déficits cognitifs de la PvSEP dans la situation de tests mais aussi,

We represent opaque layers with arbitrary colour fills, which include constant colour, linear and radial gradients of multiple colours, and gradient meshes.. Our interactive

PET proton electron transfer EPT electron proton transfer DMF N,N-dimethylformamide ORR oxygen reduction reaction CytP450 cytochrome P450 oxidase SCE standard calomel electrode.

However, in case of a postoperative hypoliquorrhoe syndrome, interns/registrars prescribed strict bed rest more frequently (p=0.004) and rel- ative bed rest less frequently as