• Aucun résultat trouvé

categories On compact exceptional objects in derived module Journal of Algebra

N/A
N/A
Protected

Academic year: 2022

Partager "categories On compact exceptional objects in derived module Journal of Algebra"

Copied!
20
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On compact exceptional objects in derived module categories

Liping Li1

CollegeofMathematicsandComputerScience;PerformanceComputingand StochasticInformationProcessing(MinistryofEducation),HunanNormal University,Changsha,Hunan410081,China

a r t i c l e i n f o a bs t r a c t

Article history:

Received13August2014 Availableonline5July2016 CommunicatedbyLeonardL.

Scott, Jr.

Keywords:

Tiltingobjects

Compactexceptionalobjects Derivedmodulecategories Derivedsimple

Recollements

LetAbeabasicandconnectedfinitedimensionalalgebraand Db(A) betheboundedderivedcategoryoffinitelygenerated left A-modules. Inthispaper weconsider lengthsof tilting objects andindecomposable compact exceptionalobjects in Db(A), and prove a sufficient condition such that these lengthsareboundedbythenumberofisomorphismclassesof simpleA-modules.Moreover,weshowthatalgebrassatisfying this criterion are bounded derived simple, anddescribe an algorithm to construct a family of algebras satisfying this condition.

©2016ElsevierInc.Allrightsreserved.

1. Introduction

Inalgebraicrepresentationtheory,oneofthemostinterestingandcomplicatedprob- lemsistoclassifyalgebrasuptoderivedequivalence.Explicitly,givenafinitedimensional

E-mailaddress:lipingli@hunnu.edu.cn.

1 TheauthorissupportedbytheNationalNaturalScienceFoundationofChina11541002,theConstruct ProgramoftheKeyDisciplinein HunanProvince,andtheStart-UpFundsofHunanNormalUniversity 830122-0037. Hethanks the referee for carefullychecking the manuscriptand providing many detailed suggestions,whichmakethecurrentformmuchbetter.

http://dx.doi.org/10.1016/j.jalgebra.2016.06.019 0021-8693/©2016ElsevierInc.Allrightsreserved.

(2)

(connectedandbasic) k-algebraA, wewantto characterizeor constructall(connected andbasic)algebraswhoseboundedderivedmodulecategoriesaretriangulatedequivalent to thebounded derivedcategory Db(A). This bigproject draws theattentionof many people, and quiteafew resultshave been obtainedintwo different approaches. In one direction,peoplehaveclassifiedcertaintypesofalgebraswithspecialproperties;see[1,2, 8,11–13,19,20].Intheotherdirection,severalpropertieshavebeenshowntobeinvariant underderivedequivalence,suchasnumberofisomorphismclassesofsimplemodulesand finitenessof global dimensions([16]), finitenessof finitistic dimensions([30]), finiteness of strong global dimensions ([18]), self-injective property ([3]), etc. However,there are much morequestions unsolved. Forinstance, afinite dimensionallocal algebrais only derivedequivalenttoalgebrasMoritaequivalenttoitself(see[34]),andwewillshowthat path algebras of Kronecker quivers have this property as well (see Example 5.1). But acomplete list of basic algebras which are only derived equivalent to algebras Morita equivalenttothemselves isnotavailableyet.

AccordingtoafundamentalresultofRickard([31,32]),analgebraΓ isderivedequiva- lenttoAifandonlyifthereisatiltingobjectT ∈Db(A) suchthatΓ isisomorphictothe oppositealgebraofEndDb(A)(T).Therefore,tiltingobjects,andmoregenerally,compact exceptionalobjectsareofparticularimportance,andhenceareextensivelystudied.For instance,AngeleriHügel,Koenig,andLiu(in[4–6])usethemtoinvestigaterecollements andstratificationsofderivedcategories; andAl-NofayeeandRickardpointoutin[3,33]

that for a fixed algebra, there are at most countably many basic tilting objects T up to isomorphism and degreeshift, where T is basicif its directsummands are pairwise nonisomorphic.

Inthis paper we mainlyfocus on lengths of objectsin derivedcategories, which are defined as follows. For an arbitrary P K(AP), the homotopy category of right boundedcomplexesof finitelygeneratedprojective A-modules,let

a(P) = sup{i∈Z|Pi= 0} −inf{i∈Z|Pi = 0},

calledtheamplitudeofP ([9]).SinceK(AP) andtherightboundedderivedcategory D(A) areequivalentastriangulatedcategories,forX∈D(A),wedefineitslengthto be2

l(X) = inf{a(P) + 1|P∈K(AP) is quasi-isomorphic toX}.

Clearly,anobjectX ∈D(A) hasfinitelengthifandonlyifX isquasi-isomorphictoa certainP∈Kb(AP),orequivalently, X iscompact.

HappelandZachariaprovein[18]thatlengthsofallindecomposableobjectsinDb(A) areboundedifandonlyifAispiecewisehereditary;thatis,Db(A) isequivalenttoDb(H),

2 Notethatourdefinitionoflengthsisslightlydifferentfromthatin[18].Thelengthdefinedherecounts termsbetweenthefirstnonzeroterm(ifitexists)andthelastnonzeroterm,whereasthelengthdefinedin [18]countsthenumberofdifferentialmapsbetweenthefirstnonzeroterm(ifitexists)andthelastnonzero term.Foracompactobject,thedifferenceofthesetwolengthsisexactly1.

(3)

where H isahereditary abeliancategory. Thuswe mayask underwhatconditionsthe lengths ofallindecomposable compactexceptional objectsarebounded. For connected algebras, we show thatthis boundedness property is derived invariant (Theorem 2.2), and it implies the boundedness of lengths of tilting complexes (Proposition 2.1). The following theoremgivesusacriterionguaranteeingtheaboveboundednessproperty.

Theorem 1.1. Let A be a basic and connected finite dimensional algebra. For a simple A-moduleS,letPS beitsprojectivecoverandletQS bethedirectsumofindecomposable projective A-modules(uptoisomorphism)notisomorphic toPS.Supposethatforevery simple module S, the socle of PS contains a simple summand S = S satisfying the following conditions:

(1) S isnotcontainedin theimageof any homomorphismP →PS forP add(QS);

(2) S iscontainedinthekernel ofany homomorphismPS →P forP add(QS).

Then the lengths of tilting objects and indecomposable compact exceptional objects in Db(A) are bounded by the number of isomorphism classesof simple A-modules. More- over, everyindecomposableprojectiveA-moduleappearsatpreciselyonedegreeforevery minimaltilting complex.

NotethatthepossibilitythatS=Sisexcluded.Indeed,ifithappens,thenPS=S, and hencebythesecond conditionAis adirectsumof twoalgebras,contradicting the assumption thatA isconnected.

By[5]and[6],analgebraAiscalledboundedderivedsimpleifDb(A) hasnonontrivial recollements bybounded derivedmodule categories of algebras.Clearly, local algebras areboundedderivedsimple.Buttherearemanyotherboundedderivedsimplealgebras ([27,28]).Algebras satisfyingthe conditionsinthe abovetheorem arebounded derived simple.Thatis:

Theorem 1.2. Let A be basic and connected finite dimensional algebra such that every simple A-module satisfies the conditions specified in Theorem 1.1. Then the following statements are equivalent:

(1) Kb(AP), thehomotopy category of perfect complexes, has a nontrivial torsion pair (T,F)suchthat either T or F isclosed under degreeshift;

(2) Aisatriangularmatrixalgebra,andT (resp.F)coincideswithathicksubcategory generated bya projectiveA-module P (resp. Q).

In this case, Aisbounded derivedsimple.

The conditions inTheorem 1.1 seem artificial and mysterious, and the reader may havetheintuitionthatalgebrasAsatisfyingthese conditionsarecomplicated.Actually,

(4)

theseconditionsimplythateveryvertexintheordinaryquiverofAhasatleastoneloop.

Moreover,wecanshowthatAhasinfiniteglobaldimension(ifAk)anditsfinitistic dimensionis 0.Therefore, A doesnot haveniceproperties peopleprefer suchas being hereditary, piecewise hereditary, quasi-hereditary, etc. It is reasonable to believe that indecomposableobjects inDb(A) arecomplicated.However, sinceinthis paperwe are onlyinterestedincompactexceptionalobjects,thebadbehaviorsofAcontrarilyrestrict thesizeofthesespecialobjectsaswellasstratificationsofDb(A).Furthermore,algebras satisfying these conditions are not rare. Actually, many weakly directed algebras and stringalgebrasareexamples.WewillgiveanexplicitalgorithminSection4toconstruct abigclassof algebrassatisfyingtheseconditions.

Thepaperisorganizedasfollow.InSection2weconsiderlengthsofobjectsinderived module categories, and prove Theorem 1.1. Stratification of bounded derived module categoriesisinvestigatedinSection3,whereTheorem 1.2isproved.InSections4and5 wedescribe someapplications,and ask severalquestionsforwhich theanswersarenot cleartous.

Inthispaperweonlyconsiderfinitedimensionalalgebrasoveranalgebraicallyclosed field k, although many results are still true in a much more general framework. All modules, unless specified explicitly, are finitely generated left modules. Composition of maps and morphisms is from right to left. The zeromodule is regardedas atrivial projectiveorfreemodule.ForafixedobjectXinamodulecategoryoraderivedcategory, add(X) istheadditivecategoryconsistingofdirectsummandsoffinitedirectsumsofX, andThick(X) isthesmallesttriangulatedcategory(closed underisomorphisms,degree shift,directsummands,and finitecoproducts) containingX.3 Thedegreeshift functor [] inderivedcategoriesisas usuallydefined.

2. Lengthsofcompactexceptionalobjects

Throughout this section let A be a basic and connected finite dimensional algebra overan algebraicallyclosed fieldkand letA-modbe thecategory of finitelygenerated left A-modules. Let Kb(AP) be the homotopy category of perfect complexes; that is, complexes of finitely generated projective A-modules such that all but finitely many termsarezero.Thefollowing embeddingandequivalencearewellknown:

Kb(AP)⊆K(AP)=D(A).

Moreover, Kb(AP) can be identified with a full subcategory of Db(A), and Db(A) is equivalent to K−,b(AP), the homotopy category of right bounded chain complexes of finitelygenerated projectiveA-moduleswithfinitehomologies;see [16].

3 WesayXclassicallygeneratesThick(X) inthissituation.

(5)

A complexP∈Kb(AP) isminimal ifithasnosummandsofthefollowingform:

. . . 0 P id P 0 . . . ,

where P add(AA).ItiseasytoseethatP isminimalifandonlyifeverydifferential map di : Pi Pi+1 sends Pi into the radical of Pi+1. Anobject X is compact (that is, the functor HomDb(A)(X,) commutes with small coproducts) if and only if it is quasi-isomorphic to a minimal perfect complex P Kb(AP) (which is unique up to isomorphism), and if and only if its length is finite. To calculate its length, we first choose a minimal perfectcomplex P ∈Kb(AP) quasi-isomorphic to X,and letr and s be the degreesof the first and thelast nonzero terms inthis complex.Then l(X)= l(P)=s−r+ 1.

AnobjectX ∈Db(A) isexceptional (orrigid)if

HomDb(A)(X, X[n])= HomK(AP)(P, P[n]) = 0

whenever n = 0. Anobject X Db(A) is tilting ifit is quasi-isomorphicto acertain exceptional P Kb(AP) (called a tilting complex) such that Thick(P) = Kb(AP).

Clearly,atiltingobjectisadirectsumoffinitelymanyindecomposablecompactexcep- tionalobjects.Ifalldirectsummandsarepairwisenonisomorphic,wesaythatthetilting objectis basic.

Proposition 2.1. Let A be abasic and connected algebra. If the lengths of allindecom- posable compactexceptionalobjects arebounded, soare thelengthsof tiltingobjects.

Proof. LetT ∈Db(A) beatiltingobject.Withoutlossofgeneralitywecanassumethat T is atilting complex (i.e., T Kb(AP))and is basicsince atilting complex and the corresponding basictilting complexobtainedbytaking onedirectsummand from each isomorphism class havethesame length.Write T =ni=1Ti, where n isthe numberof isomorphismclassesofsimpleA-modulesandeachTiisindecomposable.Clearlywecan assumethateveryindecomposablesummandisminimal. Ifr,s∈ZsatisfyTr= 0=Ts and Ti = 0 for i > s or i < r, the length of T is s−r+ 1. Since the length of each indecomposablesummand isboundedbyafixednumberm,l(T)nmisalsobounded if we can show thatthere is nogap among these indecomposable summands. Thatis, for any rj s, we haveTj = 0.Butthis is clear.Indeed, ifit is nottrue, then we usethis gaptodecomposeT =T⊕T suchthat

HomKb(AP)(T, T) = 0 = HomKb(AP)(T, T).

Consequently, A is derivedequivalent to EndKb(AP)(T)opEndKb(AP)(T)op. This is impossible sinceconnectednessisinvariantunderderivedequivalences. 2

(6)

By [18], boundedness of lengths of all indecomposable compact objects is equiva- lenttothepiecewisehereditaryproperty,whichisinvariantunderderivedequivalences.

Similarly,boundedness oflengthsof allindecomposable compactexceptionalobjects is invariantunderderivedequivalences,too.

Theorem2.2. LetA andB be two connectedbasic finite dimensional algebras. Suppose that A and B are derived equivalent. If lengths of indecomposable compact exceptional objects inDb(A)are bounded,then B has thesameproperty aswell.

Proof. Without loss of generality weonly consider minimal objects inhomotopy cate- goriesof perfectcomplexes. Assumethatl(X)m forallindecomposable exceptional objectsX ∈Kb(AP). SinceDb(B) is derivedequivalentto Db(A),by [31],there exists a tilting complex T Kb(BP) such that EndKb(BP)(T)op = A. Moreover, T in- duces a triangulated equivalence F : Kb(AP) Kb(BP) such that F(A) = T. Let G:Kb(BP)→Kb(AP) bethequasi-inverseofF.

NowletY beaminimal, indecomposableexceptionalobjectinKb(BP).ThenG(Y) isanindecomposableexceptionalobjectinKb(AP),whichhasatmostmnonzeroterms sincebyourassumptionG(Y)∈Kb(AP) isminimalandbythegivenconditionlengths ofindecomposableexceptionalobjectsinKb(AP) areboundedbym.

Note that F G(Y) is constructed as follows (Proposition 2.10 in [31]). First, for all i∈Z,nonzeroG(Y)i(whichareprojectiveA-modules)arereplacedbyobjectsinadd(T) to obtainabigradedcomplexY∗∗ over add(B). Thenwe takethetotalcomplexY of Y∗∗ anddefine F G(Y)=Y. Clearly,Y =F G(Y)=Y,andl(Y)m+l(T),where l(T) isthelengthofT.Thatis,lengthsofindecomposableexceptionalobjectsinKb(BP) areboundedbym+l(T). 2

Thefollowinglemmasandtheircorollarieswill beusedfrequently.

Lemma 2.3. Let S, PS, S and QS be as defined in Theorem 1.1 and suppose that the twoconditionsinithold. Theneveryhomomorphismα:PS →P,whereP isprojective, iseither asplitmonomorphismor hasS inthekernel.

Proof. Write P = P⊕Q with P add(PS) and Q add(QS). If α is not asplit monomorphism,thenSisinthekerneloftheinducedmapPS →P.ButSalsoliesin thekerneloftheinducedmapPS→Q bytheassumption.Theconclusionfollows. 2 LetP∈Kb(AP).WesaythatanindecomposableprojectiveA-moduleP appearsat degree iifPi hasasummand isomorphictoP.Thefollowinglemmais crucialtoprove Theorem 1.1.

Lemma2.4.LetS,PS,SandQS beasdefinedinTheorem 1.1andsupposethatthetwo conditions inithold. If P and Q areobjects in Kb(AP)suchthat r isthelastdegree ofP andsthefirstdegree ofQ wherePS appears,thenHomKb(AP)(P[r],Q[s])= 0.

(7)

Proof. Byassumption,wehavethefollowingdecompositions:Pr=PS⊕P,andPs= PS⊕Q.Now weconstructachainmapas follows:

. . . ds−3 Ps−2 ds−2

0

Ps−1 ds−1

0

PS⊕P ds

˜ α hs

Ps+1 ds+1

0 hs+1

. . .

. . . dr−3 Qr2 dr−2 Qr1 dr−1 PS⊕Q dr Qr+1 dr+1 . . . ,

where α˜=

α 0

0 0

, andαmaps thetopofPS toS inthesocle ofPS.

We check that αd˜ s1 = 0 and drα˜= 0. Indeed, sinceP isminimal, ds1(Ps−1) is containedintheradicalofPs.Butα˜mapstheradicalofPsto0,soαd˜ s−1= 0.Besides, by definition, α(P˜ s)= S ⊆PS Qr. Since Qr is the last degree where PS appears, the map PS →Qr+1 induced bydr cannot be asplit monomorphism.Bythe previous lemma, S iscontainedinthekernel ofthisinducedmap.Consequently,drα˜= 0.

The chainmap isnot nullhomotopic. Otherwise,there must exist maps hs: Ps Qr−1 and hs+1 : Ps+1 Qr such that α˜ = hsdr−1+hs+1dr. In particular, α is the composite ofthefollowingmaps:

PS

hsι dsι

Qr1⊕Ps+1

pdr−1 phs+1

PS ,

where ι : PS Ps and p : Qr PS are the inclusion and projection respectively.

Butthis isimpossible.Indeed,sincer andsarethefirstandthelastdegreeswherePS appears, Qr1⊕Ps+1 hasno summand isomorphicto PS.Therefore, by condition(1) inTheorem 1.1,S⊆PS isnotintheimageof[pdr−1 phs+1],andhenceisnotinthe image of αbytheabovefactorization. Thiscontradicts thedefinitionα,and ourclaim is proved. 2

Severalimmediate corollariesofthislemmaare:

Corollary2.5.LetS,PS,QS,andS beasdefinedinTheorem 1.1,andsupposethatthe two conditions in ithold. LetP ∈Kb(AP) be a minimal exceptional object.Then PS

appearsin atmostone degreeof P.

Proof. Suppose that PS appears in at least two degrees of P. Let r and s be the first degree and the last degree where PS appears. By the previous lemma, HomKb(AP)(P,P[s−r])= 0, where s−r= 0. This contradicts theassumption that P isexceptional. 2

(8)

Corollary2.6. LetAandPS be asinLemma 2.4.If P,Q∈Kb(AP) aretwominimal objects satisfying HomKb(AP)(P,Q[n]) = 0 for all n Z, then PS cannot appear in both P andQ.

Proof. SupposethatPS appearsinbothP andQ.Applyingdegreeshiftifnecessary, we can assume thatboth the last degree of P where PS appearsin P and the first degreeofQwherePSappearsinQare0.ThusHomKb(AP)(P,Q)= 0 byLemma 2.4, contradictingtheassumption. 2

Nowwerestateand proveTheorem 1.1.

Theorem 2.7. Let A be a basic and connected finite dimensional algebra, and suppose that all simple A-modules satisfy the conditions in Theorem 1.1. Then the lengths of tiltingobjectsandindecomposablecompactexceptionalobjects Db(A)areboundedbythe number of isomorphism classes of simple A-modules. Moreover, every indecomposable projectiveA-module appearsatpreciselyone degreeforevery minimaltilting complex.

Proof. Take anindecomposableexceptionalobject P∈Kb(AP).Without loss ofgen- erality we can assume that P is minimal. Let r,s Z such thatPr and Ps are the firstandlast nonzerotermsinP.Thenl(P)=s−r+ 1 byourdefinition.SinceP is indecomposable,forrts,Pt= 0.However,byCorollary 2.5,everyindecomposable projective A-module (up to isomorphism)appears at no more than one degreein P. Therefore,P canhaveatmostnnonzeroterms,wherenisthenumberofisomorphism classesofsimpleA-modules.Thatis,l(P)=s−r+ 1n.

LetT ∈Kb(AP) beaminimaltiltingcomplex.ByCorollary 2.5,everyindecomposable projective A-module appears at no more than onedegree of T. But sinceThick(T) = Kb(AP),everyindecomposable projectiveA-modulemust appearatsomedegree ofT. Otherwise,supposethatPe=Aedoesnotappear,wheree∈Aisaprimitiveidempotent.

Then

Thick(T)Thick(A(1−e))=Kb(AP).

This is impossible. Therefore, every indecomposable projective A-module appears at preciselyonedegreeof T.

ObservethatT mustbe connected asintheproof ofLemma 2.1.Thatis,ifr,s∈Z satisfy Tr = 0 = Ts and Ti = 0 for i > s or i < r, then Tj = 0 for r j s.

Therefore, the lengthof T must be bounded bythe number of isomorphismclasses of simpleA-modulesbythesecond statement. 2

Inthefollowingexampleweuse theaboveresultsto classifythederivedequivalence classes of aparticular algebra A. A similar examplehas been considered in[7, Exam- ple 5.13],andinSection4wewillconsider amoregeneralconstruction.

(9)

Example2.8.LetAbethepathalgebraofthefollowingquiverwithrelationsδ2=ρ2= ρα=αδ= 0.

x

δ α

y ρ

Uptoisomorphism,thisalgebrahastwoindecomposableprojectivemodulesasfollows:

Px= x

x y, Py= y y, both ofwhichsatisfytheconditionsinTheorem 1.1.

ByCorollary 2.5,minimalindecomposableexceptionalobjectsinKb(AP) havelengths at most2.Moreover,ifl(P)= 2,thenthere existsacertain i∈ZsuchthatPi=Pya and Pi+1 =Pxb witha,b1.We cancheck thatP is indecomposableif andonly if a=b= 1. Inconclusion, upto degreeshiftand quasi-isomorphisms,Kb(AP) only has three indecomposableexceptionalobjects:stalkcomplexesPx andPy,and

X := Py

d Px ,

where dmapsthetopof Py ontothesimplesummandSy inthesocleofPx.

UsingTheorem 2.7,thereadercancheckthatuptodegreeshiftandquasi-isomorphism Kb(AP) has three basictilting complexes: T1 =Px⊕Py, T2 =Px[1]⊕X, and T3 = Py⊕X.Clearly,EndKb(AP)(T1)op=A.

By computation, Bop = EndKb(AP)(T2) is isomorphic to the path algebra of the following quiverwithrelationsβαβ = 0=δ2,δα=βδ= 0:

x

α

y δ β

.

Similarly, by computation,Cop = EndKb(AP)(T3) isisomorphic to the path algebraof thefollowing quiverwithrelationsαβα= 0=δ2,δα=βδ= 0:

x

α

y

β

δ.

WeconcludethatuptoMoritaequivalence,Aisderivedtothreealgebras:A,B,andC as theylieindifferentMoritaequivalenceclasses.

A careful observation tells us that B = Cop. This is reasonable since A = Aop. Moreover, B hasatiltingcomplexT =Bex[1]⊕M whereM =Bey/Bex.It iseasyto check thatEndB(T)op=A.

(10)

Proposition 2.9. Let A be a basic and connected finite dimensional algebra, and sup- posethatallsimpleA-modulessatisfy theconditionsinTheorem 1.1.Thenthefinitistic dimensionofA is0.

RecallthatthefinitisticdimensionofAisthesupremumofprojectivedimensionsof indecomposableobjectsinA-modwithfiniteprojectivedimension.Thefinitisticdimen- sionofAequals 0ifandonlyifallfinitelygenerated A-moduleshavingfiniteprojective dimensionareprojective.

Proof. Supposethattheconclusioniswrong.Thenwe canfindsomeM∈A-mod such thattheprojectivedimensionofMisnwithn>0.Takeaminimalprojectiveresolution ofM as follows

0→Pn→Pn1→. . .→P00.

Byourassumption,Pn = 0,andthemapdn :Pn→Pn−1must beinjective.

Take a nonzero indecomposable summand PS of Pn and denote by ι the inclusion PS Pn. Since the projective resolution is minimal, ι cannot be a split monomor- phism.ByLemma 2.3,ιandhencedn cannotbeinjective.Theconclusionfollowsbythe contradiction. 2

3. Stratificationofboundedderivedmodulecategories

In this section we consider stratification of bounded derived module categories of algebrassatisfyingtheconditionspecifiedinTheorem 1.1,showingthattheyarebounded derivedsimple.Thefollowingdefinitionistakenfrom [10,Section2,ChapterI].

Definition 3.1.A pairof strict full subcategories(T,F) of atriangulatedcategory C is calledatorsionpairifthefollowing conditionshold:

(1) C(T,F)= 0 foranyT ∈ T andF ∈ F.

(2) T ∈ T impliesT[1]∈ T;andF ∈ F impliesF[1]∈ F.

(3) Forany X ∈ C, thereisatriangle(whichisuniqueuptoisomorphism) TX X FX TX[1] .

NotethatT istheleft perpendicular category of F,and F istheright perpendicular category ofT (see[15]).

Thefollowingkeyobservationiscrucialto provethemainresultofthis section.

Lemma3.2. LetA bea finitedimensional algebra. Leteandf betwoorthogonal idem- potents such that e+f = 1. If there existsa torsion pair (T,F) of Kb(AP) suchthat T ⊆Thick(Ae),F ⊆Thick(Af),thenT = Thick(Ae)and F= Thick(Af).

(11)

Proof. We only need to show the other inclusions. Take an arbitrary object U Thick(Af).Since(T,F) isatorsionpairofKb(AP),thereisacanonicaltriangle

V U W V[1]

with V ∈ T ⊆Thick(Ae) andW ∈ F ⊆Thick(Af). However,sincebothU and W are containedinThick(Af),soisV.Therefore,V Thick(Ae)Thick(Af).Weclaimthat V isquasi-isomorphicto 0.Ifthis holds,thenU =W ∈ F,so Thick(Af)⊆ F.

Indeed,sinceV Thick(Ae),wegetaminimalrepresentationofV P: . . .→0→Pr→. . .→Ps0→. . .

suchthatallPiarecontainedinadd(Ae).Similarly,sinceV Thick(Af),wegetanother minimal representationofV

Q: . . .→0→Ql→. . .→Qt0→. . . suchthatallQi arecontainedinadd(Af).

Now let us regard V and its two representations as objects in Db(A). If V = 0, then there is a simple module X and a certain n Z with HomDb(A)(V,X[n]) = 0.

Consequently, we have both HomDb(A)(P,X[n]) = 0 and HomDb(A)(Q,X[n]) = 0.

However,thisimpossiblesincetermsinP andQ havenoisomorphicindecomposable summands.Therefore,V isquasi-isomorphicto0,andourclaimisproved.

We haveshownF ⊇Thick(Af).ThefactthatT ⊇Thick(Ae) canbe shownby the sameargument.This finishestheproof. 2

Animmediatecorollary is:

Corollary 3.3. LetT,F,e,f be asin thepreviousproposition. ThenA is isomorphic to thetriangular matrixalgebra (see[26])

eAe 0

f Ae f Af

.

Proof. SinceAe∈ T,Af∈ F, and(T,F) isatorsionpairofKb(AP),oneshouldhave eAf∼= HomA(Ae, Af)= HomKb(AP)(Ae, Af) = 0. 2

Thefollowing propositionimpliesthefirstpartofTheorem 1.2.

Proposition 3.4. LetA beabasic andconnectedfinite dimensionalalgebra, andsuppose that allsimple A-modules satisfy the conditions in Theorem 1.1.If (T,F) is a torsion pair of Kb(AP) such that either T or F is closed under degree shift,then itcoincides with atorsionpair(Thick(P),Thick(Q))inducedbytwoprojectiveA-modulesP andQ.

(12)

Proof. LetE beacompleteset ofprimitiveorthogonalidempotentsofA,anddefine E1={∈E|Aappears in a certain minimalX ∈ T };

E2={∈E|Aappears in a certain minimalY ∈ F}. Define e =

∈E1 and f =

∈E2. Since (T,F) is a torsion pair of Kb(AP) and eitherT orF isclosedundershifts,ononehandHomKb(AP)(X,Y[n])= 0 foralln∈Z, X ∈ T and Y ∈ F,so E1∩E2 =byCorollary 2.6; ontheother hand,E1∪E2 =E sinceobjectsinT and F classicallygenerated Kb(AP). Consequently,e+f = 1. Thus byLemma 3.2T = Thick(Ae) andF = Thick(Af). 2

Now we define recollementsof triangulated categories; for moredetails, see [4–7,14, 21,29].

Definition3.5. A recollementof atriangulatedcategory C bytriangulatedcategories D andE isexpressed diagrammaticallyas follows

D i C j

i

i!

E

j j!

with six exact, additivetriangulated functors i,i,i!,j!,j,j satisfying the following conditions:

(1) (i,i,i!),and(j!,j,j) bothareadjointtriples;

(2) i,j! andj arefullyfaithful;

(3) i!j= 0;

(4) foreachX ∈ C,thereare triangles

ii!(X) X jj(X) ii!(X)[1] , j!j(X) X ii(X) j!j(X)[1].

Thefollowingtheorem,provedin[5],givesarelationbetweenrecollementsofderived modulecategoriesandexceptionalcompactobjects.

Theorem 3.6. [5, Corollary 2.5] Let Γ be a finite dimensional algebra. If the bounded derived category Db(Γ) is a recollement of Db(B) and Db(C), then there are objects T1,T2∈Db(Γ)satisfying:

(1) Both T1 andT2 arecompactandexceptional;

(2) HomDb(Γ)(T1,T2[n])= 0 foralln∈Z;

(13)

(3) T1⊕T2 generates Db(Γ) astriangulated category.4

Moreover, wehave EndDb(Γ)(T1)op=C andEndDb(Γ)(T2)op=B.

According to[27],analgebraΓ issaidto be boundedderived simple ifDb(Γ) has no nontrivial recollementsbybounded derivedmodulecategoriesofalgebras.

Werestate thesecond partof Theorem 1.2.

Theorem3.7.LetAbeabasicandconnectedfinitedimensionalalgebra,andsupposethat all simpleA-modulessatisfy the conditionsin Theorem 1.1.Then A isboundedderived simple.

Proof. This is clearly true if A is a local algebra. Suppose that A is not local and is not bounded derivedsimple. Therefore,by [7,Theorem 5.12], A isnot Kb(AP)-simple either.Thatis,thehomotopycategoryKb(AP) hasanontrivial recollementas follows

Kb(SP) i Kb(AP) j

i

i!

Kb(RP)

j j!

,

where R and S are finite dimensional algebras. It is clear thatiS, j!R, and jR are all compact. Without loss of generality we can assume that they are minimal. Since Kb(SP) = Thick(S) and i is afullembedding, wehaveImi= Thick(iS). Similarly, Imj! = Thick(j!R),andImj= Thick(jR).

Let E be acomplete set ofprimitive orthogonal idempotentsof A, andlet X (resp.

Y andZ)beaminimalobjectinKb(AP) isomorphictoj!R(resp.iS andjR).Define E1={∈E |Aappears inX},

E2={∈E|Aappears inY}, E3={∈E|A appears inZ}. Correspondingly,let

e=

E1

, f =

E2

, λ=

E3

.

By[14,Lemma2.6],(Thick(j!R),Thick(iS)) isatorsionpairofKb(AP).ByPropo- sition 3.2 anditsproof,weknow

4 HerewesayT1T2 generatesDb(Γ) ifforanynonzeroobjectX Db(Γ),there isacertainnZ suchthatHomDb(Γ)(T1T2,X[n])= 0.ThisholdsifThick(T1T2)=Kb(AP);i.e.,T1T2 classically generatesKb(AP).

(14)

e+f = 1, Thick(j!R) = Thick(Ae), Thick(iS) = Thick(Af).

Therefore,eAf∼= HomA(Ae,Af)= 0.

By[14,Lemma2.6],(Thick(iS),Thick(jR)) isatorsionpairofKb(AP),too.Again, byProposition 3.2anditsproof,weknow

f +λ= 1, Thick(jR) = Thick(Aλ).

Consequently,

λ=e, Thick(Aλ) = Thick(Ae) f Ae∼= HomA(Af, Ae) = 0.

ButthisimpliesthatA∼=eAe⊕f AfsinceeAf= 0=f Ae,contradictingtheassumption thatA isconnected.Theconclusionfollows. 2

However, the algebras A in the above theorem in general are not derived sim- ple. Indeed, the algebra A in Example 2.8 is bounded derived simple by the above theorem, but it is not derived simple. Actually, for every triangular matrix algebra A = (eAe,f Af,f Ae), as we pointed out in [26] D(A) always has the following non- trivialrecollement

D(f Af) i D(A) j

i

i!

D(eAe)

j j!

,

wherethefunctorsarespecified asinProposition3.6 of[26].

4. Weaklydirectedalgebras

In this section we apply the results in the previous sections to a special class of algebras. As before, we only consider connected and basic finite dimensional algebras overanalgebraicallyclosedfieldk.

Definition 4.1. A finite dimensional algebra A is said to be weakly directed if there is a complete set of primitive orthogonal idempotents E = {ei}ni=1 such that HomA(Aej,Aei)=ejAei= 0 onlyifji.

Sincethefieldisalgebraicallyclosed,Aisweaklydirectedifandonlyiforientedcycles intheordinaryquiverareallloops.Examplesofweaklydirectedalgebrasincludequotient algebras of finite dimensional hereditary algebras, local algebras, category algebras of skeletalfiniteEIcategories([23]),extensionalgebrasofstandardmodulesofstandardly stratifiedalgebras ([24]).

Thefollowinglemmaisdescribed in[25].

(15)

Lemma 4.2. Let A be a weakly directed algebra. Then every simple A-module can be identified with a simple eAe-module for some e E. Moreover, for any M A-mod and f ∈E,theleftf Af-modulef M is alsoan A-module.

Proof. Thefirst statement is containedin Proposition2.2 in[25]. Toshow the second one,notethatbytheweaklydirectedstructureofA,allarrowsbetweendifferentvertices generate a two-sided ideal J of A, and ni=1eiAei = A/J. As a summand, f Af is a quotient algebraofA.Thesecondstatementfollowsfromthis observation. 2

Bythislemma,theA-modulef M andthef Af-modulef M havethesamecomposi- tionfactors,and hencethesameLoewylength.

ThepropositionbelowgivesapracticalmethodtochecktheconditionsinTheorem 1.1 forweaklydirectedalgebras.

Lemma 4.3. Let A be a weakly directed algebra and e∈ E. Then the simple A-module Se =Ae/radAe satisfies theconditions in Theorem 1.1 if and only if the socle of Ae contains a simple summand Se =Ae/radAe such that for any x∈eA(1−e)we have Sex= 0.

ByLemma 4.2,Ae/radAe∼=eAe/radeAe,andSe⊆eAe.Therefore,therightaction of x∈eA(1−e) onSe isinducedfromthemultiplicationofeAebyeA(1−e) from the right side.

Proof. Wefirstprovetheifpartbychecking conditionsinTheorem 1.1.Note thatthe traceofQS =A(1−e) isA(1−e)Ae,whichisnotsupportedonesinceeA(1−e)Ae= 0 by theweaklydirectedstructure.ButSe⊆eAeisnotcontainedin(1−e)Ae,socondition (1) inTheorem 1.1isalsotrue.

Let β : Ae P be an A-module homomorphism, where P add(A(1−e)). Since HomA(Ae,A(1−e)) = eA(1−e), β corresponds to an element x = β(e) eP, so β(Ae)=Aex.Bytheassumption,Sex= 0.Therefore, β(Se)= 0.Inotherwords, Seis containedinthekernelofβ, andhencecondition(2)inTheorem 1.1holds.

Conversely,supposethatconditionsinTheorem 1.1hold.Thenbythepreviouspara- graph, for any x eA(1−e), we can find a module homomorphism β HomA(Ae, A(1−e)) such thatβ(Ae)=Aex. Inparticular, Sex=β(Se)= 0 since byLemma 2.3 Seisinthekernelofβ.This finishestheproof. 2

Remark 4.4. Since for any e E, eA(1−e) is a finite dimensional vector space, we can takeafinite basis{xi}ni=1 ofeA(1−e). Moreover,we canchooseaminimal set of elements{vj}mj=1 ⊆eAewhichgeneratesthesocleofeAe.Therefore,inpracticeweonly need toverifythatvjxi= 0 for all1inand1jm.

Considerthefollowingexample:

(16)

Example4.5.LetAbethepathalgebraofthefollowingquiverwithrelationsδ2=θ2= ρ2= 0, θρ=ρθ= 0,αδ=βδ= 0,andθα=ρβ = 0.

x

α

β

δ y

θ ρ

Indecomposableprojectivemodulesare:

Px= x x y y

y y

, Py = y y y.

ItisroutinetocheckthatPxsatisfiesallconditionsinTheorem 1.1,buttheindecom- posableprojectivemodulePy failscondition(2).Indeed,thereisashortexactsequence

0 Py Px M 0 ,

whereM= x

x y.ThisisbecausethesocleofPyisspannedbyρandθ,butθβ= 0 andρα= 0.

Weend this section byintroducing a way to construct weaklydirected algebras for whichallsimplemodulessatisfytheconditionsinTheorem 1.1.LetQ= (Q0,Q1) be a finiteconnectedquiverwithoutorientedcycles,whereQ0andQ1arethevertexset and the arrow set respectively.To each v Q0 we assign an integer mv 2,and to each arrowα:v→wwe assignanintegerlα1 such thatlα<min{mv,mw}.

Nowaddalooptv toeachvertex v∈Q0to getanotherquiverQ.˜ Define R=kQ/˜ tmvv; twα−αtv;αtlvα|v∈Q0; Q1α:v→w.

Thisisafinitedimensionalalgebracontainingatwo-sidedidealJgeneratedbyallarrows inQ1.LetI⊆J2 be anarbitrarytwo-sidedideal,anddefine A=R/I.

Hereisanexampleexplainingtheaboveconstruction.

Example4.6.LetAbe thepathalgebraofthefollowingquiver withrelations (1) δ3=ρ3=θ3= 0;

(2) αδ =ρα,αδ2= 0;

(3) βρ=θβ,βρ2= 0;

(4) βα= 0.

Références

Documents relatifs

Using the topolog- ical description of Opper, Plamondon and Schroll in [OPS] for the indecomposable objects of the derived category of any gentle al- gebra, one obtains here a

Ce devait ˆetre, me dit-il, un simple travail de v´erification `a partir de ses notes, lesquelles annon¸caient, entre autre, la multiplicativit´e du d´eterminant pour les morphismes

(2) The real Clifford algebras Clp,q with p−q 6= 4k+1 and the algebras Cl2m(C) viewed as algebras over R are the only real simple associative Γ-commuta- tive algebras.. Note that

For an abelian category C and a filtrant preordered set Λ, we prove that the derived category of the quasi-abelian category of filtered objects in C indexed by Λ is equivalent to

In this paper, we give an explicit categorical definition of Lie 3-algebras and prove that these are in 1-to-1 correspondence with the 3-term Lie infinity algebras, whose bilinear

(proceedings, Ravello 1982), Lect. Notes in Math. Beltrametti, On the Chow group and the intermediate Jacobian of a conic bundle, Annali di Mat.. Bernardara, Fourier–Mukai transforms

In case of ^4, the answer of the problem (C) is NO, i.e., there exist examples of finite reflection groups with the same set of the exponents and the different Coxeter graphs (cf...

THEOREM (C): Over fields of characteristic zero, the universal class D of all Lie algebras is locally coalescent.. By the derived join theorem the join of a pair