• Aucun résultat trouvé

Bifurcation analysis of a general class of non-linear integrate and fire neurons.

N/A
N/A
Protected

Academic year: 2021

Partager "Bifurcation analysis of a general class of non-linear integrate and fire neurons."

Copied!
51
0
0

Texte intégral

(1)

HAL Id: inria-00142987

https://hal.inria.fr/inria-00142987v5

Submitted on 12 Mar 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub-

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non,

integrate and fire neurons.

Jonathan Touboul

To cite this version:

Jonathan Touboul. Bifurcation analysis of a general class of non-linear integrate and fire neurons..

[Research Report] RR-6161, INRIA. 2008, pp.47. �inria-00142987v5�

(2)

a p p o r t

d e r e c h e r c h e

9-6399ISRNINRIA/RR--6161--FR+ENG

Thème BIO

Bifurcation analysis of a general class of non-linear integrate and fire neurons.

Jonathan Touboul

N° 6161

March 4, 2008

(3)
(4)

Jonathan Touboul

ThèmeBIOSystèmesbiologiques

ProjetOdyssée

Rapport dereherhe 6161Marh4,200847pages

Abstrat: Inthispaperwedenealassof formalneuronmodels beingomputationally

eientandbiologiallyplausible,i.e. abletoreprodueawidegamutofbehaviorsobserved

in in-vivo or in-vitro reordingsof ortial neurons. This lass inludes for instane two

modelswidelyusedin omputationalneurosiene,theIzhikevih andtheBretteGerstner

models. Thesemodelsonsistina4-parametersdynamialsystem. Weprovidethefullloal

bifurationsdiagramofthemembersofthislass, andshowthattheyallpresentthesame

bifurations: an Andronov-Hopf bifuration manifold, a saddle-nodebifuration manifold,

a Bogdanov-Takens bifuration, and possibly a Bautin bifuration. Among other global

bifurations, this system shows asaddle homolini bifuration urve. We show how this

bifuration diagram generates the most prominent ortial neuron behaviors. This study

leads us to introdue a new neuron model, the quarti model, able to reprodue among

allthebehaviorsoftheIzhikevihandBretteGerstnermodels,self-sustainedsubthreshold

osillations,whihareofgreatinterestin neurosiene.

Key-words: neuron models, dynamial system analysis, nonlinear dynamis, Hopf bi-

furation,saddle-nodebifuration,Bogdanov-Takensbifuration,Bautinbifuration,saddle

homolinibifuration,subthresholdneuronosillations

jonathan.touboulsophia.inria.fr

OdysséeisajointprojetbetweenENPC-ENSUlm-INRIA

(5)

Résumé: Dansetartilenousdénissonsunelasseformelledeneuronesàlafoiseaes

en termes de simulation et biologiquement plausibles, 'est-à-dire apables de reproduire

une largegammede omportements observésdansdes enregistrementsin-vivoou in-vitro

de neuronesortiaux. Cette lasse inlut par exemple deux des modèles lesplus utilisés

dans les neurosienesomputationnelles: le modèle d'Izhikevih et le modèle de Brette

Gerstner. Cesmodèlesonsistentenunsystèmedynamiqueà4paramètres. Nousalulons

le diagramme de bifuration loales omplet des membres de ette lasse et prove qu'ils

présententtouslesmêmes bifurations: une variétéde bifurations d'Andronov-Hopf,une

variétédebifurationssaddle-node,unebifurationdeBogdanov-Takens,etéventuellement

une bifuration de Bautin. Parmis d'autresbifurations globales, es systèmes présentent

aussiune ourbe desaddle homolini bifurations. Nous montrons quee diagrammede

bifurationsgénèrelesprinipaux omportementsdeneuronesortiaux. Cetteétudenous

mèneàintroduireunnouveau modèle, lequarti model, apablede reproduire enplusdes

omportementsdesmodèlesd'IzhikevihetdeBretteGerstner,desosillationssousleseuil

auto-entretenues,quisontd'ungrandintérêtenneurosienes.

Mots-lés : modèlesde neurones,systèmes dynamiques,dynamique non-linéaire,bifur-

ation de Hopf, bifuration saddle-node, bifuration de Bogdanov-Takens, bifuration de

Bautin,saddlehomolinibifuration, osillationssousleseuil entretenues

(6)

During the past few years, in the neuro-omputing ommunity, the problem of nding a

omputationallysimpleandbiologiallyrealistimodel ofneuronhasbeenwidely studied,

inordertobeabletoompareexperimentalreordingswithnumerialsimulationsoflarge-

salebrain models. The keyproblem is to nd amodel of neuronrealizing aompromise

between its simulationeieny and its ability to reprodue what is observed at the ell

level,oftenonsideringin-vitroexperiments[15,18,25℄.

Amongthenumerousneuronmodels,fromthedetailed Hodgkin-Huxleymodel[11℄still

onsideredasthereferene,butunfortunatelyomputationallyintratablewhenonsidering

neuronalnetworks,down tothesimplest integrateandremodel [8℄veryeetiveompu-

tationally,butunrealistiallysimpleandunabletoreproduemanybehaviorsobserved,two

modelsseemtostandout[15℄: theadaptivequadrati(Izhikevih,[14℄,andrelatedmodels

suhasthethethetamodelwithadaptation[6,10℄)andexponential(BretteandGerstner,

[5℄) neuron models. These twomodelsare omputationallyalmost aseientasthe inte-

grate and remodel. The Brette-Gerstner model involvesan exponential funtion,whih

needsto be tabulated if we wantthe algorithm to beeient. They are also biologially

plausible, and reprodue several important neuronal regimes with a good adequay with

biologial data, espeially in high-ondutane states, typial of ortial in-vivo ativity.

Nevertheless,theyfailin reproduingdeterministiself-sustainedsubthresholdosillations,

behaviorof partiularinterestin ortial neuronsforthepreisionandrobustnessof spike

generationpatterns,forinstanein theinferiorolivenuleus[4,23,24℄,inthestellateells

of theentorhinalortex[1, 2, 17℄ and in thedorsal root ganglia(DRG) [3,20, 21℄. Some

modelshavebeenintroduedtostudyfromatheoretialpointofviewtheurrentsinvolved

in the generation of self-sustained subthreshold osillations [26℄, but the model failed in

reproduinglots ofotherneuronalbehaviors.

Theaimofthispaperistodeneandstudyagenerallassofneuronmodels,ontaining

the Izhikevih and Brette-Gerstner models, from a dynamial systems point of view. We

haraterizetheloalbifurationsofthesemodelsandshowhowtheirbifurationsarelinked

with dierent biologial behaviors observedin the ortex. This formal study will lead us

to dene a new model of neuron, whose behaviors inlude those of the Izhikevih-Brette-

Gerstner(IBG)modelsbutalso self-sustainedsubthresholdosillations.

Intherstsetionofthispaper,weintrodueagenerallassofnonlinearneuronmod-

els whih ontainsthe IBG models. We study the xed-point bifuration diagram of the

elementsofthislass,andshowthattheypresentthesameloalbifurationdiagram,with

asaddle-node bifurationurve,an Andronov-Hopf bifuration urve,aBogdanov-Takens

bifurationpoint,andpossiblyaBautinbifuration,i.e. allodimensiontwobifurationsin

dimensiontwoexepttheusp. Thisanalysisisappliedin theseondsetiontotheIzhike-

vihandtheBrette-Gertsnermodels. Wederivetheirbifurationdiagrams,andprovethat

noneofthemshowtheBautinbifuration. Inthethirdsetion, weintrodueanewsimple

model -the quarti model- presenting, in addition to ommon properties of thedynamial

system of this lass, a Bautin bifuration, whih an produe self-sustained osillations.

Lastly,thefourthsetionisdediated tonumerialexperiments. Weshowthatthequarti

(7)

model is able to reprodue some of the prominent features of biologial spiking neurons.

Wegivequalitativeinterpretationsof thosedierentneuronalregimesfrom thedynamial

systemspointofview,in ordertogiveagraspofhowthebifurationsgeneratebiologially

plausiblebehaviors. Wealsoshowthatthenewquartimodel,presentingsuperritialHopf

bifurations,isableto reproduetheosillatory/spikingbehaviorpresentedforinstane in

theDRG. Finally weshow that numerial simulationresults of thequarti model show a

goodagreementwithbiologialintraellularreordingsintheDRG.

1 Bifuration analysis of a lass of non-linear neuron

models

Inthissetionweintroduealargelassofformalneuronswhihareabletoreprodueawide

rangeofneuronalbehaviorsobservedinortialneurons. Thislassofmodelsisinspiredby

thereviewmadebyIzhikevih[15℄. Hefoundthatthequadratiadaptiveintegrate-and-re

model wasableto simulate eiently alot of interestingbehaviors. Brette and Gerstner

[5℄denedasimilarmodelofneuronwhihpresentedagoodadequaybetweensimulations

andbiologialreordings.

Wegeneralize thesemodels, anddene anew lassofneuronmodels,widebut spei

enoughto keepthediversityofbehaviorsoftheIBGmodels.

1.1 The general lass of non-linear models

Inthispaper,weareinterestedin neuronsdened byadynamialsystemofthetype:

(

dv

dt =F(v)w+I

dw

dt =a(bvw)

wherea, bandI arerealparametersandF isarealfuntion12.

Inthisequation,vrepresentsthemembranepotentialoftheneuron,wistheadaptation

variable, I representstheinput intensity of theneuron, 1/a theharateristi time ofthe adaptationvariableandbaountsfortheinterationbetweenthemembranepotentialand

theadaptationvariable 3

.

This equationis averygeneralmodelof neuron. Forinstane whenF is apolynomial

of degreethree, weobtain aFitzHugh-Nagumo model, when F is apolynomial of degree

1

Thesamestudyanbedone for aparameter dependentfuntion. More preisely,letE R

n

bea

parameterspae(foragivenn)andF:E×RRaparameter-dependentrealfuntion.Alltheproperties showninthissetionarevalidforanyxedvalueoftheparameterp.Furtherp-bifurationsstudiesanbe doneforspeiF(p,·).

2

TherstequationanbederivedfromthegeneralI-V relationinneuronalmodels:CdV

dt =II0(V) g(V EK)whereI0(V)istheinstantaneousI-V urve.

3

Seeforinstanesetion2.2wherethe parametersoftheinitialequation (2.2 )arerelatedtobiologial

onstantsandwhereweproeedtoadimensionlessredution.

(8)

F

Gerstnermodel[5℄. However,inontrastwithontinuousmodelsliketheFitzHugh-Nagumo

model[8℄,thetwolaterasesdivergewhenspiking,andanexternalresetmehanismisused

afteraspikeisemitted.

Inthispaper,wewantthislassofmodelstohaveommonpropertieswiththeIzhikevih-

Brette-Gerstner(IBG) neuron models. Tothis purpose,let usmakesomeassumptionson

thefuntionF. Therstassumptionisaregularityassumption:

Assumption(A1). F isatleastthree timesontinuouslydierentiable.

Aseondassumptionisneessarytoensureusthatthesystemwouldhavethesamenumber

ofxedpointsastheIBGmodels.

Assumption(A2). The funtion F isstritlyonvex.

Denition1.1(Convexneuronmodel). Weonsiderthe two-dimensionalmodeldenedby

the equations:

(

dv

dt =F(v)w+I

dw

dt =a(bvw) (1.1)

whereF satisestheassumptions (A1)and(A2)andharaterizesthe passive propertiesof the membrane potential.

Many neurons of this lass blow up in nite time. These neuron are the ones we are

interestedin.

Remark. Notethatalltheneuronsofthislassdonotblowupinnitetime. Forinstane

ifF(v) =vlog(v),itwillnot. ForF funtionssuhthatF(v) = (v1+α)R(v)forsomeα >0,

where lim

v→∞R(v) > 0 (possibly ), the dynamial system will possibly blow up in nite

time.

If the solution blows upat time t, a spikeis emitted, and subsequently we havethe followingresetproess:

(v(t) =vr

w(t) =w(t∗−) +d (1.2)

wherevr is theresetmembranepotentialandd >0arealparameter. Theequations(1.1)

and(1.2),togetherwithinitialonditions(v0, w0)giveustheexisteneanduniquenessofa

solutiononR

+

.

Thetwoparametersvr andd areimportantto understandtherepetitivespikingprop-

erties ofthe system. Nevertheless, the bifurationstudy with respet to these parameters

isoutsidethesopeofthispaper,andwefoushereonthebifurationsofthesystemwith

respetto(a, b, I),in ordertoharaterizethesubthresholdbehavioroftheneuron.

(9)

1.2 Fixed points of the system

Tounderstand thequalitative behaviorof thedynamial systemdened by1.1 beforethe

blowup(i.e. betweentwospikes),webeginbystudyingthexedpointsand analyzetheir

stability. The linear stability of a xed point is governed by the Jaobian matrix of the

system,whihwedenein thefollowingproposition.

Proposition 1.1. The Jaobianof the dynamialsystem (1.1) anbewritten:

L:=v7→

F(v) 1 ab a

(1.3)

Thexedpointsofthesystemsatisfytheequations:

(F(v)bv+I= 0 bv=w

(1.4)

LetGb(v) :=F(v)bv. From(A1)and (A2),weknowthat thefuntion Gb isstritly

onvexandhasthesameregularityasF. TohavethesamebehaviorastheIBGmodels,we

wantthesystemtohavethesamenumberofxed points. Tothispurpose,itis neessary

thatGbhasaminimumforallb >0. Otherwise,theonvexfuntionGbwouldhavenomore

thanone xed point, sinea xedpointof the systemis theintersetion ofan horizontal

urveandGb.

This means for the funtion F that inf

xRF(x) 0 and sup

xR

F(x) = + . Using the

monotonypropertyofF, wewritetheassumption(A3) :

Assumption(A3).

x→−∞lim F(x)0

xlim+F(x) = +

Assumptions(A1),(A2)and(A3)ensureusthat bR+, Gb hasauniqueminimum,

denotedm(b)whihisreahed. Letv(b)bethepointwherethisminimumisreahed.

Thispointisthesolutionoftheequation

F(v(b)) =b (1.5)

Proposition 1.2. The point v(b)and the value m(b) are ontinuouslydierentiable with respettob.

Proof. WeknowthatF isabijetion. Thepointv(b)isdenedimpliitlybytheequation H(b, v) = 0 where H(b, v) =F(v)b. H is a C1-dieomorphism with respet to b, and

the dierential with respet to b nevervanishes. The impliit funtions theorem (see for

instane [7, Annex C.6℄) ensuresus that v(b) solutionof H(b, v(b)) = 0 is ontinuously dierentiablewith respettob,and sodoesm(b) =G(v(b))bv(b).

(10)

{(I, b);I=m(b)}

ofthe system(see gure1 ):

(i). if I >m(b)then thesystemhas noxedpoint;

(ii). if I =m(b)then the systemhas aunique xedpoint, (v(b), w(b)), whih isnon-

hyperboli. Itisunstableifb > a.

(iii). if I <m(b) thenthe dynamial system has twoxedpoints(v(I, b), v+(I, b))suh

that

v(I, b)< v(b)< v+(I, b).

The xed point v+(I, b) is a saddle xed point, and the stability of the xed point v(I, b)depends onI andonthe signof (ba):

(a) If b < athen thexedpointv(I, b)isattrative.

(b) If b > a,there isauniquesmoothurve I(a, b) denedby the impliit equation F(v(I(a, b), b)) =a. This urve reads I(a, b) = bvaF(va) where va is the

uniquesolution ofF(va) =a.

(b.1). If I < I(a, b)the xedpointisattrative.

(b.2). If I > I(a, b)the xedpointisrepulsive.

Proof. (i). We haveF(v)bv m(b)by denition of m(b). If I > m(b), then forall vRwehaveF(v)bv+I >0andthesystemhasnoxedpoint.

(ii). Let I = m(b). Wehave already seenthat that Gb is stritly onvex,ontinuously dierentiable,andforb >0reahesitsuniqueminimumatthepointv(b). Thispoint

is suh that Gb(v(b)) = m(b), so it is theonly point satisfyingF(v(b))bv(b) m(b) = 0.

Furthermore,this point satises F(v(b)) = b. The Jaobian of the system at this

pointreads

L(v(b)) =

b 1 ab a

.

Itsdeterminantis0sothexedpointisnonhyperboli(0iseigenvalueoftheJaobian

matrix). Thetraeof thismatrixisba. Sothexedpointv(b)isattrativewhen b > aandrepulsivewhenb > a. Theasea=b, I=m(b)isadegenerateasewhih

wewillstudy morepreiselyinthesetion1.3.3.

(iii). LetI < m(b). Bythestrit onvexityassumption(A2) of thefuntion Gtogether

with assumption(A3), weknowthat there areonly twointersetionsof theurveG

to alevelI higherthan itsminimum. These twointersetionsdene ourtwoxed points. At the point v the funtion is stritly lowerthan I so the two solutions

satisfyv(I, b)< v(b)< v+(I, b).

(11)

Let us now study the stability of these two xed points. To this end, we have to

haraterizetheeigenvaluesoftheJaobianmatrixofthesystematthesepoints.

Weanseefrom formula(1.3)andtheonvexityassumption(A2) that theJaobian

determinant,equaltoaF(v) +ab,isadereasingfuntionofvandvanishesatv(b)

sodet(L(v+(I, b)))<0andthexedpointisasaddlepoint(the Jaobianmatrixhas

apositiveandanegativeeigenvalue).

Forthe otherxed point v(I, b), the determinantof theJaobianmatrixis stritly positive. SothestabilityofthexedpointdependsonthetraeoftheJaobian. This

traereads: F v(I, b)

a.

(a) Whenb < a,wehaveastablexedpoint. Indeed,thefuntionFisaninreasing

funtion equalto bat v(b)so Trae

L v(I, b)

F(v(b))a=ba < 0

andthexedpointisattrative.

(b) If b > a then the type of dynamis around the xed point v depends on the

inputurrent(parameterI). Indeed,thetraereads T(I, b, a) :=F v(I, b)

a,

whihisontinuousandontinuouslydierentiablewithrespettoI andb,and

whihisdenedforI <m(b). Wehave:

I→−limm(b)T(I, b, a) =ba >0

I→−∞lim T(I, b, a) = lim

x→−∞F(x)a <0

SothereexistsaurveI(a, b)denedbyT(I, b, a) = 0andsuhthat:

ˆ forI(b)< I <m(b),thexedpointv(I, b)isrepulsive.

ˆ forI < I(b),thexedpointv is attrative.

Toomputetheequationofthisurve,weusethefat thatpointv(I(b), b)is

suhthat F(v(I(b), b)) =a. Weknowform thepropertiesofF thatthere is

auniquepointva satisfyingthis equation. SineF(v(b)) =b,a < band F is

inreasing,theonditiona < b impliesthat va< v(b).

TheinputurrentassoiatedsatisesxedpointsequationF(va)bva+I(a, b) = 0,orequivalently:

I(a, b) =bvaF(va)

ThepointI =I(a, b)will bestudied in detailin thenext setion,sineit is a

bifurationpointofthesystem.

Figure 1representsinthedierentzonesenumeratedintheorem 1.1andtheirstability

intheparameterplane(I, b).

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

It should be noted that, if before the field is applied the gas is subject to electron-beam radiolysis, then in the dis- charge gap there will accumulate atomic nitrogen

The existence of the best linear unbiased estimators (BLUE) for parametric es- timable functions in linear models is treated in a coordinate-free approach, and some relations

Dif- ferent control systems were designed in order to create different types of bifurcation and to manipulate the bi- furcation characteristics such as the stability and ori- entation

 The forcing conditions which provides the best voltage regular responses;  The excitation parameters which can be related with the chaos occurrence;  The forcing parameters

2 2 - ةلاحإ نودب رارقلا ضقن : ةداممل اقفك ( 365 ) ةيرادلإاك ةيندملا تاءارجلإا فكناق ويف ؿصفي ام عازنلا يف فكي ـل اذإ ةيج ـامأ اييف ؿصفمل

while a large variety of forks are developed independently (including many closed source versions of the OS). Contiki features several network stacks, including the popular uIP

This dichotomy also applies in the case where the system undergoes a Bautin bifurcation: if the SA (fixed point or stable periodic orbit) is circled by an unstable limit cycle, then