• Aucun résultat trouvé

EFFECT OF PRESSURE ON INTERMOLECULAR BONDS IN SOLID HALOGENS

N/A
N/A
Protected

Academic year: 2021

Partager "EFFECT OF PRESSURE ON INTERMOLECULAR BONDS IN SOLID HALOGENS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00224334

https://hal.archives-ouvertes.fr/jpa-00224334

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EFFECT OF PRESSURE ON INTERMOLECULAR BONDS IN SOLID HALOGENS

P. Johannsen, W. Holzapfel

To cite this version:

P. Johannsen, W. Holzapfel. EFFECT OF PRESSURE ON INTERMOLECULAR BONDS IN SOLID HALOGENS. Journal de Physique Colloques, 1984, 45 (C8), pp.C8-191-C8-194.

�10.1051/jphyscol:1984834�. �jpa-00224334�

(2)

EFFECT OF PRESSURE ON INTERMOLECULAR BONDS IN SOLID HALOGENS P.G. Johannsen and W.B. Holzapfel

Paehber&ich Physikj Univers-Ltttt-GH-Paderbovn, D-4790 Paderbom, F.R.G.

.Résumé - Un modèle de charge liée a été développé pour décrire la variation avec la pression des phonons de centre de zone actifs sn Raman de Cl, 8r, et I. L'augmentation de la covalence des liaisons intermaléculaîres se traduit par une augmentation de la charge liée avec la pression.

Abstract - A bond charge model has been developed for the de- scription of the pressure dependence for the Raman-active zone centre phonon frequencies of CI, Br and I. The increase in covalency of the intermolecular bonds shows up in increa- sing values of the bond charges under pressure.

The halogens CI, Br and I form isomorphic molecular crystals. The structure is orthcrhombic with two molecules per primitive unit cell (D1*) /1 / . ThB molecules are stacked in a planar arrangement as indi-

2 h

cated in fig. 1. Although the crystal structure is quite simple, these materials cannot be considered as purely molecular crystals, in which the molecules are only bound by van-der-Waals-interaction, At ambient pressure, the shortest intermolecular bond is significantly shorter than van-der-Waals-diameter , and it is generally assumed, that this bond has markedly covalent character. It is uiell established by various high pressure measurements on iodine, that this covalency increases with pressure / 2 / .

Fig.1 - Crystal structure, Fig. 2 - Symmetry coordinates.

To complement the earlier high pressure data of iodine, lattice parameters of CI and 8r under pressure were studied recently/3/, and we have measured Raman-spectra of CI and Br up to 45 GPa M/.Generally, four Raman-active modes can be observed in high pressure measurements Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984834

(3)

C8-192 JOURNAL

DE

PHYSIQUE

on C 1 , Br and

I.

Fig. 2 s h o w s the usual zone centre symmetry coor- dinates f o r these four modes. I n a l l o f them, the a t o m s move within the p l a n e of the molecules.

The molecular stretching m o d e s exhibit a frequency s p l i t t i n g , which i s not yet understood i n detail. The symmetric A -mode has a lower f r e -

9

quency than the antisymmetric B - m o d e , while in various l a t t i c e 3 9

d y n a m i c a l c a l c u l a t i o n s the opposite sequence i s obtained 151.

W e have developed a bond c h a r g e model f o r the description o f the pressure dependence of the observed z o n e c e n t r e phonon frequencies.

These c a l c u l a t i o n s have been performed in two stages. F o r the d e - scription of t h e a t t r a c t i v e part of the c r y s t a l potential, w e have assumed Coulomb-interaction between positive i o n s and n e g a t i v e bond c h a r g e s placed a t the c e n t r e s o f t h e t h r e e t y p e s of bonds, the m o l e - cular bonds, the shortest, and second s h o r t e s t intermolecular bonds.

The repulsive part h a s been described by a spherically s y m m e t r i c potential of Born-Mayer type: U r e p = E exp(-KR). S t a t i c equilibrium c o n d i t i o n s have been included t o ensure, t h a t the f o r c e s on a n ion a s well a s the external s t r e s s e s vanish. I n t h i s f i r s t s t a g e , the f i v e p a r a m e t e r s ql, q 2 , 9 3 , E and K h a v e been fitted t o the observed f r e q u e n c i e s with t h e following results: F o r each pressure, o n e gets three values f o r the three different bond c h a r g e s a s indicated in fig. 4. S u r p r i s i n g l y , the bond c h a r g e s depend linearly on their bond lengths within experimental error. Therefore, we c a n replace the three parameters q l , q p a n d q 3 by t w o new parameters q , and o:

q ( ~ ) = q0 ( 1

-

R/u). O n t h e o t h e r h a n d , we f i n d , t h a t a l s o i n t h i s model the frequency o f the symmetric molecular mode i s higher than the frequency of t h e a n t i s y m m e t r i c one. T h i s discrepancy t o t h e experimen- tal r e s u l t s i s removed by the use o f a pressure dependend bond c o u p - ling parameter A / 6 / .

Fig. 3 - T h e positions o f t h e bond charges in this model.

F i g . 4 - T h e bond length d e p e n d e n c e

o f the bond charges.

(4)

q, = 2.62(6) e, E = 1.42(17) x

l o p 9

erg.

The parameter K shows a characteristic value for each of the three halogens with a systematic variation from C1 to Br and I:

C 1 B r I

(

2.60(8) 2.33(10) 2.19(4)

The most interesting parameter is 0 , the characteristic bond length, at which the respective bond charges would become zero. If bond charges are reasonable parameters for the covalency of a bond, a should be of the order of van-der-Waals-diameter. Within this model,

0 shows a slight variation with pressure. Its value a, at low pressures is in fact very similar to van-der-Waals-diameter:

ovdW(!)

3.62 3.90 4.30

The bond coupling parameter A , shows a strong increase with pressure (%10%/GPa). Its contribution to the force constants, however, does not exceed 2%, even at the highest pressures.

Fig. 5 shows the variation of the bond charges with pressure. It should be noted, that the changes in the bond strengths are reproduced in our model b y the changes of the respective bond charges.

Fig. 5 - Effect of pressure on the bond charges in this model.

(5)

C8-194 JOURNAL DE PHYSIQUE

The e x p e r i m e n t a l a n d c , a l c u l a t e d f r e q u e n c i e s o f c h l o r i n e a n d b r o m i n e a r e c o m p a r e d i n f i g . 6, w h i c h shows, t h a t t h e p r e s e n t m o d e l g i v e s a r e a s o n a b l e d e s c r i p t i o n o f t h e l a t t i c e d y n a m i c s i n t h e s o l i d h a l o g e n s . The l i m i t a t i o n s o f a r i g i d b o n d c h a r g e m o d e l a r e i n d i c a t e d b y t h e a d d i t i o n a l " b o n d c o u p l i n g u p a r a m e t e r .

A 9

Bromine

1 I I

0

I C h l o r i n e

I I

0 1 0 20 30 40

P ( G P ~ )

F i g . 6

-

E x p e r i m e n t a l a n d c a l c u l a t e d ( c o n t i n u o s l i n e s ) f r e q u e n c i e s o f c h l o r i n e a n d b r o m i n e .

R e f e r e n c e s :

/'I/ COLLIN R.L., A c t a C r y s t a l l o g r . 9, ( 1 9 5 6 ) ~ 5 3 7

DONOHUE J . a n d GOODMAN S.H., A c t a C r y s t a l l o g r .

18,

( 1 9 6 5 ) ~ 5 6 8 VDNNEGUT B. a n d WARREN B.E., J . Am. Chem. S o c . 5 8 , ( 1 9 3 7 ) ~ 2 4 5 9 /2/ TAKEMURA K.. MINOMURA S., SHIMOMURA O . , F U J I 1

rand

AXE J

.o.,

P h y s . R e v . 8 2 6 , ( 1 9 8 2 ) ~ 9 9 8

SHIMONURA O ~ T A K E N U R A K . a n d AOKI K., " H i g h P r e s s u r e i n R e s e a r c h a n d I n d u s t r y " , ed. BACKMAN C.M., JOHANNISSON T. a n d TEGNER L.9 P r o c . 8 t h AIRAPT a n d 1 9 t h EHPRG C o n f . ( ~ p p s a l a ) 1 9 8 2

/ 3 / DOSING E.F., GROSSHANS W . a n d HOLZAPFEL W.B., t h i s c o n f e r e n c e / 4 / JOHANNSEN P.G. a n d HOLZAPFEL W.B., J . P h y s .

u,

( 1 9 8 3 ) ~ 1 9 6 1 JOHANNSEN P.G. a n d HOLZAPFEL W.B., J. P h y s .

E,

( 1 9 8 3 ) ~ L 1 1 7 7 / 5 / PASTERNAK A., ANDERSON A . a n d LEECH J.W., J. P h y s .

Q,

( 1 9 7 7 1 , 3 2 6 1

PASTERNAK A., ANDERSON A . a n d LEECH J.W., J. P h y s . C11, ( 1 9 7 8 ) , 1 5 6 3 / 6 / KOBASHI K. a n d ETTERS D., J . Chem. P h y s .

3,

( 1 9 8 3 7 3 0 1 8

Références

Documents relatifs

All aspects of the structure of a molecule can be changed by pressure, but the largest changes will often occur to the internal rotation angles because the forces preventing

If the molecular axis at a lattice site has three orientations, say the x, y or z axes, then when D = 0, the system is equivalent to the 3-state Potts model: the transition to

well as in krypton the simple model used to describe the relaxation induced by spin-rotation coupling during the molecular lifetime is tested and found to be

2014 We have detected the action of a rf field on Rb-Kr and Rb-Ar molecules by optical pumping techniques.. At a low rare-gas pressure, the experiment can be compared

In conclusion, we have introduced the vdW-MB model, which accurately captures the long-range many-body vdW energy in large molecular systems, to illustrate both the limitations of

The ongoing challenges associated with modeling increasingly large and more complex molecular and condensed-phase materials have led to the universal realization that van der

At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the

In the present work, the values of parameter of von Karman's one dimensional molecular solid appro- intermolecular force constant were evaluated from ximation to the slope in