• Aucun résultat trouvé

MichelWaldschmidt x + y + z =3 xyz OntheMarko ff Equation (ICART2008) May29,2008 InternationalConferenceonAlgebraandRelatedTopics Abstract Abstract(continued) ThesequenceofMarko ff numbers

N/A
N/A
Protected

Academic year: 2022

Partager "MichelWaldschmidt x + y + z =3 xyz OntheMarko ff Equation (ICART2008) May29,2008 InternationalConferenceonAlgebraandRelatedTopics Abstract Abstract(continued) ThesequenceofMarko ff numbers"

Copied!
20
0
0

Texte intégral

(1)

In ternational Conference on Algebra and Related T opics (ICAR T 2008) May 29, 2008

http://www.math.sc.chula.ac.th/icart2008/

On the Mark o ff Equation x 2 + y 2 + z 2 =3 xy z

Michel Waldschmidt

http://www.math.jussieu.fr/miw/

1/79

Abstract

It is easy to chec k that the equation x

2

+ y

2

+ z

2

=3 xy z , where the three unkno wns x , y , z are p ositiv e in tegers, has infinitely man y solutions. There is a simple algorithm whic h pro duces all of them. Ho w ev er, this do es not answ er to all questions on this equation : in particular F rob enius ask ed whether it is true that for eac h in teger z> 0 , there is at most one pair ( x, y ) suc h that x < y < z and ( x, y ,z ) is a solution. This question is an activ e researc h topic no w ada ys.

2/79

Abstract (con tin ued)

Mark o ff ’s equation o ccurred initially in the study of minima of quadratic forms at the end of the XIX–th cen tury and the b eginning of the XX–th cen tury . It w as in vestigated b y man y a mathematician, including Lagrange , Hermite , Korkine , Zolotarev , Mark o ff , F rob enius , Hurwitz , Cassels . The solutions are related with the L agr ange-Marko ff sp ectrum , whic h consists of those quadratic n um b ers whic h are badly appro ximable b y rational n um b ers. It o ccurs also in other parts of mathematics, in particular free groups, F uc hsian groups and h yp erb olic Riemann surfaces ( F ord , Lehner , Cohn , Rankin , Con w ay , Co xeter , Hirzebruc h and Zagier .. .). W e discuss some asp ects of this topic without trying to co ver all of them.

3

The sequence of Mar ko ff num b ers

A Marko ff numb er is a p ositiv e in teger z suc h that there exist tw o p ositiv e in tegers x and y satisfying

x

2

+ y

2

+ z

2

=3 xy z.

F or instance 1 is a Mark o ff n um b er, since ( x, y ,z ) = (1 , 1 , 1) is a solution. Andrei Andrey evic h Mark o ff (1856–1922)

Photos:http://www-history.mcs.st-andrews.ac.uk/history/

4

(2)

The On-Line Encyclop edia of In teger Sequences

1,2,5,13,29,34,89,169,194,233,433,610,985,1325,1597,2897,4181,5741,6466,7561,9077,10946,14701,28657,33461,37666,43261,51641,62210,75025,96557,135137,195025,196418,294685,...

The sequence of Mark o ff n um b ers is av ailable on the w eb The On-Line Encyclop edia of In teger Sequences Neil J. A. Sloane

http ://www.research.att.com/ njas/sequences/A002559

5/79

In teger p oin ts on a surface

Giv en a Mark o ff n um b er z , there exist infinitely man y pairs of p ositiv e in tegers x and y satisfying

x

2

+ y

2

+ z

2

=3 xy z.

This is a cubic equation in the 3 variables ( x, y ,z ) , of whic h w e kno w a solution (1 , 1 , 1) .

There is an algorithm pro ducing all in teger solutions.

6/79

Mark o ff ’s cubic variet y

The surface defined b y Mark o ff ’s equation

x

2

+ y

2

+ z

2

=3 xy z.

is an algebraic variet y with man y automorphisms : p erm utations of the variables, changes of signs and

( x, y ,z ) "→ (3 yz x, y ,z ) . A.A. Mark o ff (1856–1922)

Algorithm pro ducing all solutions

Let ( m ,m

1

,m

2

) b e a solution of Mark o ff ’s equation :

m

2

+ m

21

+ m

22

=3 mm

1

m

2

. Fix tw o co ordinates of this solution, sa y m

1

and m

2

. W e get a quadratic equation in the third co ordinate m , of whic h w e kno w a solution, hence the equation

x

2

+ m

21

+ m

22

=3 xm

1

m

2

. has tw o solutions, x = m and, sa y, x = m

!

, with m + m

!

=3 m

1

m

2

and mm

!

= m

21

+ m

22

. This is the cor d and tangente pr oc ess.

Hence another solution is ( m

!

,m

1

,m

2

) with m

!

=3 m

1

m

2

m .

(3)

Three solutions deriv ed from one

Starting with one solution ( m ,m

1

,m

2

) , w e deriv e three new solutions :

( m

!

,m

1

,m

2

) , ( m ,m

!1

,m

2

) , ( m ,m

1

,m

!2

) .

If the solution w e start with is (1 , 1 , 1) , w e pro duce only one new solution, (2 , 1 , 1) (up to p erm utation).

If w e start from (2 , 1 , 1) , w e pro duce only tw o new solutions, (1 , 1 , 1) and (5 , 2 , 1) (up to p erm utation).

A new solution means distinct fr om the one we start with.

9/79

New solutions

W e shall see that an y solution di ff eren t from (1 , 1 , 1) and from (2 , 1 , 1) yields three new di ff eren t solutions – and w e shall see also that in eac h other solution the three n um b ers m , m

1

and m

2

are pairwise distinct.

Tw o solutions are neighb ors if they share tw o comp onen ts.

10/79

Mark o ff ’s tree

Assume w e start with ( m ,m

1

,m

2

) satisfying m > m

1

>m

2

. W e shall chec k m

!2

>m

!1

>m>m

!

.

W e order the solution according to the largest co ordinate. Then tw o of the neigh b ors of ( m ,m

1

,m

2

) are larger than the initial solution, the third one is smaller.

Hence if w e start from (1 , 1 , 1) , w e pro duce infinitely man y solutions, whic h w e organize in a tree : this is Marko ff ’s tr ee .

11

This algorithm yields all the solutions

Con vers ely , starting from an y solution other than (1 , 1 , 1) , the algorithm pro duces a smal ler solution.

Hence b y induction w e get a sequence of smaller and smaller solutions, un til w e reac h (1 , 1 , 1) .

Therefore the solution w e started from w as in Mark o ff ’s tree.

12

(4)

First branc hes of Mar ko ff ’s tree

13/79

Mark o ff ’s tree starting from (2 , 5 , 29)

DON ZAGIER

FIGURE 2 Markoff triples ( p, q,

r

) with max( p, q) 100000

Conversely, given a Markoff triple (p, q, r) with r > 1, one checks easily that 3pq

-

r < r; and from ths it follows by induction that all Markoff triples occur, and occur only once, on this tree (for a fuller discussion of ths and other properties of the Markoff tree, see [2]). To prove the theorem we must analyze the asymptotic behavior of the Markoff tree. From the Markoff equation (1) we find that 3r2

2

3pqr or r

2

pq; if p is large (which will happen for all but a small portion of the tree, contributing O(log

x)

to M(x)), then this implies that r is much larger than q and hence (1) gives r2 < 3pqr < r2 + o(r2) or r - 3pq. Multiplying both sides of this equation by 3 and taking logarithms gives

log(3p) + log(3q)

=

log(3r) + o(1) ( p large)

14/79

Mark o ff ’s tree up to 100 000

DON ZAGIER

FIGURE2 Markoff triples (p, q, r ) with max( p, q) 100000

Conversely, given a Markoff triple (p, q, r) with r > 1, one checks easily that 3pq -r <r; and from ths it follows by induction that all Markoff triples occur, and occur only once, on this tree (for a fuller discussion of ths and other properties of the Markoff tree, see [2]). To prove the theorem we must analyze the asymptotic behavior of the Markoff tree. From the Markoff equation (1) we find that 3r2 2 3pqr or r 2pq; if p is large (which will happen for all but a small portion of the tree, contributing O(log x) to M(x)), then this implies that r is much larger than q and hence (1) gives r2 < 3pqr < r2 + o(r2) or r -3pq. Multiplying both sides of this equation by 3 and taking logarithms gives

log(3p) + log(3q) = log(3r) + o(1) (p large)

Don Zagier , On the numb er of Marko ff numb ers below a given bound. Mathematics of Computation, 39 160 (1982), 709–723.

15

Mark o ff ’s tree

16

(5)

a 2 + b 2 + c 2 =3 abc

X

2

3 abX + a

2

+ b

2

= ( X c )( X 3 ab + c )

17/79

The Fib onacci sequence and the Mark o ff equation

The smallest Mark o ff n um b er is 1 . When w e imp ose z =1 in the Mark o ff equation x

2

+ y

2

+ z

2

=3 xy z , w e obtain the equation x

2

+ y

2

+ 1 = 3 xy .

Going along the Mark o ff ’s tree starting from (1 , 1 , 1) , w e obtain the subsequence of Mark o ff n um b ers

1 , 2 , 5 , 13 , 34 , 89 , 233 , 610 , 1597 , 4181 , 10946 , 28657 , .. .

whic h is the sequence of Fib onacci n um b ers with o dd indices

F

1

=1 ,F

3

=2 ,F

5

=5 ,F

7

= 13 ,F

9

= 34 ,F

11

= 89 , .. .

18/79

Leonardo Pisano (Fib onacci)

The Fib onacci sequence ( F

n

)

n0

:

0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 ,

34 , 55 , 89 , 144 , 233 .. .

is defined b y

F

0

=0 ,F

1

=1 ,

F

n

= F

n1

+ F

n2

( n 2) . Leonardo Pisano (Fib onacci) (1170–1250)

19/79

Encyclop edia of in teger sequences (again)

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5702887,9227465,..

The Fib onacci sequence is av ailable online The On-Line Encyclop edia of In teger Sequences Neil J. A. Sloane

http ://www.research.att.com/ njas/sequences/A000045

20/79

(6)

Fib onacci num b ers with odd indices

Fib onacci n um b ers with o dd indices are Mark o ff ’s n um b ers :

F

m+3

F

m1

F

2m+1

=( 1)

m

for m 1 and F

m+3

+ F

m1

=3 F

m+1

for m 1 .

Set y = F

m+1

, x = F

m1

, x

!

= F

m+3

, so that, for ev en m ,

x + x

!

=3 y , xx

!

= y

2

+1 and X

2

3 yX + y

2

+ 1 = ( X x )( X x

!

) .

21/79

Order of the new solutions

Let ( m ,m

1

,m

2

) b e a solution of Mark o ff ’s equation

m

2

+ m

21

+ m

22

=3 mm

1

m

2

. Denote b y m

!

the other ro ot of the quadratic p olynomial

X

2

3 m

1

m

2

X + m

21

+ m

22

.

Hence

X

2

3 m

1

m

2

X + m

21

+ m

22

=( X m )( X m

!

) and m + m

!

=3 m

1

m

2

, m m

!

= m

21

+ m

22

.

22/79

m 1 & = m 2

Let us chec k that if m

1

= m

2

, then m

1

= m

2

=1 : this holds only for the tw o exceptional solutions (1 , 1 , 1) , (2 , 1 , 1) .

Assume m

1

= m

2

. W e ha ve m

2

+2 m

21

=3 mm

21

hence m

2

= (3 m 2) m

21

. Therefore m

1

divides m . Let m = km

1

. W e ha ve k

2

=3 km

1

2 , hence k divise 2 . F or k =1 w e get m = m

1

=1 . F or k =2 w e get m

1

=1 , m =2 .

Consider no w a solution distinct from (1 , 1 , 1) or (2 , 1 , 1) : hence m

1

& = m

2

.

23

Tw o larger, one smaller

Assume m

1

>m

2

. Question : Do we have m

!

>m

1

or else m

!

<m

1

? Consider the n um b er a =( m

1

m )( m

1

m

!

) . Since m + m

!

=3 m

1

m

2

, and mm

!

= m

21

+ m

22

, w e ha ve

a = m

21

m

1

( m + m

!

)+ mm

!

=2 m

21

+ m

22

3 m

21

m

2

= (2 m

21

2 m

21

m

2

)+( m

22

m

21

m

2

) . Ho w ev er 2 m

21

< 2 m

21

m

2

and m

22

<m

21

m

2

, hence a< 0 . This means that m

1

is in the in terv al defined b y m and m

!

.

24

(7)

Order of the solutions

If m > m

1

, w e ha ve m

1

>m

!

and the new solution ( m

!

,m

1

,m

2

) is smaller than the initial solution ( m ,m

1

,m

2

) . If m < m

1

, w e ha ve m

1

<m

!

and the new solution ( m

!

,m

1

,m

2

) is larger than the initial solution ( m ,m

1

,m

2

) .

25/79

Prime factors

R emark. Let m b e a Mark o ff n um b er with

m

2

+ m

21

+ m

22

=3 mm

1

m

2

. The same pro of sho ws that the gcd of m , m

1

and m

2

is 1 : indeed, if p divides m

1

, m

2

and m , then p divides the new solutions whic h are pro duced b y the preceding pro cess – going do wn in the tree sho ws that p w ould divide 1 .

The o dd prime factors of m are all congruen t to 1 mo dulo 4 (since they divide a sum of tw o relativ ely prime squares).

If m is ev en, then the n um b ers

m 2 , 3 m 2 4 , 3 m +2 8 ,

are o dd in tegers.

26/79

Mark o ff ’s Conjecture

The previous algorithm pro duces the sequence of Mark o ff n um b ers. Eac h Mark o ff n um b er o ccurs infinitely often in the tree as one of the comp onen ts of the solution.

According to the definition, for a Mark o ff n um b er m> 2 there exist a pair ( m

1

,m

2

) of p ositiv e in tegers with m > m

1

>m

2

suc h that m

2

+ m

21

+ m

22

=3 mm

1

m

2

.

Question : Given m , is such a pair ( m

1

,m

2

) unique ? The answ er is yes, as long as m 10

105

.

27

F rob enius’s w ork

Marko ff ’s Conje ctur e do es not o ccur in Mark o ff ’s 1879 and 1880 pap ers but in F rob enius ’s one in 1913. F erdinand Georg F rob enius (1849–1917)

28

(8)

Sp ecial cases

The Conjecture has b een pro ved for certain classes of Mark o ff n um b ers m lik e

p

n

, p

n

± 2 3 for p prime. A. Baragar (1996), P . Sc hm utz (1996), J.O. Button (1998), M.L. Lang, S.P . T an (2005), Ying Zhang (2007). Arth ur Baragar

http://www.nevada.edu/baragar/

29/79

P ow ers of a prime num b er

Anitha Sriniv asan , 2007 A re al ly simple pr oof of the Marko ff conje ctur e for prime powers

Num b er Theory W eb Created and main tained b y Keith Matthews , Brisbane, Australia www.numbertheory.org/pdfs/simpleproof.pdf

30/79

The state of the art

10/09/2007, 04/12/2007 : Norb ert Riedel h ttp ://fr.arxiv.org/abs/0709.1499v2 http ://fr.arxiv.org/abs/0709.1499

A triple ( a, b, c ) of positive inte gers is cal le d a Marko ff triple i ff it satisfies the diophantine equation a

2

+ b

2

+ c

2

= abc . R ec asting the Marko ff tr ee, whose vertic es ar e Marko ff triples, in the fr amework of inte gr al upp er triangular 3 × 3 matric es, it wil l be shown that the lar gest memb er of such a triple determines the other two uniquely. This answers a question which has be en op en for almost 100 ye ars.

Fla w in the pro of disco vered b y Serge P errine .

31

Wh y the co e ffi cien t 3 ?

Let n b e a p ositiv e in teger. If the equation x

2

+ y

2

+ z

2

= n xy z has a solution in positive inte gers, then either n =3 and x , y , z ar e relatively prime, or n =1 and the gcd of the numb ers x , y , z is 3 .

F riedric h Hirzebruc h & Don Zagier , The A tiyah–Singer The or em and elementary numb er the ory, Publish or P erish (1974)

32

(9)

Mark o ff typ e equations

Bije ction betwe en the solutions for n =1 and those for n =3 :

if x

2

+ y

2

+ z

2

=3 xy z , then (3 x, 3 y, 3 z ) is solution of X

2

+ Y

2

+ Z

2

= X Y Z , since (3 x )

2

+ (3 y )

2

+ (3 z )

2

= (3 x )(3 y )(3 z ) .

if X

2

+ Y

2

+ Z

2

= X Y Z , then X , Y , Z are m ultiples of 3 and ( X/ 3)

2

+( Y/ 3)

2

+( Z/ 3)

2

= 3( X/ 3)( Y/ 3)( Z/ 3) .

The squares mo dulo 3 are 0 and 1 . If X , Y and Z are not m ultiples of 3 , then X

2

+ Y

2

+ Z

2

is a m ultiple of 3 .

If one or tw o (not three) in tegers among X , Y , Z are m ultiples of 3 , then X

2

+ Y

2

+ Z

2

is not a m ultiple of 3 .

33/79

Equations x 2 + ay 2 + bz 2 = (1 + a + b ) xy z If w e insist that (1 , 1 , 1) is a solution, then up to p erm utations there are only tw o more Diophan tine equations of the typ e

x

2

+ ay

2

+ bz

2

= (1 + a + b ) xy z

ha ving infinitely man y in teger solutions, namely those with ( a, b ) = (1 , 2) and (2 , 3) :

x

2

+ y

2

+2 z

2

=4 xy z and x

2

+2 y

2

+3 z

2

=6 xy z

x

2

+ y

2

+ z

2

: tessalation of the plane b y equilateral triangles x

2

+ y

2

+2 z

2

=4 xy z : tessalation of the plane b y iso celes rectangle triangles x

2

+2 y

2

+3 z

2

=6 xy z : tessalation ?

34/79

Lauren t’s phenomenon Connection with Lauren t p olynomials. James Propp, The combinatorics of frieze patterns and Marko ff numb ers,

http://fr.arxiv.org/abs/math/0511633

If f , g , h are Lauren t p olynomials in tw o variables x and y , i.e., p olynomials in x , x

1

, y , y

1

, in general

h ! f ( x, y ) ,g ( x, y ) "

is not a Lauren t p olynomial :

f ( x )= x

2

+1 x = x + 1 x ,

f ! f ( x ) " = # x + 1 x $

2

+1

x + 1 x = x

4

+3 x

2

+1 x ( x

2

+ 1) ·

35

Hurwitz’s equation (1907)

F or eac h n 2 the set K

n

of p os itiv e in tegers k for whic h the equation

x

21

+ x

22

+ ·· · + x

2n

= kx

1

·· · x

n

has a solution in p ositiv e in tegers is finite. The largest value of k in K

n

is n — with the solution

(1 , 1 ,. .. , 1) .

Examples :

K

3

= { 1 , 3 } , K

4

= { 1 , 4 } , K

7

= { 1 , 2 , 3 , 5 , 7 } .

36

(10)

Hurwitz’s equation x 2 1 + x 2 2 + ·· · + x 2 n = kx 1 ·· · x n

When there is a solution in p ositiv e in tegers, there are infinitely man y solutions, whic h can b e organized in finitely man y trees.

A. Baragar pro ved that ther e exists such equations which re quir e an arbitr arily lar ge numb er of tr ees J. Num b er Theory (1994), 49 No 1, 27-44.

The analog for the rank of elliptic curv es ov er the rational n um b er field is yet a conjecture.

37/79

Gro wth of Mark o ff ’s sequence

1978 : order of magnitude of m , m

1

and m

2

for m

2

+ m

21

+ m

22

=3 mm

1

m

2

with m

1

<m

2

<m , log (3 m

1

) + log (3 m

2

) = log (3 m )+ o (1) .

T o iden tify primitiv e w ords in a free group with tw o generators, H. Cohn used Marko ff forms. Harv ey Cohn

x "→ log (3 x ) : ( m

1

,m

2

,m ) "→ ( a, b, c ) with a + b c .

38/79

Euclidean tree Start with (0 , 1 , 1) . F rom a triple ( a, b, c ) satisfying a + b = c and a b c , one pro duces tw o larger suc h triples ( a, c, a + c ) and ( b, c, b + c ) and a smaller one ( a, b a, b ) or ( b a, a, b ) .

(0,1

,1)|(1,1,2)|(1,2,3)|||(1,3,4)(2,3,5)

||||||

(1,4,5)(3,4,7)(2,5,7)(3,5,8)

|... ... |... ... |... ... |... ...39

Mark o ff and Euclidean trees

T om Cusik & Mary Flahiv e , The Marko ff and L agr ange sp ectr a, Math. Surv eys and Monographs 30 , AMS (1989).

40

(11)

Gro wth of Mark o ff ’s sequence

Don Zagier (1982) : estimating the n um b er of the Mark o ff triples b ounded by x :

c (log x )

2

+ O ! log x (log log x )

2

" ,

c =0 , 18071704711507 .. .

Conjecture : the n -th Mark o ff n um b er m

n

is

m

n

A

n

with A = 10 , 5101504 ·· ·

41/79

Historical origin : rational appro ximation

Hurwitz ’s Theor em (1891) : F or any re al irr ational numb er x , ther e exist infinitely many rational numb ers p/q such that % % % % x p q % % % % 1 5 q

2

·

Golden ratio Φ = (1 + 5) / 2= 1 , 6180339887498948482 .. . Hurwitz ’s result is optimal. Adolf Hurwitz (1859–1919)

42/79

The Fib onacci sequence and the Golden ratio

F orm ula of A. De Moivre (1730), L. Euler (1765), J.P .M. Binet (1843) :

F

n

= 1 5 & 1+ 5 2 '

n

1 5 & 1 5 2 '

n

.

43

F orm ul a of De Moivre–Euler–Binet

Abraham de Moivre (1667–1754) Leonhard Euler (1707–1783) Jacques Philipp e Marie Binet (1786–1856)

F

n

is the nearest in teger to 1 5 Φ

n

.

44

(12)

Quadratic relation

One chec ks b y induction

F

2n+1

F

n+1

F

n

F

2n

=( 1)

n

for all n 0 . The left hand side is the value at ( F

n+1

,F

n

) of the quadratic form

X

2

XY Y

2

=( X Φ Y )( X + Φ

1

Y ) . The sequence u

n

= F

n+1

/F

n

, n 1 con verges to the Golden ratio Φ and

F

2n+1

F

n+1

F

n

F

2n

= F

2n

( u

n

Φ )( u

n

+ Φ

1

) .

45/79

Quotien ts of consecut iv e Fib onacci num b ers

One deduces

F

2n

| Φ u

n

| = 1 Φ

1

+ u

n

1 Φ

1

+ Φ = 1 5 ·

Hence

lim

n→∞

F

2n

% % % % Φ F

n+1

F

n

% % % % = 1 5 ·

46/79

Con tin ued fractions

The sequence u

n

= F

n+1

/F

n

is also defined b y

u

1

=1 ,u

n

= 1 + 1 u

n1

, ( n 2) .

Hence

u

n

= 1 + 1

1+ 1 u

n2

= 1 + 1

1+ 1

1+ 1 u

n3

= ·· ·

= [1 , 1 ,. .. , 1] n times

=[ 1]

47

Hurwitz’s result is optimal Hurwitz ’s result

lim inf

q→∞

! q min

pZ

| qx p | " 1 5 for all x R \ Q

is optimal : there is equalit y for x = Φ . F or | q Φ p | 1 , w e ha ve

1 | q

2

+ pq p

2

| = | q Φ p ( q Φ

1

+ p )

with

q Φ

1

+ p = q ( Φ + Φ

1

)+ p q Φ q 5+1 , hence 1 | q Φ p ( q 5 + 1) .

Notice that P ( X )= X

2

X 1 has discriminan t 5 and P

!

( Φ )= ∆ = 5 .

48

(13)

Liouville’s inequalit y

Liouville ’s inequalit y . L et α be an algebr aic numb er of de gr ee d 2 , P Z [ X ] its minimal polynomial, c = | P

!

( α ) | and " > 0 . Ther e exists q

0

such that, for any p/q Q with q q

0

, % % % % α p q % % % % 1 ( c + " ) q

d

· Joseph Liouville , 1844

49/79

Mark o ff ’s constan t

F or x R \ Q denote b y λ ( x ) [ 5 , + ] the least upp er b ound of the n um b ers γ > 0 suc h that there exist infinitely man y p/q Q satisfying % % % % x p q % % % % 1 γ q

2

·

This means

1 λ ( x ) = lim inf

q→∞

! q min

pZ

| qx p | " .

Hurwitz : λ ( x ) 5 for an y x and λ ( Φ )= 5 .

50/79

Mark o ff ’s constan t

An irrational real n um b er x is bad ly appr oximable by rational n um b ers if its Mark o ff ’s constan t is finite. This means that there exists γ > 0 suc h that, for an y p/q Q , % % % % x p q % % % % 1 γ q

2

·

F or instance Liouville ’s n um b ers ha ve an infinite Mark o ff ’s constan t. A real n um b er is badly appro ximable if and only if the sequence ( a

n

)

n0

of partial quotien ts in its con tin ued fraction expansion

x =[ a

0

,a

1

,a

2

, .. ., a

n

,. .. ]

is b ounded.

51

Badly appro ximable num b ers

An y quadratic irrational real n um b er has a finite Mark o ff ’s constan t (= is badly appro ximable).

It is not kno wn whether there exist real algebraic n um b ers of degree 3 whic h are badly appro ximable.

It is not kno wn whether there exist real algebraic n um b ers of degree 3 whic h are not badly appro ximable .. .

One conjectures that any irr ational re al numb er which is not quadr atic and which is bad ly appr oximable is tr ansc endental.

52

(14)

Leb esgue measure

The set of badly appro ximable real n um b ers has zero measure for Leb esgue ’s measure. Henri L ´eon Leb esgue (1875–1941)

53/79

Prop erties of the Mark o ff ’s constan t

W e ha ve

λ ( x + 1) = λ ( x ): % % % % x +1 p q % % % % = % % % % x p + q q % % % %

and

λ ( x )= λ ( x ): % % % % x p q % % % % = % % % % x + p q % % % % ,

Also λ (1 /x )= λ ( x ) :

p

2

% % % % 1 x q p % % % % = q

2

% % % % p qx % % % % · % % % % x p q % % % % .

54/79

The mo dular group

The m ultiplicativ e group generated b y the three matrices # 11 01 $ , # 10 0 1 $ , # 01 10 $ is the group GL

2

( Z ) of 2 × 2 matrices # ab cd $ with co e ffi cien ts in

Z and determinan t ± 1 .

J-P. Serre – Cours d’arithm ´etique , Coll. SUP , Presses Univ ersitaires de F rance, P aris, 1970.

55

# ab cd $ x = ax + b cx + d

# 11 01 $ x = x +1 # 10 0 1 $ x = x # 01 10 $ x = 1 x

λ ( x + 1) = λ ( x ) λ ( x )= λ ( x ) λ (1 /x )= λ ( x )

Consequence : L et x R \ Q and let a , b , c , d be rational inte gers satisfying ad bc = ± 1 . Set

y = ax + b cx + d ·

Then λ ( x )= λ ( y ) .

56

(15)

Hurwitz’s w ork (con tin ued)

The inequalit y λ ( x ) 5 for al l re al irr ational x is optimal for the Golden ratio and for all the noble irrational n um b ers whose con tin ued fraction expansion ends with an infinite sequence of 1 ’s – these n um b ers are the ro ots of the quadratic p olynomials ha ving discriminan t 5 :

Φ = [1 , 1 , 1 ,. .. ]=[ 1] . Adolf Hurwitz , 1891

57/79

The first elemen ts of the sp ectrum

Hurwitz ’s inequalit y λ ( x ) 5 is optimal for the Golden ratio Φ and all the n um b ers related to Φ b y a homograph y of determinan t ± 1 :

a Φ + b c Φ + d with # ab cd $ GL

2

( Z ) . F or all the other real n um b ers w e ha ve λ ( x ) 2 2 . This is optimal for 2=1 , 414213562373095048801688724209698078 .. .

whose con tin ued fraction expansion is

[1; 2 , 2 , .. ., 2 , .. . ] = [1; 2] .

58/79

Minima of quadratic forms

Let f ( X ,Y )= aX

2

+ bX Y + cY

2

b e a quadratic form with real co e ffi cien ts. Denote b y ∆ ( f ) its discriminan t b

2

4 ac . Consider the minim um m ( f ) of | f ( x, y ) | on Z

2

\{ (0 , 0) } . Assume ∆ ( f ) & =0 and set

C ( f )= m ( f ) / ( | ∆ ( f ) | . Let α and α

!

b e the ro ots of f ( X, 1) :

f ( X ,Y )= a ( X α Y )( X α

!

Y ) , { α , α

!

} = ) 1 2 a ! b ± ( ∆ ( f )

" *

.

59

Example with ∆ < 0 The form f ( X ,Y )= X

2

+ XY + Y

2

has discriminan t ∆ ( f )= 3 and minim um m ( f ) = 1 , hence

C ( f )= m ( f ) ( | ∆ ( f ) | = 1 3 ·

F or ∆ < 0 , the form

f ( X ,Y )= + || 3 ( X

2

+ XY + Y

2

) has discriminan t ∆ and minim um ( || / 3 . Again

C ( f )= 1 3 ·

60

(16)

Definite quadratic forms ( ∆ < 0)

If the discriminan t is negativ e, J.L. Lagrange and Ch. Hermite (letter to Jacobi , August 6, 1845) pro ved C ( f ) 1 / 3 with equalit y for f ( X ,Y )= X

2

+ XY + Y

2

. F or eac h % (0 , 1 / 3] , there exists suc h a form f with C ( f )= % .

Joseph-Louis Lagrange (1736–1813) Charles Hermite (1822–1901) Carl Gusta v Jacob Jacobi (1804–1851)

61/79

Example with ∆ > 0 The form f ( X ,Y )= X

2

XY Y

2

has discriminan t ∆ ( f )=5 and minim um m ( f )=1 , hence

C ( f )= m ( f ) ( ∆ ( f ) = 1 5 ·

F or ∆ > 0 , the form

f ( X ,Y )= + ∆ 5 ( X

2

XY Y

2

) has discriminan t ∆ and minim um ( ∆ / 5 . Again

C ( f )= 1 5 ·

62/79

Indefinite quadratic forms ( ∆ > 0 )

Assume ∆ > 0

A. Korkine and E.I.. Zolotarev pro ved in 1873 C ( f ) 1 / 5 with equalit y for f

0

( X ,Y )= X

2

XY Y

2

. F or all forms whic h are not equiv alen t to f

0

under GL(2 , Z ) , they pro ve C ( f ) 1 / 8 . 1 / 5 = 0 , 447 213 595 .. . 1 / 8 = 0 , 353 553 391 .. .

Gap ! Egor Iv ano vic h Zolotarev (1847–1878)

63

Indefinite quadratic forms ( ∆ > 0 ).

The w orks b y Korkine and Zolotarev inspired M ark o ff who pursued the study of this question. He pro duced infinitely man y values C ( f

i

) , i =0 , 1 ,. .. , b et w een 1 / 5 and 1 / 3 , with the same prop ert y as f

0

. These values form a sequence whic h con verges to 1 / 3 . He constructed them b y means of the tree of solutions of the Mark o ff equation. A. Mark o ff , 1879 and 1880.

64

(17)

Indefinite quadratic forms ( ∆ > 0 )

Assume f (( X ,Y )= aX

2

+ bX Y + cY

2

R [ X ,Y ] with a> 0 has discriminan t ∆ > 0 .

If | f ( x, y ) | is small with y & =0 , then x/y is close to a ro ot of f ( X, 1) , sa y α .

Then | x α

!

y | | y |·| α α

!

| and α α

!

= /a .

Hence

| f ( x, y ) | = | a ( x α y )( x α

!

y ) | y

2

∆ % % % % α x y % % % % .

65/79

Lagrange sp ectrum and Mark o ff sp ectrum Mark o ff sp ectrum = set of values tak en b y

1 C ( f ) = ( ∆ ( f ) /m ( f ) when f runs ov er the set of quadratic forms ax

2

+ bxy + cy

2

with real co e ffi cien ts of discriminan t ∆ ( f )= b

2

4 ac > 0 and m ( f ) = inf

(x,y)Z2\{0}

| f ( x, y ) | . Lagrange sp ectrum = set of values tak en b y Mark o ff ’s constan t ( !)

λ ( x ) = 1 / lim inf

q→∞

q (min

pZ

| qx p | ) when x runs ov er the set of real n um b ers. The Mark o ff sp ectrum con tains the Lagrange sp ectrum. The in tersection with the in terv all [ 5 , 3[ is the same for b oth of them, and is a discrete sequence.

66/79

F uc hsian groups and hyp erb olic R iemann surfaces

Mark o ff ’s tree can b e seen as the dual of the triangulation of the h yp erb olic upp er half plane b y the images of the fundamen tal domain of the mo dular in varian t under the action of the mo dular group . Lazarus Imman uel F uc hs (1833–1902)

67

T riangulation of p olygons, metric prop erties of p olytop es

Harold Scott MacDonald Co xeter (1907–2003) Rob ert Alexander Rankin (1915–2001) John Horton Con w ay

68

(18)

F ord ci rcles

The F ord circle asso ciated to the irreducible fraction p/q is tangen t to the real axis at the p oin t p/q and has radius 1 / 2 q

2

.

F ord circles asso ciated to tw o consecutiv e elemen ts in a F arey sequence are tangen t. Lester Randolph F ord (1886–1967)

Amer. Math. Mon thly (1938).

69/79

F arey sequence of order 5

0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1

70/79

Complex con tin ued fracti on

The third generation of Asm us Sc hmidt ’s complex con tin ued fraction metho d.

http://www.maa.org/editorial/mathgames/mathgames031504.html

71

Con tin ued fractions and hyp erb olic geometry

72

(19)

The Geometry of Mark o ff Num b ers

Caroline Series , The Ge ometry of Marko ff Numb ers, The Mathematical In telligencer 7 N.3 (1985), 20–29.

73/79

F ric ke groups

The subgroup Γ of SL

2

( Z ) generated b y the tw o matrices # 11 12 $ and # 21 11 $

is the free group with tw o generators.

The Riemann surface quotien t of the P oincar ´e upp er half plane b y Γ is a punctur ed torus . The minimal lengths of the closed geo desics are related to the C ( f ) , for f indefinite quadratic form.

74/79

F ree groups. F ric ke

pro ved that if A and B are tw o generators of Γ , then their traces satisfy

(tr A )

2

+ (tr B )

2

+ (tr AB )

2

= (tr A )(tr B )(tr AB ) Harv ey Cohn sho w ed that quadratic forms with a Mark o ff constan t C ( f ) ]1 / 3 , 1 / 5] are equiv alen t to

cx

2

+( d a ) xy by

2

where # ab cd $

is a generator of Γ .

75

F undamen tal domain of a punctured disc

76

(20)

A simple curv e on a punctured disc

77/79

Mark o ff and Diophan tine appro ximati on

J.W.S. Cassels, A n intr oduction to Diophantine appr oximation, Cam bridge Univ. Press (1957) John William Scott Cassels

78/79

In ternational Conference on Algebra and Related T opics (ICAR T 2008) May 29, 2008

http://www.math.sc.chula.ac.th/icart2008/

On the Mark o ff Equation x 2 + y 2 + z 2 =3 xy z

Michel Waldschmidt

http://www.math.jussieu.fr/miw/

79

Références

Documents relatifs

Application to Nonlinear Stability of Rarefaction waves Now we apply Theorem 1.1 to study the large time asymptotic behavior of the global solution f (t, x, ξ) to the Boltzmann

Though the corrector problem may not have an exact solution due to non-coercivity of the Hamiltonian, homogenization suffices with an approximate corrector whose existence is

- We study the asymptotic behavior in time of solutions to the Cauchy problem for the derivative nonlinear Schrodinger equation.. where a E

Another way of looking at the regularity of the system when N → ∞ is to investigate the asymptotic behavior of the magnetization of an arbitrary family of spins σ 1 ,. In fact, in

Zagier [Z] did some beautiful work when he counted the Markoff numbers - those positive numbers that appear in integral solutions to the Markoff equation.. He showed

Relative to such a parallel frame, we may express all the partial derivatives of the connection matrix in terms of the derivatives of the metric and the

Donc la solution dont on est partie ´ etait dans l’arbre de Markoff... Premi`eres branches de l’arbre de Markoff.. To prove the theorem we must analyze the asymptotic behavior

Using further properties of the induction functor one shows that the cohomology of a Deligne–Lusztig variety X(wF ) depends only on the conjugacy class of wF in the braid group..