• Aucun résultat trouvé

COMPARISON BETWEEN HUGONIOT AND SOME ISENTROPIC RELEASE CURVES OF COPPER IN THE PRESSURE RANGE 70 GPa - 150 GPa

N/A
N/A
Protected

Academic year: 2021

Partager "COMPARISON BETWEEN HUGONIOT AND SOME ISENTROPIC RELEASE CURVES OF COPPER IN THE PRESSURE RANGE 70 GPa - 150 GPa"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00224349

https://hal.archives-ouvertes.fr/jpa-00224349

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COMPARISON BETWEEN HUGONIOT AND SOME ISENTROPIC RELEASE CURVES OF COPPER IN

THE PRESSURE RANGE 70 GPa - 150 GPa

H. Bernier, M. Valadon, J. Lezaud

To cite this version:

H. Bernier, M. Valadon, J. Lezaud. COMPARISON BETWEEN HUGONIOT AND SOME ISEN- TROPIC RELEASE CURVES OF COPPER IN THE PRESSURE RANGE 70 GPa - 150 GPa.

Journal de Physique Colloques, 1984, 45 (C8), pp.C8-257-C8-261. �10.1051/jphyscol:1984848�. �jpa-

00224349�

(2)

JOURNAL DE PHYSIQUE

Colloque C8, supplément au n

ç

l l , Tome <f5, novembre 198*f page C8-257

COMPARISON BETWEEN HUGONIOT A N D SOME ISENTROPIC R E L E A S E CURVES OF COPPER IN THE PRESSURE RANGE 70 GPa - 150 G P a

H. Bernier, M. Valadon and J.M. Lezaud*

C.E.A.j Centre d'Etudes de L-imeil-Valenton, B.P. n° 27, 94190 Villeneuve-Saint-Georges, France

*C.E.A., Centre d<'Etudes de Vaujours, B.P. n° 7, 77181 Courtry, France Résumé - Avec un canon à gaz léger une série d'expériences a été réalisée afin de déterminer les positions relatives de l'hugoniot et de quelques isentropiques de détente du cuivre.

Les instants de fonctionnement des soixante douze sondes utilisées à chaque expérience sont enregistrés par un multichronomëtre digital.

Dans le domaine expérimental couvert 70 GPa - 150 GPa les résultats des points de l'isentropique du cuivre , dans le plan pression - vitesse matérielle, obtenus pour l'aluminium et le magnésium se situent "au-dessous"

de la polaire de choc du cuivre du projectile.

Lorsque la pression de choc dans le cuivre augmente - de 70 GPa à 150 GPa - l'écart - en vitesse matière - entre, ces deux courbes décroît régulièrement de 100 m/s à 15 m/s.

Abstract - With a two stage light gas gun* experiments have been performed in order to compare the hugoniot curve and some isentropic release curves of copper.

The working times of the seventy two pins used at each shot are recorded with a digital multichannel chronometer.

In the 70 GPa - 150 GPa experimental range, the isentropic results from Al and Mg targets , in the pressure - material velocity diagram, are "under" the copper shock polar of the projectile.

In this range, when increasing the copper shock pressure, the material velocity discrepancy (between the two curves) decreases from 100 m/s to IS m/s.

1. INTRODUCTION

To compare, with great accuracy, the shock polar curve and some isentropic release curves in copper, we designed experiments to measure, on the same shot, four points on each of these curves in the pressure - material velocity diagram.

The principle of these experiments is shown on fig. 1. A copper projectile impacts a target made of two groups of sectors (fig la). The first group consists of three sectors Al, Mg and Cu, and the second one of six sectors. With each shock pressure induced in each of these sectors can be associated a point in the pressure * material velocity diagram (fig lb).

As everyone knows, the discrepancies between the points 2 and 6 (on Mg shock polar), 3 and 5 (on Al shock polar) are very small, but more important between 1 (projectile velocity) and 7 (free surface velocity).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984848

(3)

JOURNAL DE PHYSIQUE

2. EXPERIMENTAL DESIGN

2.1 - The l a u n c h e r - The two stage l i g h t gas gun used f o r t h e s e experiments i s l o c a t e d a t t h e Centre d l E t u d e s de Vaujours. I - t s p r o j e c t i l e v e l o c i t y range i s f r o m 1,5 t o 5 km/s w i t h h e l i u m as p r o p e l l a n t gas. The f r o n t f a c e o f t h e p r o j e c t i l e - 80 mm c a l i b e r - i s a copper d i s c ( 0 77 mm, 10 mm t h i c k ) .

2.2 - The t a r g e t - F o r t h e f i r s t group o f s e c t o r s , t h e t h i c k n e s s , depending on t h e shot, i s about 7,5 mm. F o r t h e second group, t h e t h i c k n e s s i s 4 , 5 mm.

A l l t h e p i e c e s a r e c o n t r o l l e d a f t e r l a p p i n g . The t h i c k n e s s accuracy i s b e t t e r t h a n n '2 pm.

I n t h e s e experiments, copper used i s e l e c t r o l y t i c OFHC (99,95 % Cu), A1 i s p u r e aluminium (A9 - 99,99 % ) . Mg i s almost p u r e (99,3 % Mg - 0,6 % Z r ) .

2.3 - Tne measurement method - i t has been d e s c r i b e d i n [I]. Seventy two s h o r t i n g cap p i n s a r e c o u p l e d w i t h an e l e c t r o n i c d i g i t a l m u l t i - channel chronometer. (80 channels t 100 p s ) a t each s h o t . F i g u r e 2 shows t h e g e n e r a l a r r a n - gement o f t h e p i n s . ( L e v e l s 1 - 2 4 Vp ; L e v e l s 3-4

-- i) shock v e l o c i t i e s ) . 3. THE DATA ANALYSIS

LEVEL 4 ,

P I N F O R Y O I O

-

\ . - ,

JOlCWllC UKlUlnG "I l l f t r R R G t 7 ~ 0 C R l i O n OF PINS OF THE TARGET

F i g u r e 2

Using t h e same l e a s t squares method as i n [l] , we g e t t h e p r o j e c t i l e v e l o c i t y w i t h t i l t a n g l e and a l l t h e rough shock v e l o c i t i e s i n a l l t h e s e c t o r s . Refinements t a k i n g i n t o account t h e d i s t o r s i o n o f t h e s e shock f r o n t s ( f e s t o o n , h o r s e saddle shape) g i v e t h e c o r r e c t e d v e l o c i t i e s . D e t a i l e d comparisons between v a r i o u s c a l c u l a t e d d i s t o r s i o n s p r o v i d e a s t r o n g a n a l y s i s on t h e r e a l shape o f t h e shoclc f r o n t and a c o n t r o l o f t h e c a l c u l a t i o n s , b u t f o r t h i s , an i m p o r t a n t work i s needed.

F o r Cu, A1 and Mg, t h e shock p o l a r s used i n t h e c a l c u l a t i o n s a r e deduced f r o 3 t h e l i n e a r r e l a t i o n s U ( u ) shock v e l o c i t y - m a t e r i a l v e l o c i t y :

The accuracy o f t h i s t y p e o f experiments g e n e r a l l y i s b e t t e r than 1 %.

But, l o c a l l y , t h i s accuracy i s s t r o n g l y dependent on t h e d i s t o r s i o n s . A f t e r a d e t a i l e d a n a l y s i s o f t h e s e d i s t o r s i o n s t h e f i n a l coherency i s i n t h e range 1

%o

- 8 %, f o r a l l t h e r e s u l t s a l t h o u g h i t d o e s n ' t f o l l o w f r o m any s t e p o f t h e method. Table 1 r e p o r t s t h e s e values.

6 t i l t angle ( i n degrees)

-

V P p r o j e c t i l e v e l o c i t y (m/s). Numbers near V P ,Cu, Al, Ng, u,, rerer t o points on diagram f i g l a ; P pressure ( i n GPaIju rnass v e l o c i t y (mls)

Table 1

-

Experimental r e s u l t s

(4)

4. DISCUSSION OF THE RESULTS

assumptions on

1,

, P o i s s o n ' s r a t i o : a ) u i s a f u n c t i o n of p r e s s u r e [ 5 ] ,

b ) t h e v a r i a t i o n o f amma-GruneTsen c o e f f i c i e n t i s a f u n c t i o n o f d e n s i t y , g i v e n by po. v 0

=

p . pf5].

U s i n g t h e s e assumptions f o r r u s s i a n experimental r e s u l t s [ 6 ] [7] on copper, a l i n e a r v ( P I r e l a t i o n i s o b t a i n e d , i n v e r y good agreement w i t h each o f t h e r e s u l t s

U = O , 3445 + 7,5317.10-~ P. (GPa)

( T h i s r e l a t i o n g i v e s , f o r u

=

0,5 t h e v a l u e o f 206,4 GPa (2,064 Mb), t o compare w i t h U r l i n m e l t i n g c a l c u l a t i o n s (205 GPa) [8]

4.1 - The d i s c r e p a n c y between p r o j e c t i l e shock p o l a r and r e l e a s e curves.

T h i s t y p e o f experiment i s n o t s e l f - c o n s i s t e n t . So, o t h e r d a t a and assump- t i o n s a r e necessary t o d i s c u s s t h e s e r e s u l t s .

From Table 1, a l l t h e A1 (ivlg) p o i n t s , i n p, u, diagram, on t h e r e l e a s e c u r v e s o f copper avec l o c a t e d "under" t h e c o r r e s p o n d i n g copper shock p o i n t , on t h e A l (Mg) shock p o l a r . Secondly, t h e d i s t a n c e between each c o u p l e o f p o i n t s on t h e A l (ivlg) shock p o l a r , decreases

About t h e m a t e r i a l v e l o c i t y jump c o r r e s p o n d i n g t o t h e e l a s t i c r e l e a s e A ue, t h e s i m p l e s t assumption 3s t h a t t h i s jump i s small enough t o oe chosen equal t o zero. ( F i g u r e 4 - F i r s t assumption). Table 2 g i v e s t h e t h e so o b t a i n e d r e s u l t s , ( r u s s i a n r e s u l t s a r e a l s o r e p o r t e d ) .

These r e s u l t s f o r A P and Y a r e t o o s m a l l i n comparison w i t h [6] and [7). So i s i t necessary t o make o t h e r assumptions t o c a l c u l a t e t h e A u jump d u r i n g t h e e l a s t i c r e l e a s e (second assumption F i g . 4 b ) :

- o r u s i n g t h e r e l a t i o n A p

=

p . Ce .

A U

( p i s t h e d e n s i t y , and Ce t h e when t h e copper shock p r e s s u r e i n c r e a s e s ,

e l a s t i c wave v e l o c i t y ) , t h e r e s u l t s f o r AP and Y a r e t o o i m p o r t a n t .

A p

And f i n a l l y , t h i s d i s t a n c e seems almost a

t h e same f o r a same r e l e a s e wave (compa- r i s o n between n u ( A l ) and

A U

(big) f r o m a same s h o t ) . I n c o n c l u s i o n , f r o m t h e s e r e s u l t s t h e copper r e l e a s e c u r v e s have t h e shape shown on f i g . 3.

I n o r d e r t o improve these comparisons, t h e d i s c r e p a n c y A u between t h e r e 1 ease wave c u r v e and t h e p r o j e c t i l e shock p o l a r was c a l c u l a t e d f o r a same pressure. Three

SHOCK POLAR OF PROJECTILE

,' ,,,'

,'

ways were used each o f them o b t a i n e d f r o m

an independant experimental

9

b u t

COMPARISON BETWEEN SHOCK POLAR AND ISENTROPIC RELEASE CURVES

u n f o r t u n a t e l y t h e accuracy o f t h e s e r e s u l t s

IN THE PRESSURE

-

~ R T E R I A L VELOCITY DIAGRAM

i s v e r y bad, d e c r e a s i n g as A u decreases.

Only, one can say t h a t t h e values o f A u

bear o u t t h e p r e v i o u s r e s u l t s . F i g u r e 3 4.2 - How t o e x p l a i n t h e s e r e s u l t s ?

Several models may be suggested t o e x p l a i n t h e s e r e s u l t s such as c l a s s i c e l a s t i c - p l a s t i c , e l a s t i c v i s c o p l a s t i c , w i t h t i m e r e l a x a t i o n , w i t h temperature, v i s c o s i t y o r s t r a i n - r a t e dependance ....

As f i r s t . approximation, w e ' l l t r y t h e c l a s s i c e t a s t o - p l a s t i c model, on A1 r e s u l t s .

nssuming, as f i r s t a p p r o x i m a t i o n t h a t a ) t h i s e l a s t i c - p l a s t i c b e h a v i o u r obeys t h e Von Mises c r i t e r i o n b )

A U

i s t h e consequence o f an e l a s t i c un- l o a d i n g stage o f copper c ) t h e p l a s t i c r e l e a s e c u r v e can be deduced f r o m t h e p r o j e c t i l e shock p o l a r by a t r a n s l a t i o n o f A u , i t i s p o s s i b l e t o c a l c u l a t e t h e p r e s s u r e jump ~ p between t h e shock p r e s s u r e i n copper and t h e b e g i n n i n g of t h e p l a s t i c r e l e a s e wave i f one knows t h e m a t e r i a l v e l o c i t y jump correspon- d i n g t o t h e e l a s t i c r e l e a s e [4].

The y i e l d s t r e n g t h Y i s c o r r e l a t e d t o A P, w i t h o u r assumptions, by t h e r e l a t i o n AP

=

2 ( 1 -

o

)Y. To c a l c u l a t e Y, i t i s necessary t o make some

1-2~

(5)

(28-260 JOURNAL DE PHYSIQUE

- o r u s i n g t h e volume jump d u r i n g t h e e l a s t i c r e l e a s e , and i n t r o d u c i n g t h e Young modulus ( E l . To g e t r e s u l t s i n accordance w i t h t h e p u b l i s h e d r e s u l t s needs t o m u l t i p l y E by a f a c t o r 3 o r 4.

So o u r s u g g e s t i o n i s ( F i g . 4.3 t h i r d assumption) t h a t t h e e l a s t i c r e l e a s e n e c e s s a r i l y b e g i n s w i t h a decrease o f p r e s s u r e w i t h o u t a s i g n i f i c a n t m a t e r i a l v e l o c i t y jump. As example, a rough c a l c u l a t i o n f o r t h e p o i n t near 85 GPa g i v e s a p r e s s u r e decrease o f 3,8 GPa ( N ~ P / 4 ) w i t h no m a t e r i a l v e l o c i t y jump assump- t i o n .

u calculated from

independent ways.

T a b l e 2

FIRST ASSUMPTION SECOND ASSUMPTION THIRD ASSUMPTION

d u e =

o

THREE ASSUMPTIONS FOR THE BEGINNING OF THE RELEASE CURVE I N THE (P.u) DIAGRAM

F i g u r e 4 5. CONCLUSION

The r e l e a s e curves i n copper between 70 GPa and 150 GPa a r e under t h e Cu p r o j e c t i l e shock p o l a r f o r A 1 and Mg impacts. As a s u g g e s t i o n t o i n t e r p r e t t h e s e r e s u l t s , a p r e s s u r e decrease c o u l d t a k e p l a c e b e f o r e t h e e l a s t i c r e l e a s e . B u t o t h e r experiments w i t h o t h e r m a t e r i a l s a r e needed t o c o n f i r m t h e s e f i r s t r e s u l t s .

6. ACKNOWLEDGMENTS

We would l i k e t o thank e v e r y one who worked on t h i s s u b j e c t and s p e c i a l l y a l l t h e members o f t h e e x p e r i m e n t a l group.

7. REFERENCES

1 - H. S e r n i e r , M. Valadon, M. Zembri, J.M. Lezaud - Proceedings 8 t h . AIRAPT Conf. Uppsala. P. 175 (1981)

2 - M. Van T h i e l - Com~endiun o f shock wave data. UCRL 50108 Vol. 1 Rev. 1 (1977)

3 - L.V. A l ' t s h u l e r , A.A. Bakanova, I.P. Dudoladov - Sov. Phys. JETP 26.1115

(1968)

(6)

4 - J.R. Asay, J. L i p k i n - JAP 49.7.4242 (1978) 5 - C.E. P4orris, J.N. F r i t z - JAP 51.2.1244 (1980)

6 - S.A. Novikov, L.M. S i n i t s y n a - JAi4TP. 11.983 (1970) ( E n g l i s h t r a n s l a t i o n ) 7 - L.V. A l ' t s h u l e r , M . I . Braznik, G.S. T e l e g i n - JAMTP 12.921 (1971)

( E n g l i s h t r a n s l a t i o n )

8 - V.D. U r l i n - Sov. Phys. JETP 22.341 (1966) ( E n g l i s h t r a n s l a t i o n )

Références

Documents relatifs

invariant theory, for the moduli space is the quotient variety PD /SL3 , where PD is the ((D+22)) - l)-dimensional projective space of homogeneous polynomials of

In a previous paper ([2]) we have determined the singularities of the generic polar curves of a sufficiently general irreducible algebroid curve 7 with prescribed

One would expect that at a given specific volume, the principal Hugoniot stress (q-i) would be greater (compressive stresses are positive) than the quasi-isentropic stress (chi), due

IK have measured resistances at low temperature (1.7 K) and pressures of up to 25 GPa using a modified two-probe technique. Electrical resistance measurements of metallic

each light element in the liquid core to explain the outer core density deficit. These give the

In conclusion, we have measured the melting curve of gold to above 100 GPa with high accuracy by combining in situ measurements of the sample pressure and temperature with

Here, we present high-P neutron diffraction data to 34 GPa which completely and unambiguously determine the structure of YbH 2 , in particular the H positions.. We use the

Unite´ de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unite´ de recherche INRIA Rhoˆne-Alpes, 46 avenue Fe´lix Viallet, 38031 GRENOBLE Cedex