• Aucun résultat trouvé

Any law of group metric invariant is an inf-convolution.

N/A
N/A
Protected

Academic year: 2021

Partager "Any law of group metric invariant is an inf-convolution."

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-01169677

https://hal-paris1.archives-ouvertes.fr/hal-01169677

Preprint submitted on 30 Jun 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

Any law of group metric invariant is an inf-convolution.

Mohammed Bachir

To cite this version:

(2)

Mohammed Ba hir

June 30, 2015

Laboratoire SAMM4543, UniversitéParis1Panthéon-Sorbonne, CentreP.M.F. 90rue Tolbia 75634Paris edex13

Email : Mohammed.Ba hiruniv-paris1.fr

Abstra t. Inthisarti le,webringanewlightonthe on eptoftheinf- onvolutionoperation

andprovidesadditionalinformationstotheworkstartedin[1℄and[2℄. Itisshownthat any internallawofgroupmetri invariant(evenquasigroup) anbe onsideredasaninf- onvolution. Consequently,theoperationoftheinf- onvolutionoffun tionsonagroupmetri invariantisin realityanextensionoftheinternallawof

X

tospa esoffun tionson

X

. Wegiveanexampleof monoid

(S(X), ⊕)

fortheinf- onvolutionstru ture,(whi hisdenseinthesetofall

1

-Lips hitz bounded from bellow fun tions) forwhi h, themap

arg min : (S(X), ⊕) → (X, .)

is a(single valued) monoid morphism. It is also proved that, given a group omplete metri invariant

(X, d)

, the ompletemetri spa e

(K(X), d

)

ofallKatetovmapsfrom

X

to

R

equiped with theinf- onvolutionhasanaturalmonoidstru turewhi hprovidesthefollowingfa t: thegroup ofallisometri automorphisms

Aut

Iso

(K(X))

ofthemonoid

K(X)

,isisomorphi to thegroup of allisometri automorphisms

Aut

Iso

(X)

of thegroup

X

. Ontheother hand,weprovethat thesubset

K

C

(X)

of

K(X)

of onvexfun tions onaBana hspa e

X

, an beendowedwitha onvex onestru turein whi h

X

embedsisometri allyasBana hspa e.

Keyword,phrase: Inf- onvolution;groupandmonoidstru ture;Katetovfun tions. 2010Mathemati sSubje t: 46T99;26E99;20M32.

Contents

1 Introdu tion. 2

2 The inf- onvolutionon ompletemetri spa e. 4 3 The monoidsstru turefor the inf- onvolution. 8 4 Metri properties and the densityof

S(X)

in

Lip

1

(X)

. 10

5 The map

arg min(.)

asmonoidmorphism. 11

6 Examplesof inf- onvolutionmonoidin thedis rete ase. 13 6.1 Theinf- onvolutionmonoid

(l

dis

(Z), ⊕)

. . . 13 6.2 Theinf- onvolutionmonoid

(l

dis

(Z/pZ), ⊕)

. . . 13

7 The set ofKatetov fun tions. 13 7.1 Themonoidstru tureof

K(X)

. . . 13 7.2 The onvex onestru tureof

K

C

(X)

. . . 16

(3)

This arti lebrings someadditionalinformations to thestudy of theinf- onvolutionstru ture developedin[1℄and[2℄. Givenaset

X

,amap

α : X × X → X

andtworealvaluedfun tions

f

and

g

dened on

X

. The inf- onvolutionof

f

and

g

with respe t themap

α

is dened as follows

f ⊕

|{z}

α

g(x) :=

inf

y,z∈X/α(y,z)=x

{f (y) + g(z)} ; ∀x ∈ X.

(1)

Histori ally, theinf- onvolutionappearedas atooloffun tional analysisand optimization andstartswiththeworksofMa Shane[10℄,Fen hel,MoreauandRo kafellar;see[9℄for refer-en es,seealsothebookofJ.-B.Hiriart-UrrutyandC.Lemare hal[5℄. Weprovedin[1℄and[2℄, thattheinf- onvolutionalsoenjoysaremarkablealgebrai properties. Forexample,weproved that the set

(Lip

1

+

(X), ⊕)

of all nonegativeand

1

-Lips hitzfun tions dened ona omplete metri invariantgroup

(X, d)

, isamonoidand itsgroupof unitis isometri allyisomorphi to

X

. This resultmeans that themonoid stru ture of

(Lip

1

+

(X), ⊕)

ompletely determines the groupstru tureof

X

whenever

X

isangroupmetri invariant.

Inthis paper, wegiveadditional lightingto the understanding of the inf- onvolution op-eration. Indeed, itseems that theinf- onvolutionis notan external operationto the spa e

X

a ting on it, but is in reality a anoni alextension of the internal lawof

X

to the spa e

Lip

1

+

(X)

, whenever

X

isagroup metri invariant. In oderwords,anyinternal law ofmetri invariantgroup(evenquasigroup)isaninf- onvolution. Thisapproa hismotivatedby Propo-sition1and Theorem1below.

Ametri spa e

(X, ., d)

equippedwith aninternallaw

. : (y, z) 7→ y.z

denedfrom

X × X

into

X

issaidtobemetri invariant,if

d(x.y, x.z) = d(y.x, z.x) = d(y, z) ∀x, y, z ∈ X.

Note that everygroupis metri invariantforthe dis reetmetri . For examplesof nottrivial group metri invariant, see [2℄ (For informationson group omplete metri invariantsee [7℄). Let us denote by

γ : x ∈ X 7→ δ

x

theKuratowskioperator, where

δ

x

: t ∈ X 7→ d(x, t).

We denoteby

X

ˆ

theimageof

X

undertheKuratowskioperator,

X := γ(X)

ˆ

. Theset

X

ˆ

isendowed withthesup-metri

d

(γ(a), γ(b)) := sup

x∈X

|γ(a)(x) − γ(b)(x)|.

ItiswellknownandeasytoseethattheKuratowskioperator

γ

isanisometry: forall

a, b ∈ X

d

(γ(a), γ(b)) = d(a, b).

Wedenetheinf- onvolutionon

X

ˆ

as intheformula(1). Fortwoelement

γ(a), γ(b) ∈ ˆ

X

,

(γ(a) ⊕ γ(b)) (x) :=

inf

y,z∈X/y.z=x

{γ(a)(y) + γ(b)(z)} .

We obtain the following result whi h say that

(X, .)

and

( ˆ

X, ⊕)

has in generalthe same algebrai stru ture. Re all that aquasigroupis anonempty magma

(X, .)

su h that forea h pair

(a, b)

theequation

a.x = b

hasauniquesolutionon

x

andtheequation

y.a = b

hasaunique solutionon

y

. Aloopis anquasigroupwithanidentityelementand agroupisanasso iative loop.

Proposition1 Let

(X, ., d)

be a metri invariant spa e. Then, the following assertions are equivalent.

(4)

(2) ( ˆ

X, ⊕)

is aquasigroup (respe tively,loop,group, ommutativegroup).

Inthis ase,theKuratowskioperator

γ : (X, ., d) → ( ˆ

X, ⊕, d

)

isanisometri isomorphism of quasigroups (respe tively,loops,groups, ommutativegroups).

We then ask whether the operation

of

( ˆ

X, ⊕)

naturally extends to the whole spa e

(Lip

1

+

(X), ⊕)

. An answer is given by the following result. The part

(1) ⇒ (2)

was estab-lished in [1℄ forBana hspa esin onvexsetting andin [2℄in thegroupframework(as well as thedes riptionofthegroupofunitof

(Lip

1

+

(X), ⊕)

).

Theorem 1 Let

(X, ., d)

bea ompletemetri invariantquasigroup. Then thefollowing asser-tionsare equivalent.

(1) (X, .)

isa( ommutative) group.

(2) (Lip

1

+

(X), ⊕)

isa( ommutative) monoid.

Inthis ase,the identityelementof

(Lip

1

+

(X), ⊕)

is

γ(e)

where

e

isthe identityelement of

X

anditsgroupof unitis

X

ˆ

whi h isisometri ally isomorphi to

X

.

TheProposition1andTheorem 1are inouropinion theargumentsshowingthat themonoid stru ture of

(Lip

1

+

(X), ⊕)

is in realitya naturalextension of thegroup stru ture of

(X, .)

to theset

Lip

1

+

(X)

.

WeusethefollowingresultintheproofofTheorem1. Thisresultisthekeyofthisalgebrai theoryoftheinf- onvolution. Thepart

I) ⇒ II)

wasprovedin[2℄. Thepart

II) ⇒ I)

isnew. A moregeneralform inmetri spa eframeworknotne essarilygroupis givenin se tion2. Theorem 2 Let

(X, ., d)

beagroup ompletemetri invariant andlet

a ∈ X

. Let

f

and

g

be two lower semi ontinuousfun tionson

(X, d)

. Then,the following assertionsareequivalent

I)

themap

x 7→ f ⊕ g(x)

has astrongminimum at

a

II)

thereexists

y, ˜

z) ∈ X × X

su hthat

y ˜

˜

z = a

and:

f

has astrongminimumat

y

˜

and

g

has atstrongminimuma

z

˜

.

Theorem2alsogivesthefollowing orollary. Considerthefollowingsubmonoidof

Lip

1

(X)

S(X) :=



f ∈ Lip

1

(X)/ f

hasastrongminimum

andthemetri

ρ

dened for

f, g ∈ Lip

1

(X)

by

ρ(f, g) = sup

x∈X

|f (x) − g(x)|

1 + |f (x) − g(x)|

Forareal-valuedfun tion

f

withdomain

X

,

arg min(f )

isthesetofelementsin

X

thatrealize theglobalminimumin

X

,

arg min(f ) = {x ∈ X : f (x) = inf

y∈X

f (y)}.

For the lassof fun tions

f ∈ S(X)

,

arg min(f ) = {x

f

}

isasingleton, where

x

f

is thestrong minimumof

f

. Weidentifythesingleton

{x}

withtheelement

x

.

Corollary 1 Let

(X, ., d)

be a group omplete metri invariant having

e

as identity element. Then,

(S(X), ρ)

isadense subsetof

Lip

1

(X)

andforall

f, g ∈ S(X)

wehave

(5)

Inother words, themap

arg min : (S(X), ⊕, ρ) → (X, ., d)

is ontinuousmonoid morphismand onto. Wehavethefollowing ommutativediagram,where

I

denotestheidentitymap on

X

and

γ

the Kuratowskioperator

(X, .)

γ

//

I

%%

(S(X), ⊕)

arg min



(X, .)

Wearealsointerestedonthemonoidstru tureoftheset

K(X)

ofKatetovfun tions.There are lotofliteratureonthemetri andthetopologi al stru tureofthis spa e(See forinstan e [3℄,[6℄and[8℄). Wegiveinthisse tionsomeresultsaboutthemonoidstru tureof

K(X)

when

X

isagroup,andthe onvex onestru tureofthesubset

K

C

(X)

of

K(X)

(of onvexfun tions) when

X

isaBana hspa e. Let

(X, d)

beametri spa e; wesaythat

f : X → R

isaKatetov mapif

|f (x) − f (y)| ≤ d(x, y) ≤ f (x) + f (y); ∀x, y ∈ X.

(2)

These maps orrespondto one-pointmetri extensions of

X

. Wedenote by

K(X)

theset of allKatetovmapson

X

;weendowitwiththesup-metri

d

(f, g) := sup

x∈X

|f (x) − g(x)| < +∞

whi hturns itinto a ompletemetri spa e. Re allthat

X

isometri allyembedsin

K(X)

via the Kuratowski embedding

γ : x → δ

x

, where

δ

x

(y) := d(x, y)

, and that one has, for any

f ∈ K(X)

, that

d

(f, γ(x)) = f (x)

. It is shown in Se tion 7 that

(K(X), ⊕)

has a monoid stru ture and

K

C

(X)

hasa onvex one stru ture. Weobtainthe followinganalogous to the Bana h-Stonetheoremwhi hsaythatthemetri monoid

(K(X), ⊕, d

)

, ompletelydetermine the omplete metri invariant group

(X, d)

. Note that in the following result, any monoid isometri isomorphism has the anoni al form. We do not know if this is the ase for other monoidsas theset ofall onvex

1

-Lips hitzboundedfrom bellowfun tionsdened onBana h spa e(See Problem2. in[1℄).

Theorem 3 Let

(X, d)

and

(Y, d

)

be two omplete metri invariant groups. Then, a map

Φ : (K(X), ⊕, d

) → (K(Y ), ⊕, d

)

is a monoid isometri isomorphism if, and only if there exists a group isometri isomorphism

T : (X, d) → (Y, d

)

su h that

Φ(f ) = f ◦ T

−1

for all

f ∈ K(X)

. Consequently,

Aut

Iso

(K(X))

(the group of all isometri automorphism of the monoid

K(X)

)isisomorphi asgroup to

Aut

Iso

(X)

(thegroup ofall isometri automorphism of the group

X

).

2 The inf- onvolution on omplete metri spa e.

The main theorem of this se tion (Theorem 4) extend[Theorem 3, [2℄℄ and [Corollary3, [2℄℄ to omplete metri invariant spa e. In [Theorem 3, [2℄℄ and [Corollary 3, [2℄℄, only the part

I) ⇒ II)

wasprovedinthegroup ontext. Here,wegiveane essarilyand su ient ondition in themoregeneralmetri ontext.

Weneed somenotationsand denitions. Let

X

beaset and

α : X × X → X

beamap. Given

x ∈ X

wedenoteby

α

(x)

thefollowingsetdependingon

α

α

(x) := {(y, z) ∈ X × X : α(y, z) = x} ⊂ X × X.

Note that

α

(α(s, t)) 6= ∅

for all

s, t ∈ X

. Wealsodenote by

1,α

(x)

(respe tively,

2,α

(x)

) theproje tionof

α

(x)

ontherst(respe tively,these ond) oordinate:

(6)

2,α

(x) := {z ∈ X/∃y

z

∈ X : α(y

z

, z) = x} ⊂ X.

Denition1 Let

(X, d)

be metri spa e and

α : X × X → X

, be a map. We say that

α

is

d

-invariantat

x ∈ X

,if

α

(x) 6= ∅

andthereexists

L

1

, L

2

, L

1

, L

2

> 0

su hthat

L

2

d(y

1

, y

2

) ≤ d(α(y

1

, z), α(y

2

, z)) ≤ L

1

d(y

1

, y

2

); ∀y

1

, y

2

∈ ∆

1,α

(x); z ∈ ∆

2,α

(x).

and

L

2

d(z

1

, z

2

) ≤ d(α(y, z

1

), α(y, z

2

)) ≤ L

1

d(z

1

, z

2

); ∀z

1

, z

2

∈ ∆

2,α

(x); y ∈ ∆

1,α

(x).

Theset

α

(x)

is endowedwiththemetri indu edbytheprodu tmetri topologyof

X × X

i.e

d ((y, z), (y

˜

, z

)) := d(y, y

) + d(z, z

)

forall

(y, z), (y

, z

) ∈ X × X

.

Proposition2 Let

(X, d)

be metri spa e and

α : X × X → X

bea map. Suppose that

α

is

d

-invariantat

x ∈ X

. Then the restri tion of

α

tothe set

α

(x)

is ontinuous.

Proof. Let

(y, z), (y

0

, z

0

) ∈ ∆

α

(x)

. Then,

d(α(y, z), α(y

0

, z

0

)) ≤

d(α(y, z), α(y, z

0

)) + d(α(y, z

0

), α(y

0

, z

0

))

≤ L

1

d(z, z

0

) + L

1

d(y, y

0

)

≤ max(L

1

, L

1

) (d(z, z

0

) + d(y, y

0

))

Thisinequalityshowsthattherestri tionof

α

totheset

α

(x)

is ontinuous.

Fortwofun tions

f

and

g

on

X

,wedenethemap

η

f,g

dependingon

f

and

g

by

η

f,g

: X × X

→ R ∪ {+∞}

(y, z) 7→ f (y) + g(z)

Notethattheinf onvolutionof

f

and

g

at

x ∈ X

,withrespe ttothelaw

α

, oin idewith theinnimumof

η

f,g

on

α

(x)

f ⊕

|{z}

α

g(x) :=

inf

y,z∈X/α(y,z)=x

{f (y) + g(z)} :=

(y,z)∈∆

inf

α

(x)

η

f,g

(y, z).

Exemples 1 TheDenition 1issatisedin the following ases.

1)

Let

(X, k.k)

be ave tornormedspa eand

α : X × X → X

bethe mapdenedby

α(y, z) :=

y+z

. Inthis ase,theinf- onvolution orrespondtothe lassi aldenitionoftheinf- onvolution on ve torspa e andwehave

1,α

(x) = ∆

2,α

(x) = X

for all

x ∈ X

and

α

satises

kα(y, x) − α(z, x)k = kα(x, y) − α(x, z)k = ky − zk; ∀x, y, z ∈ X.

2)

Let

(C, k.k)

bea onvexsubsetof ave tor normedspa e

(X, k.k)

andlet

λ ∈]0, 1[

be axed real number. Let

α : C × C → C

be the map dened by

α(y, z) := λy + (1 − λ)z

. Then,

{(x, x)} ⊂ ∆

α

(x)

and

α

(x) = {(x, x)}

if, andonlyif

x

isan extremepointof

C

andwehave

kα(y, x) − α(z, x)k = λky − zk; ∀x, y, z ∈ C.

and

kα(x, y) − α(x, z)k = (1 − λ)ky − zk; ∀x, y, z ∈ C.

3)

If

(X, ., d)

isametri group,(

.

isthelawofinternal ompositionof

X

)and

α : (y, z) 7→ y.z

, then

1,α

(x) = ∆

2,α

(x) = X

forall

x ∈ X

. Moreover,

α

is

d

-invariantat

x

forea h

x ∈ X

if andonly if,

(X, ., d)

ismetri invariant. Were allthatametri groupis saidtobemetri in-variant,if

d(y.x, z.x) = d(x.y, x.z) = d(y, z)

forall

x, y, z ∈ X

. Everygroupismetri invariant forthedis reetmetri . We anndexamplesof groupmetri invariantin [2℄.

(7)

4)

However, there exists examplesof metri monoids

(M, d)

with alaw

.

whi h is notmetri invariantbutsu hthat

.

is

d

-invariantatea helementofthegroupofunitof

M

(SeeProposition 5andRemark1).

Denition2 Let

(X, d)

beametri spa e, wesaythat afun tion

f

has astrongminimumat

x

0

∈ X

, if

inf

X

f = f (x

0

)

andfor all

ǫ > 0

,there exists

δ > 0

su hthat

0 ≤ f (x) − f (x

0

) ≤ δ ⇒ d(x, x

0

) ≤ ǫ.

A strongminimum isin parti ularunique. By

dom(f )

wedenote the domain of

f

, dened by

dom(f ) := {x ∈ X : f (x) < +∞}

. Allfun tionsinthearti learesupposedsu hthat

dom(f ) 6=

.

Inwhatfollows,anelement

α(y, z) ∈ X

willsimplybenotedby

yz

andtheinf- onvolution oftwofun tions

f

and

g

willsimplybedenotedby

f ⊕ g(x) := inf

yz=x

{f (y) + g(z)} .

For

a ∈ X

,wesaythat

f ⊕ g(a)

is stronglyattainedat

(y

0

, z

0

)

, iftherestri tionof

η

f,g

tothe set

α

(a)

hasastrongminimumat

(y

0

, z

0

) ∈ ∆

α

(a)

.

Theorem 4 Let

(X, d)

bea ompletemetri spa es. Let

α : X × X → X

, beamap(

α(y, z) :=

yz

for all

y, z ∈ X × X

). Let

f

and

g

be two lower semi ontinuous fun tionson

(X, d)

. Let

a ∈ X

and suppose that the map

α

is

d

-invariant at

a

. Then, the following assertions are equivalent.

I)

the map

x 7→ f ⊕ g(x)

has astrong minimumat

a ∈ X

II)

thereexists

y, ˜

z) ∈ ∆

α

(a)

i.e

y ˜

˜

z = a

, su hthat :

f

hasastrongminimum at

y

˜

and

g

has atstrongminimum a

z

˜

.

Moreover, inthis ase,wehave

(1)

the restri tedmap

η

f,g

: ∆

α

(a) → R ∪ {+∞}

has astrong minimumat

y, ˜

z) ∈ ∆

α

(a)

i.e

f ⊕ g(a)

isstronglyattainedat

y, ˜

z)

.

(2) f (x) − f (˜

y) ≥ f ⊕ g(x˜

z) − f ⊕ g(a)

and

g(x) − g(˜

z) ≥ f ⊕ g(˜

yx) − f ⊕ g(a)

for all

x ∈ X

.

Proof. First,fromthedenitionoftheinf- onvolution,forall

y, y

, z, z

∈ X

,

f ⊕ g(yz

) ≤

f (y) + g(z

)

(3)

f ⊕ g(y

z) ≤

f (y

) + g(z).

(4)

Byaddingbothinequalilies(3)and(4)aboveweobtain

f ⊕ g(yz

) + f ⊕ g(y

z) ≤

(f (y) + g(z)) + (f (y

) + g(z

)) .

(5)

I) ⇒ II)

. Repla ing

f

by

f −

1

2

f ⊕ g(a)

and

g

by

g −

1

2

f ⊕ g(a)

, we an assumewithoutloss ofgeneralitythat

f ⊕ g

hasastrongminimumat

a

and

f ⊕ g(a) = 0

. Let

(y

n

)

n

; (z

n

)

n

⊂ X

be su hthatforall

n ∈ N

,

y

n

z

n

= a

and

0 = f ⊕ g(a) ≤

f (y

n

) + g(z

n

) < f ⊕ g(a) +

1

n

.

in otherwords

0 ≤ f (y

n

) + g(z

n

)

<

1

n

.

(6) Byappllaying(5)with

y = y

n

;

z = z

n

;

y

= y

p

and

z

= z

p

wehave

f ⊕ g(y

n

z

p

) + f ⊕ g(y

p

z

n

)

≤ (f (y

n

) + g(z

n

)) + (f (y

p

) + g(z

p

))

(8)

0 = 2(f ⊕ g(a)) ≤ f ⊕ g(y

n

z

p

) + f ⊕ g(y

p

z

n

) ≤

1

n

+

1

p

.

(7)

Sin e

x 7→ f ⊕ g

hasastrongminimumat

a

,then

d(x, a) → 0

whenever

f ⊕ g(x) → 0

. Onthe otherhand,

f ⊕ g(x) ≥ f ⊕ g(a) = 0

forall

x ∈ X

. Thusfrom(7),wegetthat

f ⊕ g(y

n

z

p

) → 0

and

f ⊕ g(y

p

z

n

) → 0

when

n, p → +∞

. Wededu e that

d(y

n

z

p

, a) → 0

, when

n, p → +∞

. Sin e

y

p

z

p

= a

for all

p ∈ N

and

α

is

d

-invariant at

a

, then

d(y

n

, y

p

) ≤

1

L

2

d(y

n

z

p

, y

p

z

p

) =

1

L

2

d(y

n

z

p

, a) → 0

, when

n, p → +∞

. Hen e

(y

n

)

n

is a Cau hy sequen e and so onverges to somepoint

y ∈ X

˜

sin e

(X, d)

is omplete metri spa e. Similarly, weprovethat

(z

n

)

n

on-vergesto somepoint

z ∈ X

˜

. Bythe ontinuityof themap

α : (y, z) 7→ yz

(SeeProposition2), wededu ethat

y ˜

˜

z = lim

n

(y

n

z

n

) = lim

n

(a) = a

.

Usingthelowersemi- ontinuityof

f

and

g

andtheformulas(6)weget

f (˜

y) + g(˜

z)

≤ lim inf

n→+∞

f (y

n

) + lim inf

n→+∞

g(z

n

)

≤ lim inf

n→+∞

(f (y

n

) + g(z

n

)) ≤ 0 = f ⊕ g(a).

Ontheotherhand,itisalwaystruethat

f ⊕ g(a) ≤ f (˜

y) + g(˜

z)

sin e

y ˜

˜

z = a

. Thus

f (˜

y) + g(˜

z) = f ⊕ g(a) = 0.

(8)

Using(8)weobtain

f ⊕ g(˜

yx)

≤ f (˜

y) + g(x) = g(x) − g(˜

z).

(9)

and

f ⊕ g(x˜

z) ≤

f (x) + g(˜

z) = f (x) − f (˜

y).

(10)

Using (10)and thefa t that

f ⊕ g

hasastrongminimumat

a

,wehavethat

f (x) − f (˜

y) ≥ 0

andif

f (y

n

) − f (˜

y) → 0

,then

f ⊕ g(y

n

z) → 0

˜

whi himpliesthat

d(y

n

z, a) → 0

˜

sin e

f ⊕ g

has astrongminimumat

a

. On theotherhandwehave

d(y

n

, ˜

y) ≤

1

L

2

d(y

n

˜

z, ˜

y ˜

z) =

1

L

2

d(y

n

z, a)

˜

by the

d

-invarian eof

α

at

a

. Thus

d(y

n

, ˜

y) → 0

and so

f

hasastrongminimumat

˜

y

. Thesame argument,byusing(9),showsthat

g

hasastrongminimumat

z

˜

II) ⇒ I)

. Werstprovethat

f ⊕ g

hasaminimumat

y ˜

˜

z = a

andthat

f (˜

y) + g(˜

z) = f ⊕ g(a)

. Indeed,sin e

f (y) ≥ f (˜

y)

and

g(z) ≥ g(˜

z)

forall

y, z ∈ X

,thenweget

f ⊕ g(a) := inf

yz=a

{f (y) + g(z)} ≥ f (˜

y) + g(˜

z)

Ontheotherhand,

f ⊕ g(a) ≤ f (˜

y) + g(˜

z)

sin e

y ˜

˜

z = a

. Thus,

f ⊕ g(a) = f (˜

y) + g(˜

z)

. Onthe other hand,usingagainthe fa tthat

f (y) ≥ f (˜

y)

and

g(z) ≥ g(˜

z)

for all

y, z ∈ X

, weobtain forall

x ∈ X

,

f ⊕ g(x) := inf

yz=x

{f (y) + g(z)} ≥ f (˜

y) + g(˜

z) = f ⊕ g(a).

Itfollowsthat

f ⊕g

hasaminimumat

a = ˜

y ˜

z

. Now,let

(x

n

)

n

⊂ X

beasequen ethatminimize

f ⊕ g

. Let

ǫ

n

→ 0

+

su hthat

f ⊕ g(a) ≤ f ⊕ g(x

n

) ≤ f ⊕ g(a) + ǫ

n

(11)

From the denition of

f ⊕ g(x

n

)

, for ea h

n ∈ N

, there exists sequen es

(y

n

)

n

, (z

n

)

n

⊂ X

satisfying

y

n

z

n

= x

n

and

(9)

f ⊕ g(x

n

) −

1

n

≤ f (y

n

) + g(z

n

) ≤ f ⊕ g(x

n

) +

1

n

Sin e

f (˜

y) + g(˜

z) = f ⊕ g(a)

,itfollowsthat

f ⊕ g(x

n

) − f ⊕ g(a) −

1

n

≤ (f (y

n

) − f (˜

y)) + (g(z

n

) − g(˜

z)) ≤ f ⊕ g(x

n

) − f ⊕ g(a) +

1

n

Usingtheinequality(11)wegetforall

n ∈ N

1

n

≤ (f (y

n

) − f (˜

y)) + (g(z

n

) − g(˜

z)) ≤ ǫ

n

+

1

n

Sin e

(f (y

n

) − f (˜

y)) ≥ 0

and

(g(z

n

) − g(˜

z)) ≥ 0

,wegetthat

0 ≤ f (y

n

) − f (˜

y) ≤ (f (y

n

) − f (˜

y)) + (g(z

n

) − g(˜

z)) ≤ ǫ

n

+

1

n

and

0 ≤ g(z

n

) − g(˜

z) ≤ (f (y

n

) − f (˜

y)) + (g(z

n

) − g(˜

z)) ≤ ǫ

n

+

1

n

Sending

n

to

+∞

, we have

lim

n→+∞

f (y

n

) = f (˜

y)

and

lim

n→+∞

g(z

n

) = g(˜

z)

. Sin e

f

and

g

has respe tively a strong minimum at

y

˜

and

z

˜

, we dedu e that

lim

n→+∞

y

n

= y

and

lim

n→+∞

z

n

= z

. By the ontinuity of the map

α : (y, z) 7→ yz

on

α

(a)

, we obtain

lim

n→+∞

(y

n

z

n

) = ˜

y ˜

z = a

. Sin e

y

n

z

n

= x

n

forall

n ∈ N

, wehave

lim

n→+∞

x

n

= a.

Thus

f ⊕ g

hasastrongminimumat

a

Moreover,wehavetheadditionalinformations:

(1) f ⊕ g(a)

is stronglyattained at

y, ˜

z)

(We assumeas in

I)

that

f ⊕ g(a) = 0

). We know from (8)that

f ⊕ g(a)

isattainedat

y, ˜

z)

. Tosee that

η

f,g

hasin fa t astrongminimum at

y, ˜

z)

,let

((y

n

, z

n

))

n

⊂ ∆

α

(a)

beanysequen esu hthat

f (y

n

) + g(z

n

) := η

f,g

(y

n

, z

n

) → inf

yz=a

{f (y) + g(z)} = η

f,g

y, ˜

z) = 0.

(12) Byapplying(5)with

y = ˜

y

,

y

= y

n

,

z = ˜

z

and

z

= z

n

andtheformulas(8)and(6),weobtain

0 ≤ f ⊕ g(˜

yz

n

) + f ⊕ g(y

n

z) ≤

˜

(f (˜

y) + g(˜

z)) + (f (y

n

) + g(z

n

))

=

(f (y

n

) + g(z

n

))

(13)

Thus

f ⊕ g(˜

yz

n

) → 0

(andalso

f ⊕ g(y

n

z) → 0

˜

)from(12)and(13)andthefa tthat

f ⊕ g(x) ≥

0 = f ⊕ g(a)

,forall

x ∈ X

. Itfollowsthat

d(˜

yz

n

, a) → 0

and

d(y

n

z, a) → 0

˜

, sin e

f ⊕ g

hasa strongminimumat

a

. Hen e,

d(y

n

, ˜

y) → 0

sin e

d(y

n

, ˜

y) ≤

1

L

2

d(y

n

z, ˜

˜

y ˜

z) =

1

L

2

d(y

n

z, a)

˜

bythe

d

-invarian eof

α

at

a

,andthefa t that

y ˜

˜

z = a

. Inasimilarwaywehave

d(z

n

, ˜

z) → 0

. Thus

y, ˜

z)

isastrongminimumof

η

f,g

.

(2)

Thispartfollowsfrom(9)and(10)

.

3 The monoids stru ture for the inf- onvolution.

The following orollary will permit to des ribe the group of unit of submonoids, for the inf- onvolutionstru ture,oftheset

Lip

1

(X)

ofall

1

-Lips hitzandboundedfrombelowfun tions. Corollary 2 Let

(X, ., d)

be a group omplete metri invariant having

e

as identity element. Let

f

and

g

betwo

1

-Lips hitz fun tionson

X

. Then,the following assertionsareequivalent.

(10)

(1) f ⊕ g = d(e, .)

.

(2)

thereexists

y ∈ X

˜

and

c ∈ R

su hthat

f (.) = d(˜

y, .) + c := γ(˜

y) + c

and

g(.) = d(˜

y

−1

, .) − c = γ(˜

y

−1

) − c.

Proof.

(1) ⇒ (2)

. Sin ethelaw

.

isinparti ular

d

-invariantat

e

andthemap

d(e, .)

hasastrong minimumat

e

, by applyingTheorem 4,thereexists

y, ˜

˜

z ∈ X

su hthat

y ˜

˜

z = e

,

f (˜

y) + g(˜

z) =

f ⊕ g(e) = 0

and

f (x) − f (˜

y) ≥ d(e, x˜

z) = d(˜

y, x)

and

g(x) − g(˜

z) ≥ d(e, ˜

yx) = d(˜

y

−1

, x)

, for all

x ∈ X.

On the other hand, sin e

f

and

g

are

1

-Lips hitz, wehave

f (x) − f (˜

y) ≤ d(˜

y, x)

and

g(x) − g(˜

z) ≤ d(˜

z, x) = d(˜

y

−1

, x)

, for all

x ∈ X.

Thus,

f (x) − f (˜

y) = d(˜

y, x)

and

g(x) − g(˜

y

−1

) = g(x) − g(˜

z) = d(˜

y

−1

, x)

, for all

x ∈ X.

Inother words,

f (.) = d(˜

y, .) + c :=

γ(˜

y) + c

and

g(.) = d(˜

y

−1

, .) − c = γ(˜

y

−1

) − c

,with

c = f (˜

y) = −g(˜

z)

.

(2) ⇒ (1)

. Suppose that

(2)

hold, then

f ⊕ g(x) = γ(˜

y) ⊕ γ(˜

y

−1

)



(x)

for all

x ∈ X.

Sin e

(X, ., d)

is group omplete metri invariant, by using Proposition 1. we get

f ⊕ g = γ(e) :=

d(e, .).

Lemma1 Let

(X, ., d)

beametri spa eand

. : (y, z) 7→ yz

bealaw of omposition of

X

.

1)

Supposethat

d(yx, zx) ≤ d(y, z)

and

d(xy, xz) ≤ d(y, z)

, for all

x, y, z ∈ X

. Then wehave, for all

a, b ∈ X

γ(ab) ≤ γ(a) ⊕ γ(b).

2)

Suppose

d(yx, zx) = d(xy, xz) = d(y, z)

, for all

x, y, z ∈ X

. Then, we have for all

x ∈ X

andall

a, b ∈ X

(γ(a) ⊕ γ(b)) (xb) = γ(ab)(xb)

and

(γ(a) ⊕ γ(b)) (ax) = γ(ab)(ax).

If moreover

X

isquasigroup,thenwe havefor all

a, b ∈ X

γ(a) ⊕ γ(b) = γ(ab).

Proof.

1)

Let

a, b, x ∈ X

,thenwehave

γ(a) ⊕ γ(b)(x) := inf

yz=x

{d(a, y) + d(b, z)} ≥

yz=x

inf

{d(az, yz) + d(ab, az)}

inf

yz=x

d(ab, yz)

=

d(ab, x) := γ(ab)(x)

2)

Usingthemetri invarian e,wehaveforall

x ∈ X

andall

a, b ∈ X

(γ(a) ⊕ γ(b)) (xb)

:=

inf

yz=xb

{d(a, y) + d(b, z)}

d(a, x)

=

d(ab, xb)

:= γ(ab)(xb)

Combiningthisinequalitywiththepart

1)

,weget

(γ(a) ⊕ γ(b)) (xb) = γ(ab)(xb)

. Inasimilar way, we prove

(γ(a) ⊕ γ(b)) (ax) = γ(ab)(ax)

. If moreover,

X

is a quasigroup,then for ea h

t, b ∈ X

,thereexists

x ∈ X

su hthat

t = xb

. Soweobtain

γ(a) ⊕ γ(b) = γ(ab).

(11)

Proof of Proposition 1.

(1) ⇒ (2)

. Suppose that

(X, α)

is quasigroup. Using Lemma 1, we havethat

γ(a) ⊕ γ(b) = γ(ab)

, for all

a, b ∈ X

. Using this formula and theinje tivity of

γ

, it is lear that

(γ(X), ⊕)

is quasigroup (respe tively, loop, group, ommutative group) whenever

(X, .)

isquasigroup(respe tively,loop,group, ommutativegroup).

Thelastpartofthetheorem,followsfromtheformula

γ(a) ⊕ γ(b) = γ(ab)

andthefa tthat

γ

isisometri .

(1) ⇒ (2)

. Suppose that

(γ(X), ⊕)

is a quasigroup. Let us provethat

(X, .)

is quasigroup. First, we showthat forall

a, b ∈ X

, we havethat

γ(a) ⊕ γ(b) = γ(ab)

. Indeed, let

a, b ∈ X

. Sin e

is aninternallawof

(γ(X), ⊕)

,thenthere exists

c ∈ X

su hthat

γ(a) ⊕ γ(b) = γ(c)

. Using Lemma 1, weobtain

γ(ab) ≤ γ(c)

. Hen e

0 ≤ d(ab, c) = γ(ab)(c) ≤ γ(c)(c) = 0

. This impliesthat

c = ab

. Finally wehave

γ(a) ⊕ γ(b) = γ(ab)

for

a, b ∈ X

. Fromthis formulaand theinje tivityof

γ

,itis learthat

(X, .)

isquasigroup(respe tively,loop,group, ommutative group)whenever

(γ(X), ⊕)

isquasigroup(respe tively,loop,group, ommutativegroup)

.

ThefollowingCorollaryis aparti ular aseoftheworkestablishedin[2℄.

Corollary 3 Let

(X, ., d)

be a group omplete metri invariant having

e

as identity element. Then,

(1)

the set

Lip

1

(X)

of all

1

-Lips hitz and bounded from below fun tions, isa monoid having

γ(e) := d(e, .)

asidentity elementanditsgroup of unit

U(Lip

1

(X))

oin ides with

X + R

ˆ

.

(2)

the set

Lip

1

+

(X)

ofall

1

-Lips hitzandpositive fun tions,isamonoidhaving

γ(e) := d(e, .)

asidentity elementanditsgroupof unit

U(Lip

1

+

(X))

oin ides with

X

ˆ

.

Proof.

(1)

The fa t that

Lip

1

(X)

is a monoid having

γ(e) := d(e, .)

as identity element, followsfrom Proposition7. andLemma 3. in [2℄. UsingProposition1,wehavethat

X + R ⊂

ˆ

U(Lip

1

(X))

. Thefa tthat

U(Lip

1

(X)) ⊂ ˆ

X +R

,followsfromCorollary2. Thus

U(Lip

1

(X)) =

ˆ

X + R

.

(2)

Sin etheinf- onvolutionofpositivefun tionsisalsopositiveand

γ(e) := d(e, .) ∈ Lip

1

+

(X)

, then

Lip

1

+

(X)

isasubmonoidof

Lip

1

(X)

. Ontheotherhand,

X ⊂ U(Lip

ˆ

1

+

(X)) ⊂ U(Lip

1

(X)) =

ˆ

X + R

. Sin etheelementof

U(Lip

1

+

(X))

arepositivefun tions weget

U(Lip

1

+

(X)) = ˆ

X.

WegivenowtheproofofTheorem1mentionedintheintrodu tion.

ProofofTheorem1. Thepart

(1) ⇒ (2)

anbededu edfrom[2℄(Seealso[1℄). Letusprove

(2) ⇒ (1)

. Sin e

(Lip

1

+

(X), ⊕)

is amonoid, thereexists and identityelement

f

0

∈ Lip

1

+

(X)

. Sin e

f

0

istheidentityelement,itsatisesin parti ular:

γ(a) ⊕ f

0

= γ(a)

forall

a ∈ X

. Sin e

γ(a) := d(a, .)

hasastrongminimumat

a

, applyingTheorem 4tothe fun tions

γ(a)

and

f

0

, thereexists

y, ˜

z) ∈ X × X

satisfying

y ˜

˜

z = a

su hthat

γ(a)

hasastrongminimumat

˜

y

and

f

0

hasastrongminimumat

z

˜

. Sin eastrongminimumisinparti ularunique,then

y = a

˜

. So,we have

a ˜

z = a

,forall

a ∈ X

. Thus

e := ˜

z

istheidentityelementof

X

. Fromtheasso iativityof

(Lip

1

+

(X), ⊕)

, weobtaininparti ular theasso iativityof

( ˆ

X, ⊕)

. Sin e

(X, .)

isaquasigroup (loop) then from Lemma 1, we have

γ(a) ⊕ γ(b) = γ(ab)

for all

a, b ∈ X

, so we dedu e by theinje tivityof

γ

,that

(X, .)

isalsoasso iative. Hen e,

(X, .)

is agroup. Thefa t that, the identityelementof

(Lip

1

+

(X), ⊕)

is

γ(e)

where

e

istheidentityelementof

X

anditsgroupof unit is

X

ˆ

,followsfromCorllary3

.

4 Metri properties and the density of

S(X)

in

Lip

1

(X)

. Letus onsiderthefollowingsets

S(X) :=



f ∈ Lip

1

(X)/ f

hasastrongminimum

(12)

S

+

(X) :=



f ∈ Lip

1

+

(X)/ f

hasastrongminimum

Corollary 4 Let

(X, ., d)

be a group omplete metri invariant having

e

as identity element. Then,

S(X)

isasubmonoidof

(Lip

1

(X), ⊕)

and

U(S(X)) = ˆ

X + R

. Ontheotherhand

S

+

(X)

isasubmonoid of

(Lip

1

+

(X), ⊕)

and

U(S

+

(X)) = ˆ

X

.

Proof. Sin e

(Lip

1

(X), ⊕)

isamonoidhaving

γ(e) ∈ S(X)

asidentityelementandsin e

S(X)

is asubsetof

(Lip

1

+

(X), ⊕)

,itsu esto showthat

isaninternal lawof

S(X)

whi h isthe ase thanksto Theorem 4. On the other hand,

X + R ⊂ U(S(X)) ⊂ U(Lip

ˆ

1

(X)) = ˆ

X + R

. Hen e

U(S(X)) = ˆ

X + R

. Inasimilarwayweobtainthese ond partoftheCorollary

.

Considernowthemetri s

ρ

and

ρ

˜

on

Lip

1

(X)

dened for

f, g ∈ Lip

1

(X)

by

ρ(f, g) = sup

x∈X

|f (x) − g(x)|

1 + |f (x) − g(x)|

˜

ρ(f, g) = ρ(f − inf

X

f, g − inf

X

g) + | inf

X

f − inf

X

g|.

Proposition3 Let

(X, d)

bea ompletemetri spa e. Then

(1)

the sets

(Lip

1

(X), ρ)

and

(Lip

1

(X), ˜

ρ)

(respe tively,

(Lip

1

+

(X), ρ)

and

(Lip

1

+

(X), ˜

ρ)

) are omplete metri spa es.

(2)

theset

(S(X), ρ)

isdense in

(Lip

1

(X), ρ)

and

(S(X), ˜

ρ)

isdensein

(Lip

1

(X), ˜

ρ)

.

(3)

theset

(S

+

(X), ρ)

isdense in

(Lip

1

+

(X), ρ)

and

(S

+

(X), ˜

ρ)

isdensein

(Lip

1

+

(X), ˜

ρ)

.

Proof. The part

(1)

is similar to Proposition 5. in [1℄ (See also Lemma 1. in [1℄). Let us prove the part

(2)

. Indeed, let

f ∈ Lip

1

(X)

and

0 < ǫ < 1

. Consider the fun tion

f

ǫ

:= (1 − ǫ)f

. Clearly,

f

ǫ

is

(1 − ǫ)

-Lips hitz and

ρ(f

ǫ

, f ) → 0

(respe tively

ρ(f

˜

ǫ

, f ) →

0

) when

ǫ → 0

. On the other hand, applying the variationalprin iple of Deville-Godefroy-Zizler[4℄tothe

(1 − ǫ)

-Lips hitzand bounded frombelowfun tion

f

ǫ

, thereexistsabounded Lips hitz fun tion

ϕ

ǫ

on

X

su h that

sup

x∈X

ǫ

(x)| ≤ ǫ

and

sup

x,y∈X/x6=y

ǫ

(x)−ϕ

ǫ

(y)|

|x−y|

≤ ǫ

and

f

ǫ

+ ϕ

ǫ

has a strong minimum at some point. We have that

f

ǫ

+ ϕ

ǫ

is

1

-Lips hitz and boundedfrombellowfun tionhavingastrongminimum,so

f

ǫ

ǫ

∈ S(X)

. Ontheotherhand,

ρ(f

ǫ

+ ϕ

ǫ

, f ) ≤ ρ(f

ǫ

+ ϕ

ǫ

, f

ǫ

) + ρ(f

ǫ

, f ) = ρ(ϕ

ǫ

, 0) + ρ(f

ǫ

, f )

. It followsthat

ρ(f

ǫ

+ ϕ

ǫ

, f ) → 0

when

ǫ → 0

(respe tively

ρ(f

˜

ǫ

+ ϕ

ǫ

, f ) → 0

). Thus

(S(X), ρ)

and

(S(X), ˜

ρ)

are respe tively densein

(Lip

1

(X), ρ)

and

(Lip

1

(X), ˜

ρ)

.

(3)

Let

f ∈ Lip

1

+

(X)

, from

(2)

, there exists

f

ǫ

∈ S(X)

su h that

ρ(f

ǫ

, f ) → 0

when

ǫ → 0

. In parti ular,

inf

X

f

ǫ

→ inf

X

f

. If

inf

X

f > 0

, then for very small

ǫ

we have

f

ǫ

> 0

and so

f

ǫ

∈ S

+

(X)

. If

inf

X

f = 0

, sin e

inf

X

f

ǫ

→ inf

X

f = 0

then

ρ(f

ǫ

− inf

X

f

ǫ

, f ) ≤ ρ(f

ǫ

inf

X

f

ǫ

, f

ǫ

) + ρ(f

ǫ

, f ) → 0

when

ǫ → 0

and

(f

ǫ

− inf

X

f

ǫ

) ∈ S

+

(X)

. Thus,

(S

+

(X), ρ)

isdense in

(Lip

1

+

(X), ρ)

. Wededu ethenthat

(S

+

(X), ˜

ρ)

isalsodensein

(Lip

1

+

(X), ˜

ρ).

5 The map

arg min(.)

as monoid morphism.

Forareal-valuedfun tion

f

withdomain

X

,

arg min(f )

isthesetofelementsin

X

thatrealize theglobalminimumin

X

,

arg min(f ) = {x ∈ X : f (x) = inf

y∈X

f (y)}.

For the lassof fun tions

f ∈ S(X)

,

arg min(f ) = {x

f

}

isasingleton, where

x

f

is thestrong minimumof

f

. Inwhatfollows,weidentifythesingleton

{x}

withtheelement

x

. Wehavethe followingproposition.

(13)

Corollary 5 Let

(X, ., d)

be a group omplete metri invariant having

e

as identity element. Then, the map,

arg min : (S(X), ⊕, ρ) → (X, ., d)

is surje tive and ontinuous monoid morphism. We have the following ommutative diagram, where

I

denotesthe identity map on

X

and

γ

the Kuratowskioperator

(X, .)

γ

//

I

%%

(S(X), ⊕)

arg min



(X, .)

Proof. Let

f, g ∈ S(X)

, then there exists

x

f

, x

g

∈ X

su h that

f

has a strong minimum at

x

f

= arg min(f )

and

g

has a strong minimum at

x

g

= arg min(g)

. Using Theorem 4,

f ⊕ g

has a strong minimum at

x

f

x

g

= (arg min(f )) (arg min(g))

. Thus

arg min(f ⊕ g) =

(arg min(f )) (arg min(g))

. Ontheotherhand,themap

arg min

sendtheidentityelement

d(e, .)

of

S(X)

totheidentityelement

e

of

X

,sin ethestrongminimumof

d(e, .)

is

e

. Hen e,

arg min

is amonoidmorphism. Forea h

x ∈ X

,

γ(x) ∈ ˆ

X ⊂ S(X)

and

arg min (γ(x)) = x

. Thus,

arg min

issurje tive. Letusprovenowthe ontinuityof

arg min

. First,notethatforall

f, g ∈ Lip

1

(X)

andall

0 < α < 1

,

ρ (f, g) ≤ α ⇒ sup

x∈X

|f (x) − g(x)| ≤

α

1 − α

.

(14)

andin onsequen e,wealsohave

| inf

X

f − inf

X

g| ≤

α

1 − α

.

(15)

Let

(f

n

)

n

⊂ S(X)

and

f ∈ S(X)

. Let

x

n

:= arg min(f

n

)

and

x

f

= arg min(f )

. Sin e

f

hasa strongminimumat

x

f

, forall

ǫ > 0

,thereexists

δ > 0

su hthat forall

x ∈ X

,

|f (x) − f (x

f

)| ≤ δ ⇒ d(x, x

f

) ≤ ǫ.

Suppose that

ρ (f

n

, f ) ≤

δ

2+δ

. Using the triangular inequality and the inequations (14) and (15)with

α =

δ

2+δ

< 1

,wehave

|f (x

n

) − f (x

f

)| ≤

|f (x

n

) − f

n

(x

n

)| + |f

n

(x

n

) − f (x

f

)|

=

|f (x

n

) − f

n

(x

n

)| + | inf

X

f

n

− inf

X

f |

1 − α

=

δ

whi himplies that

d(arg min(f

n

), arg min(f )) := d(x

n

, x

f

) ≤ ǫ

. Thisimplies the ontinuityof

arg min

on

S(X).

Notethat,themap

ξ : (Lip

1

(X), ⊕, ρ) → R

denedby

ξ : f 7→ inf

X

f

,is ontinuousmonoid morphism. Thefollowingproposition whi his a onsequen eoftheabove orollary,saysthat, in the aseof

(S(X), ⊕, ρ)

there areseveral ontinuousmonoidmorphismfrom

(S(X), ⊕)

into

K

with

K

= R

or

C

.

Proposition4 Let

(X, ., d)

be agroup omplete metri invariant and

χ : (X, ., d) → K

be a ontinuous group morphism. Then,

χ ◦ arg min : (S(X), ⊕, ρ) → K

is a ontinuous monoid morphism.

(14)

Let

X

beagroupwith the identity element

e

. We equip

X

with thedis rete metri

dis

. So

(X, dis)

is group metri invariantand

Lip

1

+

(X)

onsist in this ase on all positive fun tions su hthat

|f (x) − f (y)| ≤ 1

forall

x, y ∈ X

. TheKuratowskioperator

γ : x 7→ δ

x

isheredened by

δ

x

(y) = 1

if

y 6= x

and

δ

x

(x) = 0

, forall

x, y ∈ X

. Wetreatbelowthe asesof

X = Z

and

X = Z/pZ

.

6.1 The inf- onvolution monoid

(l

dis

(Z), ⊕)

.

Let

X = Z

equipped with the dis rete metri

dis

whi h is invariant. Let

l

dis

(Z)

the set of all sequen es

(x

n

)

n

of real positive numbers su h that

|x

n

− x

m

| ≤ 1

for all

n, m ∈ Z

. For

u = (u

n

)

n

and

v = (u

n

)

n

in

l

dis

(Z)

,wedenethesequen e

(u ⊕ v)

n

:= inf

k∈Z

(u

n−k

+ v

k

);

∀n ∈ Z.

Theset

(l

dis

(Z), ⊕)

isa ommutativemonoidhavingtheelement

δ

e

asidentityelementandits groupofunit

U(l

dis

(Z))

is isomorphi to

Z

bytheisomorphism

I : Z → U(l

dis

(Z))

,

k 7→ δ

k

.

6.2 The inf- onvolution monoid

(l

dis

(Z/pZ), ⊕)

. Let

p ∈ N

and

X = Z/pZ

equipped with the dis rete metri

dis

whi h is invariant. We denote by

l

dis

(Z/pZ)

the set of all

p

-periodi sequen es

(x

n

)

n

of real positivenumbers su h that

|x

n

− x

m

| ≤ 1

forall

n, m ∈ {0, ..., p − 1}

. Weidentifyasequen e

(x

n

)

n

∈ l

dis

(Z/pZ)

with

(x

0

, ..., x

p−1

)

. For

u = (u

n

)

n

and

v = (u

n

)

n

in

l

dis

(Z/pZ)

,wedenethesequen e

(u ⊕ v)

n

:=

min

k∈{0,...,p−1}

(u

n−k

+ v

k

);

∀n ∈ {0, ..., p − 1} .

The set

(l

dis

(Z/pZ), ⊕)

is a ommutative monoid having the element

δ

e

as identity element and its groupof unit

U(l

dis

(Z/pZ))

is isomorphi to

Z

/pZ

by the isomorphism

I : Z/pZ →

U(l

dis

(Z/pZ))

,

¯

k 7→ δ

k

.

7 The set of Katetov fun tions.

Wegivein thisse tionsomeresultsaboutthemonoidstru ture of

K(X)

when

X

isagroup, and the onvex one stru tureofthesubset

K

C

(X)

of

K(X)

(of onvexfun tions)when

X

is aBana hspa e. If

M

isamonoid, by

U(M )

wedenotethegroupofunit of

M

.

7.1 The monoid stru ture of

K(X)

.

Proposition5 Let

(X, d)

bea( ommutative)group metri invarianthaving

e

asidentity ele-ment. Then, themetri spa e

(K(X), ⊕, d

)

isalso a( ommutative)monoidhaving

γ(e) = δ

e

asidentity elementandsatisfying:

(a) d

(f ⊕ g, h ⊕ g) ≤ d

(f, h)

and

d

(g ⊕ f, g ⊕ h) ≤ d

(f, h)

, for all

f, g, h ∈ K(X)

(b) d

x

⊕ f, δ

x

⊕ h) = d

(f ⊕ δ

x

, h ⊕ δ

x

) = d

(f, h)

, for all

f, h ∈ K(X)

.

Proof. Sin e

K(X)

is a subset of the ( ommutative) monoid

Lip

1

(X)

of

1

-Lips hitz and bounded frombelowfun tions,whi hhave

δ

e

as identityelement(See [2℄),itsu esto prove that, forall

f, g ∈ K(X)

andall

x

1

, x

2

∈ X

,wehave

(15)

invarian ethat,forall

n ∈ N

,thereexists

y

n

, z

n

, y

n

, z

n

∈ X

su hthat

y

n

z

n

= x

1

and

y

n

z

n

= x

2

s.t

f ⊕ g(x

1

) + f ⊕ g(x

2

) ≥



f (y

n

) + g(z

n

) +

1

n



+



f (y

n

) + g(z

n

) +

1

n



=

(f (y

n

) + f (y

n

)) + (g(z

n

) + g(z

n

)) +

2

n

≥ d(y

n

, y

n

) + d(z

n

, z

n

) +

2

n

=

d(y

n

z

n

, y

n

z

n

) + d(y

n

z

n

, y

n

z

n

) +

2

n

=

d(x

1

, y

n

z

n

) + d(y

n

z

n

, x

2

) +

2

n

≥ d(x

1

, x

2

) +

2

n

Thus

f ⊕ g(x

1

) + f ⊕ g(x

2

) ≥ d(x

1

, x

2

)

by sending

n

to

+∞

. Hen e

(K(X), ⊕)

is a monoid having

δ

e

as identityelement.

We provenowthat

d

(f ⊕ g, h ⊕ g) ≤ d

(f, h)

. Let

f, g, h ∈ K(X)

and

x ∈ X

, thereexists

y

n

, z

n

su hthat

y

n

z

n

= x

and

h ⊕ g(x) > h(y

n

) + g(z

n

) −

1

n

. Hen e,forall

n ∈ N

f ⊕ g(x) − h ⊕ g(x)

≤ (f (y

n

) + g(z

n

)) +



−h(y

n

) − g(z

n

) +

1

n



= f (y

n

) − h(y

n

) +

1

n

≤ d

(f, h) +

1

n

Hen e,

d

(f ⊕ g, h ⊕ g) ≤ d

(f, h)

by sending

n

to

+∞

. In a similar way we provethat

d

(g ⊕ f, g ⊕ h) ≤ d

(f, h)

. For the part

(b)

, it su es to prove that

f ⊕ δ

a

(.) = f (.a

−1

)

and

δ

a

⊕ f (.) = f (a

−1

.)

for all

a ∈ X

,sin ethemap

x 7→ ax

and

x 7→ xa

are oneto one and onto from

X

to

X

whenever

a

is invertible. Indeed,

f ⊕ δ

a

(x) = inf

yz=x

{f (y) + d(z, a)} =

inf

(ya

−1

)(az)=x



f (ya

−1

) + d(az, a)

. Using the metri invarian e, we have for all

x ∈ X

,

f ⊕ δ

a

(x) = inf

yz=x



f (ya

−1

) + d(z, e)

:= f (.a

−1

) ⊕ δ

e

(x) = f (.a

−1

)(x)

, sin e

δ

e

is the i-dentity element. Similarlyweprovethat

δ

a

⊕ f (.) = f (a

−1

.)

. This on ludethe proofof the proposition

.

Remark1 Ingeneral, one an not getequality in the part

(a)

of Proposition 5sin e the inf- onvolution doesnot havethe an ellationproperty ingeneral (See[11℄).

If

Y ⊂ X

and

f ∈ K(Y )

, dene

f : X → R

(the Katetov extension of f) by

f (x) =

inf

y∈Y

{f (y) + d(x, y)}

. Itiswellknownthat

f

isthegreatest1-Lips hitzmapon

X

whi his equalto

f

on

Y

;that

f ∈ K(X)

and

χ : f 7→ f

isanisometri embeddingof

K(Y )

into

K(X)

(seeforinstan e [6℄). Thankstothefollowinglemma (we an ndamoregeneralform in[2℄) we an assumewithoutlossofgeneralitythat

X

isa ompletemetri spa e.

Lemma2 Let

(X, d)

be a group whi h is metri invariant and

(X, d)

its group ompletion. Then,

(K(X), ⊕, d

)

and

(K(X), ⊕, d

)

areisometri ally isomorphi as monoids. More pre- isely, the map

χ : (K(X), ⊕, d

) → (K(X), ⊕, d

)

f

7→ f :=



x ∈ X 7→ inf

y∈X



f (y) + d(y, x)



(16)

(16)

Proof. Itsu estoshowsthat

χ

isasurje tivemorphismofmonoids. Thesurje tivityis lear, sin eif

F ∈ K(X)

,wetake

f = F

|X

,then

f = F

on

X

andso

f = F

on

X

by ontinuity. Let us show that

χ

is amonoid morphism. Indeed, let

f, g ∈ K(X)

. Usingthe ontinuity of

f

,

g

and

y 7→ y

−1

andthedensityof

X

in

X

,wehaveforall

x ∈ X

,

f ⊕ g(x)

=

inf

˜

y ˜

z=x



f (˜

y) + g(˜

z))

=

inf

˜

y∈X



f (˜

y) + g(˜

y

−1

x)

=

inf

y∈X



f (y) + g(y

−1

x)

.

= f ⊕ g(x)

Thus

f ⊕ g

oin idewith

f ⊕ g = f ⊕ g

on

X

. Hen e

f ⊕ g = f ⊕ g

.

The following theorem shows that, up to an isometri isomorphism of groups, the group of unit of

K(X)

andthegroupofunitof

X

arethesame.

Proposition6 Let

(X, d)

be agroup whi h is ompletemetri invariant. Then, the group of unit

U(K(X))

and

X

ˆ

(whi h isisometri allyisomorphi to

X

) oin ides.

Proof. Sin e

(X, d)

be a omplete metri invariant group, from Proposition 1 we get that

ˆ

X ⊂ U(K(X))

. Ontheotherhand,

U(K(X)) ⊂ U(Lip

1

+

(X)) = ˆ

X.

Wededu ethefollowinganalogoustotheBana h-Stonetheorem. Theorem 5 Let

(X, d)

and

(Y, d

)

be two omplete metri invariant groups. Then, a map

Φ : (K(X), ⊕, d

) → (K(Y ), ⊕, d

)

is a monoid isometri isomorphism if, and only if there exists a group isometri isomorphism

T : (X, d) → (Y, d

)

su h that

Φ(f ) = f ◦ T

−1

for all

f ∈ K(X)

. Consequently,

Aut

Iso

(K(X))

isisomorphi asgroup to

Aut

Iso

(X)

.

Proof. If

T : (X, d) → (Y, d

)

isangroupisometri isomorphism, learly

Φ(f ) := f ◦ T

−1

gives an monoid isometri isomorphismfrom

(K(X), ⊕, d

)

onto

(K(Y ), ⊕, d

)

. For the onverse, let

Φ

bemonoid isometri isomorphismfrom

(K(X), d

)

onto

(K(Y ), d

)

, then

Φ

maps iso-metri ally thegroupofunit of

K(X)

onto thegroupofunit of

K(Y )

. UsingProposition 6,

Φ

mapsisometri allythegroup

X

ˆ

onto

Y

ˆ

. Then,themap

T := γ

−1

◦ Φ

| ˆ

X

◦ γ

givesanisometri groupisomorphismfrom

X

onto

Y

byProposition1,where

Φ

| ˆ

X

denotesthe restri tionof

Φ

to

X

ˆ

. Sin e

Φ

isisometri wehaveforall

f ∈ K(X)

andall

x ∈ X

f (x) = d

f, δ

x

) = d

(Φ(f ), Φ(δ

x

)) = d

Φ(f ), δ

T (x)



= Φ(f ) (T (x))

whi h on ludetheproof

.

Lemma3 Let

(M, d)

bea metri monoid,

U(M )

itsgroup of unit. Suppose that

d(xu, yu) ≤

d(x, y)

and

d(ux, uy) ≤ d(x, y)

for all

x, y, u ∈ M

, and

d(xu, yu) = d(ux, uy) = d(x, y)

for all

x, y ∈ M

andall

u ∈ U(M )

. Then, for all

x ∈ X

and all

a, b ∈ U(X)

, wehave the following formula

d(x, ab) = inf

yz=x

{d(y, a) + d(z, b)} .

Proof. Let

a, b ∈ U(M )

and

x ∈ M

,wehave

inf

yz=x

{d(y, a) + d(z, b)} ≤ d(xb

−1

, a) (

with

y = xb

−1

; z = b)

=

d(x, ab)

(17)

inf

yz=x

{d(y, a) + d(z, b)} ≥

yz=x

inf

{d(yz, az) + d(az, ab)}

inf

yz=x

d(yz, ab) (

byusingthetriangularinequality

)

=

d(x, ab).

Thus,

d(x, ab) = inf

yz=x

{d(y, a) + d(z, b)}.

Weobtainthefollowingformula.

Corollary 6 Let

(X, d)

be a group whi h is metri invariant. Let

f ∈ K(X)

and

a, b ∈ X

. Then

f (ab) =

inf

ϕ⊕ψ=f

{ϕ(a) + ψ(b)} .

Proof. Sin ethemonoid

(K(X), ⊕, d

)

satisfytheProposition5,byapplyingLemma3tothe monoid

M = (K(X), ⊕, d

)

and using thefa t that

X ⊂ U(K(X))

ˆ

(

= ˆ

X

) and

d

(g, γ(x)) =

g(x)

forall

x ∈ X

andall

g ∈ K(X)

,weobtainforall

f ∈ K(X)

andall

a, b ∈ X

:

f (ab) = d

(f, γ(ab)) = d

(f, γ(a) ⊕ γ(b))

=

inf

ϕ⊕ψ=f

{d

(ϕ, γ(a)) + d

(ψ, γ(b))}

=

inf

ϕ⊕ψ=f

{ϕ(a) + ψ(b))} .

7.2 The onvex one stru ture of

K

C

(X)

.

Let

(X, k.k)

beaBana hspa e. Were all that

K

C

(X) := {f ∈ K(X) : f

onvex

} .

Sin e the inf- onvolutionof onvexfun tions is onvex,the set

(K

C

(X), ⊕)

is a omplete metri spa e and ommutativesubmonoid of

(K(X), ⊕)

. Weequip

K

C

(X)

withthe externallaw

dened as follows: forall

f ∈ K

C

(X)

andall

λ ∈ R

+

by

λ ⋆ f (x) := λf

 x

λ



; ∀x ∈ X if λ > 0

0 ⋆ f := γ(0) := k.k.

Were allbelowthedenitionofa onvex one.

Denition3 A ommutativemonoid

(C, ⊕)

equippedwith as alar multipli ation map

⋆ : R

+

× C

→ C

(λ, c)

7→ λ ⋆ c

asu hthat

1) 1 ⋆ c = c

and

0 ⋆ c = e

C

, for all

c ∈ C

where

e

C

denotesthe identity elementof

(C, ⊕)

.

2) (α + β) ⋆ c = (α ⋆ c) ⊕ (β ⋆ c)

for all

α, β ∈ R

+

and all

c ∈ C

.

3) λ ⋆ (c ⊕ c

) = (λ ⋆ c) ⊕ (λ ⋆ c

)

for all

λ ∈ R

+

andall

c, c

∈ C

.

issaid tobea onvex one.

Thefollowingpropositioniseasilyveried.

Proposition7 Thespa e

(K

C

(X), ⊕, ⋆, d

)

isa ompletemetri onvex onewiththeidentity element

γ(0)

.

The ompletemetri onvex onestru tureof

(K

C

(X), ⊕, ⋆, d

)

indu e astru tureofBana h spa e on

X

ˆ

by setting

λ ⋆ γ(x) := (−λ) ⋆ γ(−x)

, if

λ < 0

and taking the norm

|||γ(x)||| :=

d

(γ(x), γ(0))

for all

x ∈ X

. In fa t, we an also say that the Bana h spa e

X

extend its stru ture anoni allytosome onvex onestru tureon

K

C

(X)

.

(18)

Proposition8 The Kuratowski operator

γ : (X, +, ., k.k) →



ˆ

X, ⊕, ⋆, |||.|||



is an isometri isomorphism of Bana h spa es.

Proof. UsingProposition1,itjust remainsto provethat

γ(λx) = λ ⋆ γ(x)

forall

x ∈ X

and

λ ∈ R

. Indeeed, let

x ∈ X

and

λ ∈ R

∗+

, by denition

γ(λx) : y 7→ δ

λx

(y) = ky − λxk =

λk

λ

y

− xk := λ ⋆ δ

x

(y)

. So,

γ(λx) = λ ⋆ γ(x)

. If

λ = 0

, then by denition

0 ⋆ γ(x) = γ(0)

. If

λ < 0

,

γ(λx) = γ((−λ)(−x)) = (−λ) ⋆ γ(−x) := λ ⋆ γ(x).

Theorem 6 Let

X

and

Y

twoBana h spa es. Then

(K

C

(X), ⊕, ⋆, d

)

and

(K

C

(Y ), ⊕, ⋆, d

)

areisometri allyisomorphi as onvex oneif, andonlyif,

X

and

Y

areisometri ally isomor-phi asBana h spa es.

Proof. SimilartotheproofofTheorem5

.

UsingthexedpointTheorem,weobtainthefollowingproposition.

Proposition9 Let

X

be a Bana h spa e,

g ∈ K

C

(X)

and

λ ∈ (0, 1)

. Then, there exists a uniquefun tion

f

0

∈ K

C

(X)

su hthat

(λ ⋆ f

0

) ⊕ g = f

0

.

Proof. Let us onsider the map

L : K

C

(X) → K

C

(X)

dened by

L(f ) = (λ ⋆ f ) ⊕ g

. Using Proposition5wehaveforall

f, f

∈ K

C

(X)

,

d

(L(f ), L(f

)) ≤ d

(λ ⋆ f, λ ⋆ f

) = λd

(f, f

).

Sin e

λ ∈ (0, 1)

, then

L

is ontra tive map. So by the xed point Theorem, there exists a uniquefun tion

f

0

∈ K

C

(X)

su hthat

L(f

0

) = f

0

.

Referen es

[1℄ M.Ba hir,Theinf- onvolutionasalawofmonoid.AnanaloguetoBana h-Stonetheorem J.Math. Anal.Appl420,(2014)No.1,145-166.

[2℄ M. Ba hir. The inf- onvolution between algebra and optimization. Appli ation-s to the Bana h-Stone theorem. submitted, http://hal-paris1.ar hives-ouvertes.fr/hal-01164797/fr/

[3℄ I.BenYaa ovThelinearisometrygroup oftheGurarijspa eisuniversal,Pro eedingsof theAMS, 142(2014),no.7,2459-2467.

[4℄ R.DevilleandG.GodefroyandV.Zizler,Asmoothvariationalprin iplewithappli ations toHamilton-Ja obiequations ininnitedimensions,J.Fun t.Anal.111,(1993)197-212. [5℄ J.-B.Hiriart-UrrutyandC.Lemare hal,Fundamentalsof onvexanalysis.TextEditions,

Springer-Verlag(2001).

[6℄ M.Katetov,Onuniversal metri spa es,Pro .ofthe6thPragueTopologi alSymposium (1986),Frolik(ed).HeldermanVerlagBerlin,323-330(1988).

[7℄ V. L. Klee, Invariant metri s in groups (solution of a problem of Bana h),Pro . Amer. Math. So .3(1952),484-487

[8℄ J. Melleray Compa t metrizable groups are isometry groups of ompa t metri spa es, Pro eedingsoftheAMS136(2008),no.4,1451-1455

[9℄ R.T. Ro kafellar Convex analysis, Prin eton University Press, Prin eton, New Jer-sey,(1997).

[10℄ E. Ma Shane,Extensionof rangeof fun tions.Bull.A.M.S.40(12): (1934)837-842. [11℄ D. Zagrodny,The an ellation law for inf- onvolutionof onvexfun tions,StudiaMath.

Références

Documents relatifs

is the disjoint union of a twisted cubic and a line, so this case gives an irreducible family, and the general element belongs to E 12.. Let us follow the strategy

diret sum of simple objet then a pointed ategory is equal to its Piard ategory.. In this paper we will use the terminology

Fiber bundle over the starting points The special role that plays the starting point in the metric G induces another formal fiber bundle structure, where the base space is the

However, due to the fact that the spray of the H s metric is smooth for s ≥ 1/2 (theorem 3.10), we are able to prove that the exponen- tial map on Diff ∞ ( S 1 ) is a

The set Diff( S 1 ) of all smooth orientation-preserving diffeomor- phisms of the circle represents the configuration space for the spatially peri- odic motion of

through rational equivalence, showing that on X all cycles (in the middle dimension) are generated by subspaces (mod rational equivalence) and that.. on the set of

over 0 of a certain proreductive affine group scheme 9 over 0 ; the quotient T of 9 the representations of which classify those motives constructible from spectra

In a non-discrete 03C3-compact locally compact metric group G, a Baire category argument gives a continuum of measurable sets.. {Ay : y E FI independent on the