• Aucun résultat trouvé

Notes about slide 7

N/A
N/A
Protected

Academic year: 2022

Partager "Notes about slide 7"

Copied!
2
0
0

Texte intégral

(1)

University of Toronto – MAT137Y1 – LEC0501

Calculus!

Notes about slide 7

Jean-Baptiste Campesato March 4

th

, 2019

For each𝑛 ∈ ℕ>0, we define

𝑟𝑛= the smallest power of2that is greater than or equal to𝑛 Consider the series𝑆 =

𝑛=1

1 𝑟𝑛. 1. Compute𝑟1through𝑟8.

𝑟1= 1,𝑟2= 2,𝑟3= 4,𝑟4= 4,𝑟5= 8,𝑟6= 8,𝑟7= 8,𝑟8= 8.

2. Compute the partial sums𝑆1, 𝑆2, 𝑆4, 𝑆8of the series𝑆.

𝑆1=

1

𝑛=1

1 𝑟𝑛 = 1

𝑟1 = 1

𝑆2=

2

𝑛=1

1 𝑟𝑛 = 1

𝑟1 + 1

𝑟2 = 1 + 1 2 = 3

2

𝑆4=

4

𝑛=1

1 𝑟𝑛 =

2

𝑛=1

1 𝑟𝑛+

4

𝑛=3

1

𝑟𝑛 = 𝑆2+ 1 𝑟3+ 1

𝑟4 = 𝑆2+1 4 +1

4 = 𝑆2+1 2 = 3

2 +1 2 = 2

𝑆8=

8

𝑛=1

1 𝑟𝑛 =

4

𝑛=1

1 𝑟𝑛+

8

𝑛=5

1

𝑟𝑛 = 𝑆4+1 8+ 1

8+ 1 8+ 1

8 = 𝑆4+1

2 = 2 +1 2 = 5

2

It seems that𝑆2𝑘+1= 𝑆2𝑘+ 1

2, allowing us to conjecture that

∀𝑘 ∈ ℕ, 𝑆2𝑘 = 1 +𝑘 2

The above claim is true and will be useful for the next question, so let’s prove it by induction.

Base case, for𝑘 = 0:𝑆20= 𝑆1= 1 = 1 +0

2.

(2)

2 Notes about slide 7

Induction step:

We assume that𝑆2𝑘 = 1 +𝑘2 for some𝑘 ∈ ℕand we want to show that𝑆2𝑘+1= 1 + 𝑘+12 . First, notice that

𝑆2𝑘+1=

2𝑘+1

𝑛=1

1 𝑟𝑛 =

2𝑘

𝑛=1

1 𝑟𝑛+

2𝑘+1 𝑛=2𝑘+1

1

𝑟𝑛 = 𝑆2𝑘+

2𝑘+1 𝑛=2𝑘+1

1

𝑟𝑛 = 1 + 𝑘 2 +

2𝑘+1 𝑛=2𝑘+1

1 𝑟𝑛

where the last equality comes from the induction hypothesis.

Then, notice that the last sum has(2𝑘+1) − (2𝑘+ 1) + 1 = 2𝑘+1− 2𝑘= 2𝑘(2 − 1) = 2𝑘terms and moreover, for all𝑛 = 2𝑘+ 1, 2𝑘+ 2, … , 2𝑘+1, we have2𝑘< 𝑛 ≤ 2𝑘+1, hence𝑟𝑛= 2𝑘+1.

Therefore

𝑆2𝑘+1= 1 + 𝑘

2 + 2𝑘 1

2𝑘+1 = 1 + 𝑘 2 +1

2 = 1 +𝑘 + 1 2 3. Compute𝑆 =

𝑛=1

1 𝑟𝑛.

We denote the𝑘-th partial sum of𝑆by𝑆𝑘=

𝑘

𝑛=1

1 𝑟𝑛. Let𝑘 ∈ ℕ>0, then

𝑆𝑘+1=

𝑘+1

𝑛=1

1 𝑟𝑛 =

⎛⎜

⎜⎝

𝑘

𝑛=1

1 𝑟𝑛

⎞⎟

⎟⎠ + 1

𝑟𝑘+1 = 𝑆𝑘+ 1 𝑟𝑘+1 > 𝑆𝑘 Hence the sequence(𝑆𝑘)𝑘≥1is increasing.

Therefore, either it is bounded from above and then convergent or it is not bounded from above and then it is divergent to+∞.

But we know that lim

𝑘→+∞𝑆2𝑘 = lim

𝑘→+∞(1 +𝑘

2 )= +∞.

So(𝑆𝑘)𝑘is not bounded from above: for any𝑀 ∈ ℝ, there exists𝑙 ∈ ℕsuch that𝑆𝑘 > 𝑀 with𝑘 = 2𝑙.

Hence, since(𝑆𝑘)𝑘is increasing and not bounded from above, we get that lim

𝑘→+∞𝑆𝑘= +∞.

We proved that

𝑛=1

1

𝑟𝑛 = +∞.

4. Compute𝐻 =

𝑛=1

1 𝑛. Hint:“Compare”𝐻and𝑆.

By definition of𝑟𝑛, we know that, for any𝑛 ∈ ℕ>0, we have𝑟𝑛≥ 𝑛 > 0and therefore𝑟1

𝑛1𝑛. Hence, for any𝑘 ∈ ℕ>0, we have

𝑘

𝑛=1

1 𝑟𝑛

𝑘

𝑛=1

1 𝑛. Since lim

𝑘→+∞

𝑘

𝑛=1

1

𝑟𝑛 = +∞, we get by comparison that lim

𝑘→+∞

𝑘

𝑛=1

1 𝑛 = +∞.

We proved that

𝑛=1

1 𝑛 = +∞.

Références

Documents relatifs

Mais l’utilité principale de cette fenêtre est de pouvoir définir de nouvelles fonctions qui ne sont pas prédéfinies dans R pour pouvoir les utiliser chaque fois qu’on

avec des valeurs par défaut : ces valeurs par défaut seront utilisées si les paramètres d’entrée ne sont pas spécifiés.. Nantes) Logiciel R 26 septembre 2012 57 / 147.

Credits: Chemical Heritage Foundation; DigiBarn Computer Museum; Sloan Digital Sky Survey; Dick Stafford,

Une suite de nombres complexes dont la diff´ erence entre deux termes cons´ ecutifs est constante est dite arithm´ etique. Th´

Philippe Langevin (IMATH, universit´ e de Toulon) Mars  1 / 37... repr´ esentation

Philippe Langevin (IMATH, universit´ e de Toulon) Avril  1 / 20...

La r´ esolution de nombreux probl` emes peut en effet ˆ etre d´ ecrite comme la s´ equence d’op´ erateurs permettant de mener de l’´ etat initial (la description de l’´ etat

19 Le verbe appeler/nommer (syriaque qrà) sera repéré par la couleur rouge. 20 Et donc les douze tribus d'Israël = l'ensemble de TOUS les individus issus de Jacob=Israël.. le