• Aucun résultat trouvé

Two MATLAB programs for computing paleo-elevations and burial ages from paired-cosmogenic nuclides

N/A
N/A
Protected

Academic year: 2021

Partager "Two MATLAB programs for computing paleo-elevations and burial ages from paired-cosmogenic nuclides"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-02377566

https://hal.archives-ouvertes.fr/hal-02377566

Submitted on 23 Nov 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Two MATLAB programs for computing paleo-elevations

and burial ages from paired-cosmogenic nuclides

Pierre-Henri Blard, Maarten Lupker, Moïse Rousseau, Jim Tesson

To cite this version:

Pierre-Henri Blard, Maarten Lupker, Moïse Rousseau, Jim Tesson. Two MATLAB programs for

computing paleo-elevations and burial ages from paired-cosmogenic nuclides. MethodsX, Elsevier,

2019, 6, pp.1547-1556. �10.1016/j.mex.2019.05.017�. �hal-02377566�

(2)

Method

article

Two

MATLAB

programs

for

computing

paleo-elevations

and

burial

ages

from

paired-cosmogenic

nuclides

Pierre-Henri

Blard

a,b,

*

,

Maarten

Lupker

c

,

Moïse

Rousseau

d

,

Jim

Tesson

a

a

CentredeRecherchesPétrographiquesetGéochimiques(CRPG),UMR7358,CNRS-UniversitédeLorraine, 15rueNotreDamedesPauvres,54500Vandoeuvre-lès-Nancy,France

bLaboratoiredeGlaciologie,DGES-IGEOS,UniversitéLibredeBruxelles,1050Bruxelles,Belgium c

ETHZürich-GeologicalInstitute,Sonnegstrasse5,8092Zürich,Switzerland

d

ResearchInstituteonMinesandEnvironment(RIME)UQAT-Polytechnique,Montréal,Canada ABSTRACT

Methodsbasedoncosmic-rayproducednuclidesarekeytoimproveourunderstandingoftheEarthsurface dynamic.Measuringmultiplecosmogenicnuclidesinthesamerocksamplehasagreatpotential,butdata interpretationrequiresrigorousandoftencomplexmathematicaltreatments.Inordertomakeprogressonthis topic,thispaperpresentstwoeasy-to-useMATLAB©programspermittingtoderiveinformationfrompairsof

cosmogenicnuclides(26Al-10Beor10Be-21Ne)measuredinrocksamplesthathavebeenexposedtocosmicraysin

thepast:“Paleoaltitude.m”and“Burial.m”Codesavailablehereassupplementarymaterial.

 “Paleoaltitude.m” computes paleoelevations from a sample whose burial age is known. This new paleoaltimetrymethod is presented in detail in Blard et al.[1]. The present article also develops the mathematicalapproach.

 Sincetheelevationofexposuremayaffecttheaccuracyofaburialage[1],thesecondMATLAB©script“Burial. m”isdesignedtocomputeburialagesfrom26Al-10Beor10Be-21Nepairs,takingintoaccountthepositionofa

sample(elevationandlatitude)duringitspreburialexposurehistory.

©2019PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

ARTICLE INFO

Methodname:Cosmogenicnuclides,Paleoaltimetry,Burialage Keywords:Cosmogenicnuclides,10

Be,26

Al,21

Ne,MATLAB,Paleoelevation,Continuousexposure,Steadyerosion,Burialages

Articlehistory:Received19March2019;Accepted16May2019;Availableonline25June2019

*Correspondingauthorat:CentredeRecherchesPétrographiquesetGéochimiques(CRPG),UMR7358,CNRS-Universitéde Lorraine,15 rueNotreDamedesPauvres,54500Vandoeuvre-lès-Nancy,France.

E-mailaddress:pierre-henri.blard@univ-lorraine.fr(P.-H.Blard). https://doi.org/10.1016/j.mex.2019.05.017

2215-0161/© 2019 Published by ElsevierB.V. This is an open access articleunder the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

MethodsX6(2019)1547–1556

ContentslistsavailableatScienceDirect

MethodsX

(3)

SpecificationsTable

SubjectArea: EarthandPlanetarySciences

Morespecificsubjectarea: geochemistry;geochronology;cosmogenicnuclides;26

Al;10

Be;21

Ne Methodname: cosmogenicnuclides;paleoaltimetry;burialage

Nameandreferenceof originalmethod

P.-H.Blard,M.Lupker,M.Rousseau-Paired-cosmogenicnuclidepaleoaltimetry–Earthand PlanetaryScienceLetters,2019.doi.org/https://doi.org/10.1016/j.epsl.2019.03.005. Resourceavailability 2Matlabscriptswiththispaper:“Paleoaltitude.m”and“Burial.m”Codesavailablehereas

supplementarymaterial.

Methoddetails

This article presents two Matlab© programs, “Paleoaltitude.m” and “Burial.m”, and their mathematicaldescriptions.Thesetwogeologicalapplicationsarebasedonthemeasurementofa cosmogenicnuclidespair(26Al-10Beor10Be-21Ne)inrocksthathavebeenexposedtocosmicraysin thegeologicalpast(upto>10millionyears ago)(Fig.1).Thepaleoaltimetrymethodis newand describedin[1].Theburialagemethodisalreadywidelyused(e.g.[2]);themainnoveltyofthescript “Burial.m”istotakeintoaccountthespatialpositionofthesample(latitudeandelevation)inthe calculationoftheburialage[1].Codesavailablehereassupplementarymaterial.

Program1-“Paleoaltitude.m”:Thisscriptcomputestheelevationofarocksamplesinwhicha pairofcosmogenicnuclideswithdifferenthalf-lives(26Al-10Beand10Be-21Ne)wasmeasured.Inthe caseofancientexposures,theburialagehastobeknownandbeaccountedforradioactivedecay.

Program2-“Burial.m”:Thiscodecomputesthedurationsincearockwasburiedfrom cosmic-rays.Altitudeandlatitudeatwhichthepaleo-exposureoccurredhavetobeknown.Botharenecessary inputoftheprogram.

By default, the code includes sea level high latitude production rates computed from the worldwidedatabaseavailableintheCREpcalculator(crep.crpg.cnrs-nancy.fr,ICE-Ddatabase;[3])and theproductionparameterssummarizedin[1].

Theseprogramsweredesignedandoptimizedwiththe2018aversionofMatlab©.Somefunctions couldbeunavailableiftheprogramsarerunwithanolderversionofMatlab©.Alldefaultparameters usedinthecodesarethosedefinedintheTable1ofBlardetal.[1].

Program1:“Paleoaltitude.m”–Computationofpaleoaltitudeofexposure

Thephysicalprinciplesofthisnewpaleoaltimetrymethodarepresentedinthemainarticle[1].

TutorialoftheMatlab©script:“Paleoaltitude.m”

Tousetheprogram,usersmustloadthefunctionfileintheirMatlab©workspaceandrunthe "Paleoaltitude.m"script.Awindowwithclickablebuttonsisthendisplayed.

Necessaryinputdata(intheformof.csvor.xlsxspreadsheets)are: Column1:Samplename

Column2:Latitude()

Column3:Presentaltitude(m) Column4:Burialage(Ma)

Columns5and6:Nuclide11s(at.g1)

Columns7and8:Nuclide21s(at.g1)

Typesofnuclides(10Be,26Alor21Ne)mustbedefinedusingtheinteractivebox.Itisimportantto checkthat thecorrectnuclidesareloadedbelowthecorrespondingheaders. Oncedataarecorrectly uploaded,usersmaypushthe"1-Calculate elevations"buttontostart thecalculations. Itis also

(4)

possibletopushthe"2-Plot" buttontodisplaythedatain a twocosmogenicnuclidesdiagram (26Al/10Bevs10Beor10Be/21Nevs21Ne).Oncethefigureisdisplayed,specificsamplesorsub-dataset maybeselectedandplotted.Fig.2showsanexampleofsuchaplotthatpermitstocomparedatawith theoreticalexposurecurvesatvariouselevations(bydefault,theprogramplotssurface exposure curvesfor0,2000and4000melevations).

Outputresults(in.csv): Column1:Samplename.

Columns2to4:H(m),H_min(m),H_max(m)-Mean,minimumandmaximumelevationcomputedassumingcontinuous exposure(noerosion).SeeBlardetal.[1]forcomplementaryinformation.

Columns5and6:Tint1s(Ma)-Integrationtimeoverwhichaltitudeiscomputedassumingcontinuousexposure(noerosion).

TintiscomputedfromEq.(7)inBlardetal.[1],usingthenuclidehavingtheshortesthalf-life(26Alor10Be)andthescalingfactor

ofthecomputedelevation.

Columns7to9:H_erosion(m),H_min_Erosion(m),H_max_Erosion(m)-Mean,minimumandmaximumelevationcomputed assumingsteadystateerosion.SeeBlardetal.[1]forcomplementaryinformation.

Columns10and11:Erosion1s(m.Ma1).Erosionisherecomputedconsideringthespallogenicproductiononlyandthe preburial10

Beconcentration,usingEq.(14)inLal[4].

Columns12and13:Tint1s(Ma)-Integrationtimeoverwhichaltitudeiscomputedassumingsteadystateerosion.Tintis

computedfromEq.(7)inBlardetal.[1],usingthenuclidehavingtheshortesthalf-life(26

Alor10

Be)andthespatialscaling factorofthecomputedelevation.

Resultsmaybeexportedintheformofa.csvspreadsheetbyclickingthebutton"Export".

Mathematicaldescriptionoftheprogramusedin“Paleoaltitude.m”tocomputepaleo-elevationsandtheir associateduncertainties

ForanuclideX,

l

Xistheradioactivedecayconstant(yr1),PX(at.g1.yr1)theSLHLproduction rate,NXand

D

NX(at.g1)themeasuredconcentrationwithitsuncertainty.

l

Y,PY,NYand

D

NYarethe variablesspecifictothenuclideY.

Inthecaseofpaleo-exposedmaterial,NXandNYarefirstcorrectedforradioactivedecaysincethe burialinitiation(tburial):

NX ¼NX present



elXtburial ð1aÞ

NY ¼NY present



elYtburial ð1bÞ

Here,itisassumedthatthereisnoinheritanceduetopre-exposureandthataltitudehasremained constantduringexposure.

FortwocosmogenicradioactivenuclidesXandYwithdifferenthalf-lives

l

Xand

l

Y,suchas

l

X<

l

Y: NX¼ f



PX

l

me

1eðlXþmeÞt   ð2aÞ NY¼ f



PY

l

me

1eðlYþmeÞt   ð2bÞ In Eqs. (2a) and (2b), t(yr) is thepreburial exposure duration, f(dimensionless) the spatial productionratescalingfactor,

m

(cm1)therockabsorptioncoefficient(

m

=

r

/

L

,with

r

thedensityin g.cm-3and

L

theattenuationlengthing.cm-2)and

e

(cm.yr1)theerosionrate.

Continuousexposurecase(

e

=0m.Ma1)

In the following, thevariables A, B,

D

A,

D

Band r are defined as: A  ¼   lYNY

PY , B¼  lXNX PX ,

D

A¼ lYDNY PY ,

D

B¼  lXDNX PX andr¼ lX lYwithr<1

(5)

Fig.1.Synopticdescriptionofthetwomethodsforthe26

Al-10

Bepair. Case1:Burialageisknownandpaleoaltitudescanbecomputed.

(6)

Exactsolution. SolvingtheYnuclideEq.(2b)fortandsubstituteitinXEq.(2a)leadsto:

0¼ff 1Af  r

B ð3aÞ

Fig.2. Exampleofapairednuclidesplotrealizedusingthe“Plot”functionofthe“Paleoaltitude.m”program.Shownisthe

10Be-21NedatasetfromtheAtacamadesert,Chile,SouthAmerica,reviewedin[1].Dataarefrom([7–11]).

Fig.3. Graphicaldescriptionofthemathematicalmethodusedtocomputeelevationsandtheirassociatedpositiveand negativeuncertainties.Exampleofatwo-radioactivenuclideinversionwiththe26Al-10Bepairwitha5%analyticalerror(1s)

(lightorangeellipse).Solidlines:continuousexposure.Dashedlines:steady-statedenudation.Redshadedboxes:upperand lowerforbiddenareas.

(7)

t¼1

l

Y ln 1A f   ð3bÞ

(3b)canalsobewrittenwiththeXnuclide.Bothequationsneedtosatisfytheconditionf>max(A,B). Eq.(3a)hasnoanalyticalsolutionforfandmustbenumericallysolved.Forthis,thefunctiongthatis decreasingontheinterval]A,1[canbedefinedasfollow:

gðxÞ¼xx 1Ax  r

B ð4aÞ

gðfÞ¼0 ð4bÞ

Toensuretheexistenceofthesolutionf,thefollowingconditionsneedtobesatisfied: lim

A g¼AB>0 ð5aÞ

lim

1 g¼rAB<0 ð5bÞ

(5a)and(5b)conditionsaresatisfiedwhenthesampledoesnotplotinthelowerorupperforbidden areas(Fig.3).

Uncertaintypropagation. Since Eqs. (4a) and (4b) cannot be analytically solved,the confidence interval[f,f+]canbedeterminedbydefiningthefunction

D

gthatdescribestheuncertaintyattached tothegfunction.

D

gisamonotonedecreasingfunction.Thus,f-andf+,thenegativeandpositive boundariesoff,canbecomputedbyfindingtherootsofg

D

gandg+

D

g:

D

gðxÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@

gðxÞ

@

A

D

A  2 þ

@

g

@

ðxÞ B

D

B  2 s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r

D

A 1A x  r1 " #2 þ

D

B2 v u u t ð6aÞ ðg

D

gÞðfÞ¼0 ð6bÞ ðgþ

D

gÞfþ ¼0 ð6cÞ

Maximumelevationandupperforbiddenzone

f+existswhenthefollowingconditionissatisfied.Thisconditionrequiresthattheuppervalueof thesolutionrangeremainsbelowtheupperforbiddenarea(Fig.3):

lim 1ðgþ

D

gÞ¼rABþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r2

D

A2þ

D

B2 q <0 ð7Þ

Minimumelevationandlowerforbiddenzone

Theminimumelevationfcanbecomputedifthecondition(5b)issatisfied,whichleadstothe followingcondition: lim 1ðg

D

gÞ¼rAB ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r2

D

A2þ

D

B2 q <0 ð8aÞ

MoreoverlimAðg

D

gÞ¼1.Thus,(g-

D

g)needtobenotmonotonictoensuretheexistenceoff:

9

x02A;1; gðx0Þ>0 and 8x>x0:

@

g

D

g

ð Þ

(8)

Whenasampleisclosetothelowerforbiddenarea,reachingthelimitsofconditions(8a)and(8b),itis still possibletodefinea limitvaluefor f, correspondingtoa samplethatstands justabovethe forbiddenarea.Thislimitvalueisdeterminedbytheequilibriumbetweenproductionandradioactive decay,anditisherecomputedas:

f¼maxðA;BÞ ð9Þ

Steady-stateerosioncase(t->1)

Normal case. For long exposure durations (t >> 1/(

l

+

m

e

)), Eqs.(2a) and (2b) become time-independent.SolvingEq.(2b)for

m

e

andsubstituteitinEq.(2a)thenleadsto:

f¼NXNYð

l

X

l

PXNYPYNX ð10aÞ

me

¼f



PY

NY 

l

Y ð10bÞ

Becausef>0and

m

e

>0,Eqs.(10a)and(10b)leadtothethreefollowingconditions,where(11a)

and(11b)areequivalenttothe(5a)and(5b)conditions: NY NX> PY

l

X PX

l

Y ð11aÞ PXNYPYNX<0 ð11bÞ f>maxðA;BÞ ð11cÞ

Theclassicaluncertaintypropagationformulacanherebeusedtocomputeanalyticalsolutionsfor f-andf+,[f-,f+]beingtheone-sigmaconfidenceinterval:

D

f¼

l

Y

l

X ðPXNYPYNXÞ2

ð12aÞ

fþ¼fþ

D

f ð12bÞ

f¼f

D

f ð12cÞ

Particularcaseoflargeerosion. f+andfshouldbeconsideredcarefullywhenerosionislargebecause

D

ftendstoinfinityinthiscase.Therefore

D

fcanbelargerthanf,resultinginanegativef-.Sinceitis requiredthatf>maxðA;BÞ,f-canhoweverbedefinedinanycaseby:

f¼maxðA;B;f

D

fÞ ð13Þ

Noteonsampleslyingintheforbiddenzone. Whenasampleisintheupperforbiddenzone,theupper uncertaintyf+doesnotexist,f<0,andf-canbeestimatedasfollow:

f¼maxðA;BÞ ð14Þ

(9)

Whenasampleisinthelowerforbiddenzone,fdoesnotexistand

me

<0.f+couldthusbedefinedas theminimumelevationwhichensureapositiveerosion:

fþ¼maxðA;BÞ ð15Þ

Program2:“Burial.m”Calculationofburialages TutorialoftheMatlab©script:“Burial.m”

Tousetheprogram,usersmustloadthefunctionfileintheirMatlab©workspaceandrunthe "Burial.m"script.Awindowwithclickablebuttonsisthendisplayed.

Necessaryinputdata(intheformof.csvor.xlsxspreadsheet)are: Column1:Samplename

Column2:Latitude()

Column3:Altitude(m)

Columns4and5:Nuclide11s(at.g1) Columns6and7:Nuclide21s(at.g1).

Nuclides(10Be,26Alor21Ne)mustbedefinedusingtheinteractivebox.Itisimportanttocheckthat thecorrectnuclidesareloadedbelowthecorrespondingheaders.Oncedataarecorrectlyuploaded,users maypushthe"1-Calculateburialages"buttontostartcalculations.Itisalsopossibletopushthe"2 -Plot"buttontodisplaythedatainatwocosmogenicnuclidesdiagram(26Al/10Bevs10Beor10Be/21Nevs 21Ne).Notethattheplotfunctionbecomesfunctionalonlyafterthecalculationofburialages.Oncethe figureisdisplayed,itispossibletoselectspecificsamplesandplotasub-datasetonly.Fig.4showsan exampleofsuchaplot.

Aftercalculations,resultsmaybeexportedintheformofa.csvspreadsheetbyclickingthebutton "Export".

Outputresults(in.csv): Column1:Samplename

Columns2,3and4:T_Burial(Ma),-1s(Ma),+1s(Ma).BurialageiscomputedsolvingEq.(16)forthe26

Al-10

BepairandEq.(17) forthe10

Be-21

Nepair.Theonesigmaconfidenceinterval[-1s,+1s]iscomputedfromthestatisticaldistributionofthesolutions obtainedfromaMonteCarlosimulation(104

draws).

Columns5and6:Preburialerosion1s(m.Ma1).ErosioniscalculatedusingEq.(14)in[4],consideringonlythespallogenic

productionandthepreburial10Beconcentration.

Columns7and8:Preburialexposureduration1s(ka).Equivalentsurfaceexposuretimeiscomputedassumingnoerosion, usingEqs.(8a)and(8b)in[1].Calculationusesthe21

Neconcentrationinthecaseofthe(10

Be-21

Ne)pairand10

Beinthecaseof the(26

Al-10

Be)pair.

Mathematicaldescriptionofthealgorithmusedinthe“Burial.m”code

Inthisversion,the“Burial.m”programassumesthattwogeologicalconditionsaresatisfied:1) beforeburial,thematerialhadreachedsteady-stateerosionand2)theburialwasinstantaneousand deepenoughtoensuretheabsenceofpost-burialproduction.Inthiscase,theequationlinkingthe burialagetburialandthemeasuredcosmogenicnuclideconcentrationsN1andN2is:

P1 N1 el1tburialP2 N2 el2tburial¼

l

1

l

2 f ð16Þ

SinceEq.(16)hasnoanalyticalsolution,ithastobenumericallysolvedtodeterminetburial.In practice,the“Burial.m”programcallsthe“Burial26Al_10Ne.m”functionthatsolvesEq.(16)usinga MonteCarloapproach.Bydefault,104randomdrawsarerealized,assuming10Beand26Alfollowthe normal distributions (N10,

s

10) and (N26,

s

26), where N10 and N26 (at.g1) are the measured

(10)

concentrations,

s

10and

s

26(at.g1)theironesigmaanalyticaluncertainties.Thisequationishere appliedinthecaseofthe26Al-10Bepair.

Fortheparticularcaseofthe10Be-21Nepair,Eq.(16)simplifiesandcanbeanalyticallysolved: tburial¼1

l 

ln N10 P10



P21 N21þ

l

10 f   ð17Þ Thefunction“Burial10Be_21Ne.m”usesEq.(17)tocomputetburial.

Tokeepcalculationssimple,pre-burialerosion(Columns4and5)isherecomputedconsidering thespallogenic production only. Notehoweverthat theneglection of muogenic productionmay underestimatethecorrecterosionratesbyupto30%(e.g.[5,6]).Ifpreburialerosionisfasterthan 100m.Ma1,neglectingthemuogenicproductionmayleadtounderestimatethecomputedburial agesby~100to200ka.

Acknowledgements

WearegratefultoGregBalco,DerekFabelandtwoanonymousreviewersfortheirconstructive commentsthatpermittedtoimprovetheMatlab©scriptsandtheearlierversionofthemanuscript. ThisisCRPGcontributionn2690.

AppendixA.Supplementarydata

Codescanbedownloadedhere:https://doi.org/10.1016/j.mex.2019.05.017.

References

[1]P.-H.Blard,M.Lupker,M.Rousseau,Paired-cosmogenicnuclidepaleoaltimetry,EarthPlanet.Sci.Lett.515(2019)271–282, doi:http://dx.doi.org/10.1016/j.epsl.2019.03.005.

Fig.4.Exampleofapairednuclidesplotrealizedusingthe“Plot”functionofthe“Burial.m”program.Shownisthe26

Al-10

Be datasetfromcavesilico-clasticsedimentsburiedinthecavesoftheAriègeregion,Pyrénées,France(Sartégou[12],PhDThesis).

(11)

[2]D.E.Granger,P.F.Muzikar,Datingsedimentburialwithinsitu-producedcosmogenicnuclides:Theory,techniques,and limitations,EarthPlanet.Sci.Lett.188(2001)269–281,doi:http://dx.doi.org/10.1016/S0012-821X(01)00309-0. [3]L.Martin,P.-H.Blard,G.Balco,J.Lave,R.Delunel,N.Lifton,V.Laurent,TheCREpprogramandtheICE-Dproductionrate

calibrationdatabase:afullyparameterizableandupdatedonlinetooltocomputecosmic-rayexposureages,Quat. Geochronol.38(2017)25–49,doi:http://dx.doi.org/10.1016/j.quageo.2016.11.006.

[4]D.Lal,Cosmicraylabelingoferosionsurfaces:insitunuclideproductionratesanderosionmodels,EarthPlanet.Sci.Lett. 104(1991)424–439,doi:http://dx.doi.org/10.1016/0012-821X(91)90220-C.

[5]M.Lupker,P.H.Blard,J.Lavé,C.France-Lanord,L.Leanni,N.Puchol,J.Charreau,D.Bourlès,10,EarthPlanet.Sci.Lett.333

(2012)146–156,doi:http://dx.doi.org/10.1016/j.epsl.2012.04.020. [6]G.Balco,Productionratecalculationsforcosmic-ray-muon-produced10

Beand26

Albenchmarkedagainstgeological calibrationdata,Quat.Geochronol.39(2017)150–173,doi:http://dx.doi.org/10.1016/j.quageo.2017.02.001.

[7]F.Kober,S.Ivy-Ochs,F.Schlunegger,H.Baur,P.W.Kubik,R.Wieler,Denudationratesandatopography-drivenrainfall thresholdinnorthernChile:multiplecosmogenicnuclidedataandsedimentyieldbudgets,Geomorphology83(2007)97– 120,doi:http://dx.doi.org/10.1016/j.geomorph.2006.06.029.

[8]K.Nishiizumi,M.W.Caffee,R.C.Finkel,G.Brimhall,T.Mote,RemnantsofafossilalluvialfanlandscapeofMioceneagein theAtacamadesertofnorthernChileusingcosmogenicnuclideexposureagedating,EarthPlanet.Sci.Lett.237(2005) 499–507,doi:http://dx.doi.org/10.1016/j.epsl.2005.05.032.

[9]C.J.Placzek,A.Matmon,D.E.Granger,J.Quade,S.Niedermann,Evidenceforactivelandscapeevolutioninthehyperarid Atacamafrommultipleterrestrialcosmogenicnuclides,EarthPlanet.Sci.Lett.295(2010)12–20,doi:http://dx.doi.org/ 10.1016/j.epsl.2010.03.006.

[10]B.Ritter,S.A.Binnie,F.M.Stuart,V.Wennrich,T.J.Dunai,EvidenceformultiplePlio-Pleistocenelakeepisodesinthe hyperaridAtacamadesert,Quat.Geochronol.44(2018)1–12,doi:http://dx.doi.org/10.1016/j.quageo.2017.11.002. [11]B.Ritter,F.M.Stuart,S.A.Binnie,A.Gerdes,V.Wennrich,T.J.Dunai,Neogenefluviallandscapeevolutioninthehyperarid

coreoftheAtacamadesert,Sci.Rep.8(2018)13952,doi:http://dx.doi.org/10.1038/s41598-018-32339-9.

[12]A.Sartégou,-ÉvolutionMorphogéniqueDesPyrénéesOrientales:ApportsDesDatationsDeSystèmesKarstiquesÉtagés ParLesNucléidesCosmogéniquesEtLaRPE.PhDThesis,UniversitédePerpignan,2017NNT:2017PERP0044.

Figure

Fig. 1. Synoptic description of the two methods for the 26 Al- 10 Be pair.
Fig. 2. Example of a paired nuclides plot realized using the “Plot” function of the “Paleoaltitude.m” program
Fig. 4. Example of a paired nuclides plot realized using the “Plot” function of the “Burial.m” program

Références

Documents relatifs

Like their Merina, Zafimaniry, Tanala and Bara neighbours, the Betsileo usually place their dead in collective tombs, since they hold that after death people must be reunited

Tagung anlässlich der Jahrestagung des West- und Süddeutschen Verbandes für Altertumsfor- schung e.. in Zusammenarbeit mit dem Frän- kische Schweiz-Museum und der Gemeinde

The book covers the empirical specifications used in a wide variety of articles dealing with costs, liquidity, trading strategies, mar- ket design, the connection of different

Siliciclastic ambient rocks affected by burial and high crustal heat fluxes have a higher average thermal maturity, corresponding to temperatures around 100°C (based on in

We propose a method for the representation of a complex internal structure based on a combination of CT scan and emerging 3D printing techniques mixing colored and

Morphogenetic evolution of the Têt river valley (eastern Pyrenees, France) using 10 Be/ 21 Ne cosmogenic burial dating.. Why

1 Université de Perpignan–Via Domitia, CNRS UMR 7194 Histoire Naturelle de l’Homme Préhistorique, 52 avenue Paul Alduy, F-66860 Perpignan Cedex,

The burial grounds of the fallen soldiers from the First World War and the recent heroes of the Second World War symbolized sacred German soil and a place of pilgrimage