• Aucun résultat trouvé

Y~= ~ P~Y~ Determine II when P is 9iven. THE CALCULATION OF THE ERGODIC PROJECTION FOR MARKOV CHAINS AND PROCESSES WITH A COUNTABLE INFINITY OF STATES

N/A
N/A
Protected

Academic year: 2022

Partager "Y~= ~ P~Y~ Determine II when P is 9iven. THE CALCULATION OF THE ERGODIC PROJECTION FOR MARKOV CHAINS AND PROCESSES WITH A COUNTABLE INFINITY OF STATES"

Copied!
42
0
0

Texte intégral

(1)

THE CALCULATION OF THE ERGODIC PROJECTION FOR MARKOV CHAINS AND PROCESSES WITH A COUNTABLE

INFINITY OF STATES

BY

DAVID G. K E N D A L L and G. E. H. R E U T E R Magdalen College Victoria University

Oxford Manchester

1. I n t r o d u c t i o n

t . 1 . L e t P ~ {p,~ :i, j = 0, 1, 2 . . . . } be the m a t r i x of one-step transition probabilities for a temporally homogeneous Markov chain with a countably infinite set of states (labelled as 0, 1, 2 . . . . ). The p r o b a b i l i t y p~j of a transition in n steps from state i to state j will then be the (i, j)th element of the m a t r i x pn, so t h a t the specification of P (or equivalently of A = P - I ) completely determines the system. I t is known (Kolmogorov [24]) t h a t the Cess limits

Jtij ~ lim 1 ~ P~s (1)

n - - ~ o o n r - 1

always exist. L e t II denote the m a t r i x whose (i, j)th element is 7 ~ , and consider P r o b l e m A : Determine II when P is 9iven.

This problem has obvious importance for practical applications. A n u m b e r of special techniques are available for its solution in particular cases (see, e.g., Feller [12], Ch. 15, Foster [14], [15] a n d Jensen [18]); also Feller [12], pp. 332-4, has given a general iterative m e t h o d of solution. We shall give another ( n o n - i t e r a t i v e ) g e n e r a l method in w 2: it will involve the non-negative solutions of

xj = Y. x~ p~j

r162

such t h a t Z x a < co, a n d the non-negative solutions of Y~= ~ P~Y~

such t h a t sup y~ < ~ .

(2)

104 D A V I D G . K E N D A L L A N D G . E . ]:I. R E U T E R

1.2. L e t P, ~ {p,j (t) : i, ] - 0, 1, 2 . . . . }, for each t >_ 0, denote the m a t r i x of transi- tion probabilities for a t e m p o r a l l y homogeneous Markov process with a countably infinite set of states, such t h a t

p~j(t)--~6ii

as t ~ 0. We m a y then define a one-para- m e t e r semigroup

{Pt:t->O}

of transition operators on the Banach space l b y setting

(Pt x)j -~ ~ x~ p,j (t)

(2)

Ct-0

for each element

x=(Xo, x~, x 2 .. . . )

of I. I n exceptionally simple cases we can write

Pt

= exp (~ t), where ~ is a bounded operator on l, but even for so simple an example as the b i r t h - a n d - d e a t h process (for this see, e.g., Feller [12], pp. 371-5) this is no longer possible. H o w e v e r a generating operator ~ (analogous to A in the chain case) can always be defined by writing

~) x ~ strong lim (Pt x -

x)/t

(3)

t 4 0

for x C ~ (~), where ~ (~) is b y definition t h a t set of elements x E l for which the limit in (3) exists. I n general ~ will be an unbounded operator, b u t its domain D (s is always dense in 1 and ~ determines the system uniquely (hence it is called the

in]initesimal generator).

I t is also known (L6vy [27]) t h a t the ordinary limits

~ j ~ lim p~j (t) (4)

t --~r162

exist (no Cess averaging being needed now); thus if we again write II for the m a t r i x whose (i, j)th element is z~j, we are led to consider

P r o b l e m B :

Determine II when ~ is given.

A solution to this problem will be given in w 3: it will involve the non-negative elements in the nullspaces of ~ and ~ * (the operator adjoint to ~ ) .

1.3. F o r a n y such Markov process, the limits

t~O

exist, and t h e y are finite except Always

(5)

perhaps when

i = j

(Doob [7], Kolmogorov [25]).

and in m a n y cases of practical interest

(a) all qtt are finite, and (b)

~ q t ~ = O

for each i.

(3)

T H E C A L C U L A T I O N O F T H E E R O O D I C P R O J E C T I O N F O R M A R K O V C H A I N S 1 0 5

Conversely, given a conservative q-matrix, i.e. a matrix Q - { q i j } with non-negative elements off the main diagonal and satisfying both (a) a n d (b), then there exists at least one process for which p~j(+ 0 ) = q~s, b u t in general this process ! is not unique (Feller I l l ] , Doob [8]). When the process is unique the conservative q-matrix Q will be called regular and the associated process will be called the Feller process determined by Q. That this is the normal situation in practical problems is the sole justifica- tion for the common practice of specifying a Markov process merely b y writing down a conservative q-matrix Q. Necessary and sufficient conditions for regularity have been given by Feller I l l ] and (in a somewhat different form) b y K a t o [20].

I t will now be clear t h a t for practical purposes the solution to Problem B will be insufficient, and t h a t one must also consider

P r o b l e m C: Determine [IF, the If-matrix associated with the Feller process, when a regular conservative q-matrix Q is given.

A solution to this problem will be given in w 4: it will involve the non-negative solutions of

x~ q~j - 0 such t h a t E x~ < ~ , and the non-negative solutions of

q~ ~ y~ = 0 such t h a t sup ya < ~ .

t.4. Throughout this paper we shall confine ourselves to " h o n e s t " chains and processes, i.e. systems satisfying ~ p,a = 1. However, a "dishonest" chain or process can always be imbedded in an honest one (obtained b y adjoining a single "absorbing"

state) and b y means of this device our methods can easily be adapted to the gen- eral case.

We have also confined ourselves strictly to the problem of calculating the H-matrix and it will be recalled t h a t one cannot decide from an examination of the zts for a Markov chain whether or not a given dissipative state is recurrent. B u t this limita- tion also is only apparent; it has often been remarked t h a t the question of recurrence can be settled b y calculating the H - m a t r i x for a modified chain in which the given state is made absorbing.

1.5. I n some respects this paper is a sequel to our paper [22] in which we considered the ergodie properties of one-parameter semigroups of operators on an ab-

(4)

106 DAVID G. K E ~ D A L L AND G. E. H. REUTER

stract Banach space, and readers of the earlier p a p e r will find a discussion of the present problem from t h e standpoint of the general t h e o r y in w 6. Others who are mainly interested in probabilistic applications m a y prefer not to read beyond w 5, in which some examples are given to illustrate our methods. We h a v e deliberately chosen the simplest examples which would serve this purpose, b u t we believe t h a t the methods of this p a p e r can usefully be applied to some more complicated systems which arise in practice. I n particular, we intend to t r e a t elsewhere the ergodic pro- perties of two Markov processes which describe (i) the competition between two species, and (ii) the development of a stochastic epidemic.

2. M a r k o v chains: the solution to Problem A

2 . t . We first recall some results with which the reader will doubtless be familiar (perhaps in a different terminology). 1 The limits re, j defined at (1) always exist a n d will clearly satisfy

z~j>-0, ~ g ~ _ < 1.

The structure of the m a t r i x H -- { ~ j : i, j >_ 0} is m o s t conveniently described b y classi- fying the state j as

positive

when gss > 0 and as

dissipative

when r~jj = 0. T h e collec- tion of positive states (if there are any) is t h e n further divided into disjoint

positive classes,

the positive states ?" and ]c being in the same class if and only if gjk > 0.

(This relation can be shown to be reflexive, s y m m e t r i c a n d transitive.) I f we write gJ-=~sJ for each positive state ], t h e n the g,j can be expressed in terms of the gj a n d a set of numbers ~ (i, C), defined for each state i a n d each positive class C, where 0 ~ ( / , C ) _ < I . I n fact

(i) ~ j = 0 for all i, if ?" is dissipative.

(ii)

~ , s = ~ ( i , C)rej

for all i, if ~" belongs to the positive class C.

Also ~j a n d ~ (i, C) h a v e the following properties:

(iii) ~ ~j = 1 for each positive class C.

(iv) I f / is a positive state and C a positive class, ' ~ (i, C) = if i ~ C .

' F o r e x p o s i t o r y a c c o u n t s of t h e t h e o r y , see C~UNG [4], FELLER ([12], Ch. 15), LO~.VE ([28], p p . 28-42).

(5)

T H E C A L C U L A T I O N O F T H E E R G O D I C P R O J E C T I O N F O R M A R K O ~ r C H A I N S 107

(v)

I f i is dissipative a n d {C e : ~ = 1, 2 . . . . } are the positive classes, t h e n

$ (i, C Q) _< 1.

(vi) I f C is a positive class, then

{~i if j E C , c ~ p~j= 0 if j ~ C, and ~ p~ = ~ (~, C) = ~ (i, C) for all i.

(vii) F o r all i a n d j,

(6) (7)

(8)

( I n (7) and (8) summations are over r162 1, 2 . . . . ; we shall adhere to this conven- tion from now on.)

The classification of states a n d the description of ntj have been given above in purely analytical terms: however, t h e y have probabilistic meanings which (although t h e y are n o t needed for w h a t follows) the reader m a y usefully keep in mind. Positive states are precisely those which are recurrent with finite m e a n recurrence time #j, given b y /zj = 1/7~j; dissipative states are either recurrent with infinite m e a n recurrence time, or non-recurrent (transient); finally ~ (i, C) is the probability t h a t the system, starting at state i, will ultimately enter (and thereafter remain in) the positive class C.

These interpretations depend on a detailed a n d deep analysis of the a s y m p t o t i c pro- perties of p~- as n - - > ~ , first m a d e b y K o l m o g o r o v [24]; the properties of I] which we have s t a t e d lie less deep and have been p r o v e d more simply b y u & K a k u - t a n i [32] and Doob [7].

2.2. The calculation of I] when P is given involves two steps:

(a) the classification of states a n d determination of the reciprocal m e a n recur- rence times ~j,

(b) the calculation of the absorption probabilities ~ (i, C).

Step (b) will of course be superfluous (by (i) of 2.1) when there are no positive states, a n d will be trivial (by (iv)) when i is a positive state.

To perform step (a) we introduce the Banach space 1 whose elements are real sequences x = (x0, xl, x~ . . . . ) such t h a t

(6)

1 0 8 D A V I D G. K E N D A L L A N D G . E . H . R E U T E R

T h e n P a n d [I d e t e r m i n e b o u n d e d l i n e a r o p e r a t o r s on l as follows:

W e h a v e

Px>_O, H x > _ O , a n d also (because of (8))

II nxll IIxll=lIPxl[,

I I ~ = P II = II P = II.

w h e n e v e r x >_ 0,

(9) F o r e a c h p o s i t i v e class C ~ we d e f i n e n ~ E l b y

{~j if ~ E C ~ (~o)j= 0 if ~'~C~

t h u s he>_0, ] [ : ~ [ [ = 1 ( b y (iii) of 2.1), n ~ h a s C ~ as i t s s u p p o r t / a n d f r o m ( 6 ) w e see t h a t P : r ~ ~ so t h a t :z ~ b e l o n g s t o t h e n u l l s p a c e 7 / ( A ) of t h e o p e r a t o r A - ~ P - I . T h e f o l l o w i n g t h e o r e m is well k n o w n , * b u t we s t a t e i t in a f o r m w h i c h differs f r o m t h e u s u a l one a n d t h e r e f o r e s k e t c h i t s p r o o f .

T H E O R E M 1. A n l.vector x lies in ~ ( A ) i/ and only i] there exist real numbers { ~ e : e = l , 2 . . . . } such that 5 ] ) t e [ < o o and x = ~ , ~ e r d . Also x ~ O i/ and only i/ ~>_O

Q Q

/or each e"

Proo/. F r o m t h e f a c t t h a t A : r ~ 0 i t e a s i l y follows t h a t A x = 0 w h e n e v e r x is of t h e s t a t e d f o r m . O n t h e o t h e r h a n d , if x E 1 a n d A x = 0 , t h e n

a n d so on l e t t i n g n--> oo we o b t a i n

Z x~ ~aj = Xj.

o~

F r o m (i) of 2.1 i t n o w follows t h a t x s = O w h e n ] is d i s s i p a t i v e , so t h a t

Q ~ e C 0

w h e r e t h e f i r s t s u m m a t i o n is o v e r a l l p o s i t i v e classes. T h e f i r s t a s s e r t i o n of t h e t h e o r e m n o w follows o n s e t t i n g

~ e C 0

t h e s e c o n d a s s e r t i o n follows f r o m t h e f a c t t h a t t h e v e c t o r s n e a r e p o s i t i v e a n d h a v e d i s j o i n t s u p p o r t s .

1 The support of an /-vector x is the set of states j such that x I * O.

z See, e.g., CHu~IG ([4], Th. 9), or Lo~vE ([28], p. 41).

(7)

T H E C A L C U L A T I O N OF T H E E R G O D I C P R O J E C T I O ~ F O R M A R K O V C H A I N S 109 W e can deduce t w o i m p o r t a n t corollaries on using t h e fact t h a t for each ~, t h e s u p p o r t of n ~ is precisely t h e corresponding positive class C ~ L e t us d e n o t e b y ~ + (A) t h e set of positive vectors in ~ ( A ) . T h e n we h a v e

C o R o L L X R u 1.1. A state j is positive i / a n d only i/ it lies in the support o / a t least one 1-vector x E ~+ (A ). T w o positive states ~ and ]c lie in di//erent positive classes i/ and only i/ there exists an x C ~+ (A) whose support contains ] but not k.

C O R O L L A R Y 1.2. Let ~ be a positive state. T h e n amongst the elements x E ~ + (A) such that x j = l there is a least, x s, and xi/iixJiI=Jz q where C a is the positive class con.

raining ].

These corollaries show t h a t step (a) can be p e r f o r m e d when the nullspace ~ (A) has been [ound.

2.3. W e n o w have to c a r r y o u t step (b) in so far as it is non-trivial, so t h a t we m u s t give a m e t h o d for calculating ~ (k, C) w h e n k is a dissipative state a n d C is a positive class. This will involve t h e nullspace ~ ( A * ) o f t h e o p e r a t o r A* ad- joint to A.

L e t m be t h e B a n a c h space of real sequences y ~ (Y0, YI, Y2 .. . . ) such t h a t

Ilyll---sup ly l<

T h e n m is t h e a d j o i n t space to l, a n d we shall write (y, x) ~ ~ y~ x~ w h e n y E m a n d x E1.

T h e o p e r a t o r P* a d j o i n t t o P is given b y

(y P*)~ - ~ p ~ y:, (y E m), a n d ( y P * , x) = (y, P x )

w q E m b y

w h e n y E m a n d x E l . F o r each positive class C e, we define

(~Q)~-~(!,C~) (i=0, 1,2

. . . . ).

Properties (iii) a n d (iv) of 2.1 show t h a t

0>0, I1 011=1,

(Wq, ~o) = 1,

a n d (wQ)~=O if i E C ~ ' ( a : v ~ ) . F r o m (7) we h a v e ~ Q P * = w Q , so t h a t ~ q E ~ + ( A * ) , t h e positive p a r t of t h e nullspaee ~ ( A * ) of t h e o p e r a t o r A * - - P * - / . T h e nullspaee of A* is often m u c h bigger t h a n this result suggests, 1 b u t f o r t u n a t e l y we can still

1 The structuro of ~ (A*) has been studied by BLACKWELL [2] and FELLER [13].

(8)

1 1 0 D A V I D G . K E N D A L L A N n G . E . H . R E U T E R

e h a r a c t e r i s e R e b y a m i n i m a l p r o p e r t y s i m i l a r t o t h a t i n v o l v e d in C o r o l l a r y 1.2. W e f o r m u l a t e t h i s a s

T H E O R E M 2. Let C e be a positive class and let ne be the associated 1-vector. Then w e is the least element y o/ ~+ (A*) such that (y, ~ ) = 1.

Proo/. W e a l r e a d y k n o w t h a t y - - - R e satisfies t h e t h r e e c o n d i t i o n s y _> 0, y A* = 0, (y, ~e) = 1.

L e t y be a n y m - v e c t o r d i s t i n c t f r o m R e a n d s a t i s f y i n g t h e s e c o n d i t i o n s . T h e n

n

f r o m w h i c h i t follows (on using t h e p o s i t i v i t y of y) t h a t

~ y~ _< y~. (10)

W e can w r i t e (10) in t h e f o r m

~ ( i , C ~) ~ zr~y~<y~,

a ~ E C (~

w h e r e t h e a - s u m m a t i o n is o v e r all p o s i t i v e classes, a n d t h i s is e q u i v a l e n t t o

~ (i, C ") (y, ~") § ~ (i, C ~ _< y~, f r o m w h i c h i t follows t h a t R e < y a s r e q u i r e d .

W e o u g h t t o m e n t i o n h e r e t h a t F e l l e r ([12], p. 332, (8.2) a n d (8.3)) h a s g i v e n a set of r e c u r r e n c e r e l a t i o n s w h i c h u n i q u e l y d e t e r m i n e t h e a b s o r p t i o n p r o b a b i l i t i e s (i, C). T h i s r e c u r r e n t p r o c e d u r e m a y , h o w e v e r , b e as d i f f i c u l t t o c a r r y o u t as t h e c a l c u l a t i o n of t h e ~ij d i r e c t l y f r o m t h e i r d e f i n i t i o n (1). As F e l l e r r e m a r k s , one h a s t h e n t o r e s o r t t o his e q u a t i o n (8.4) a n d t h e s o l u t i o n t o t h i s e q u a t i o n is in g e n e r a l n o t u n i q u e . T h e n o n - t r i v i a l , p a r t of o u r T h e o r e m 2 singles o u t t h e r e l e v a n t solution.

2.4. W e c a n n o w s t a t e o u r solution to Problem A as

T H E O R E M 3. I / the positive classes (Ce : ~ = 1, 2 . . . . } and the associated l-vectors 7e Q and m-vectors ~ are determined by Corollaries 1.1 a n d 1.2 and Theorem 2 above, then the matrix-elements o/ the "ergodic projection-operator" II will be given by

7r~j=O (all i)

(9)

THE CALCULATION OF THE ERGODIC FROJECTION FOR MARKOV CHAINS

when ] is not a positive state, and by

~ij = (~e)~ (~e)j (all i) when ] lies in the positive class C Q.

111

3. Markov processes: the solution to Problem B

I f {p~j (t) : i, j = 0, 1, 2 . . . . ; t _> 0} is the a r r a y of transition probabilities for

3 . ~ [ ,

a Markov process, a n d if (as we shall always assume) the continuity condition p ~ j ( t ) - ~ j as t ~ 0

holds, t~hen the limits xe~j-lim p~j(t) (11)

t - - > ~

exist. This result is due to L 6 v y [27], a n d can be proved b y considering the chain defined b y setting p~j ~ p~j (n~). This chain is aperiodic because p~ (n r) > 0, and there- fore lira pit(n~) exists for each fixed ~ > 0 . F r o m the uniform continuity of Pij(" )

n - - ~

for fixed i and j, it follows t h a t this limit is independent of v and t h e n t h a t the limit a t (11) exists.

Clearly we can calculate 7rij b y applying the procedure of w 2 to the chain whose m a t r i x of one-step transition probabilities is P~-= {p~j(~):i, ?'=0, 1, 2 . . . . ), for a n y one

> 0, because

~ j = lim p~j (n~) = lim (P~)ij.

n~-~oo n-->oo

To do this, we m u s t consider the nullspaees }/(A~) and 7/(A*), where A~--P~--I, (P~x)j----~x~p~j(~) (x61).

(x

The dependence of this procedure on the choice of v is, of course, only apparent, a n d this fact is exhibited m o s t conveniently b y introducing the one-parameter semigroup {Pt:t>-O) of operators on l associated with the process. This has the properties: 1

(a) P 0 = I , P~P~=Pu+v (u_>0, v>_0).

(b) Ptx>_O and

IIP ll=[l lt

whenever O_<xCl.

(c) as t r for each

I t s infinitesimal generator s is d e f i n e d b y

s - strong lim (Pt x - x ) / t

t~0

~ . o

1 F o r t h e special p r o p e r t i e s of s u c h t r a n m t l o n s e m i g r o u p s " on l, see KI~NDALL a n d REUTER [23]

or KENDALL [21]; for t h e general t h e o r y of s e m i g r o u p s of o p e r a t o r s , see HILLE [17].

(10)

112 D A V I D G . K E N D A L L A N D G . E . H . R E U T E R

whenever this limit exists, the domain ~ (s of ~/ is dense in

l,

and

t t

P t x = x + ] P u ~ l x d u = x + f a P u x d u

(12)

0 0

for x 6 ~(~-/) and t_>0. The adjoint operator ~/* (on the adjoint space m of l) is defined by setting y ~ / * - z , where

(z, x) = (y, ~ x)

for all x 6 ~ (g/), whenever such an element z (necessarily unique) exists.

We now have the crucial

LEMMA. 7/ ( ~ ) = 7 / (A~)

/or each

3 > 0 ; (13)

7/(g/*) = N 7/(A*). (14)

1~>0

Proo/.

If x 6 7 / ( ~ / ) , t h e n (12) at once gives

P ~ x = x ,

so t h a t x67/(A~). Con- versely if x 6 7 / ( A ~ ) for

one

3 > 0 , t h e n

P ~ x = x

and hence

H x = x

(as i n t h e p r o o f of Theorem 1). On using (9), we obtain t h a t

P t x = P t I I x = I I x = x

for

all t>O,

and so finally t h a t

glx=O.

This proves (13).

Next, if y 6 7 / ( g / * ) , t h e n (12) gives

T

(y, P~ x) = (y, x) + f (y, g / P u x) d u (all x 6 ~ (~/))

0 T

= (y, x) + f (y gl*, P~ x) d u = (y, x).

0

p ~

Hence (y 3, x ) = (y, x) for all x 6 O(g/), and because D(~/) is dense this implies t h a t

p* p *

y ~ = y , i.e. t h a t y 6 7 / ( A * ) . Conversely if y , = y for

all

3 > 0 , then

( y , P ~ x ) =

(y, x) and

( y , ~ x ) = l i m y, = 0 for all x E ~ ( f ~ ) ,

31,0

so t h a t y 67/(f2*). This proves (14).

3.2. We now classify the states and describe t h e structure of IF[. L e t us say t h a t the state j is

positive

if ~jj > 0,

dissipative

if zjj = 0, and t h a t two positive states j and k are in the same

positive class

if ~jk > 0 (this is an equivalence relation between positive states). Clearly this classification coincides with t h a t of w 2 for each of the chains P~ derived from the process. Using (13), we can at once transcribe Corol- laries 1.1 and 1.2 in t e r m s of 7/+(g/), the positive p a r t of 7/(~/), and obtain

(11)

T H E C A L C U L A T I O I ~ O F T H E E R G O D I C P R O J E C T I O i ~ F O R M A R K O u C H A I I ~ S 113 T HEOREVt 4. A state is positive i/ and only i/ it lies in the support o/ some x E 7</+ (f2); two positive states lie in di[/erent positive classes i/ and only i/ there exists an x E ~+ (f~) whose support contains one o/ the states but not the other.

I / j is a positive state then amongst elements x E ~+ ( ~ ) with xj = 1 there is a least, x j, and i/ ~q-xS/HxJll then 7t ~ depends only on the class C e containing j, and has C ~ as its support.

To find the analogue of Theorem 2, we observe t h a t the same /-vector ~ and m-vector ~ e are associated with a positive class C ~ for each chain P~, and in each case w o is the least element y of 71 + (A*) such t h a t (y, ~ ) = 1. Hence ~ is also the least element y in

n u+ (h:)

v > 0

or (by (14)) in )l + (f~*), such t h a t (y, ~ ) = 1. Thus we have

T ~ E O R E M 5. I [ C ~ is a positive class and 7t ~ is the associated l-vector o/ Theo- rem 4, then amongst the elements y o/ ~+ (~*) such that (y, 7t ~) = 1 there is a least, ~ .

B y combining Theorems 4 and 5 we obtain as a solution to Problem B :

T ~ E O R ~ M 6. I / the positive classes C Q and the corresponding l-vectors ,~ and m-vectors w e have been determined as in Theorems 4 and 5, then the matrix-elements o/

the ergodic projection-operator II will be given by

~ij = 0 (all i) when ~ is not a positive state, and by

~ i = (we)~ (zte)j (all i) when j lies in the positive class C q.

I t should be pointed out t h a t whilst we have proved our results for processes b y considering the chains P~ and using the results of w 2, this is only a matter of convenience. Direct proofs can be given, b y methods similar to those of w 2, based on the properties (analogous to (8))

(for each t >_0), (15)

which where proved b y Doob ([7], Theorems 6 and 7).

8 - - 5 7 3 8 0 4 . Acta mathematica. 97. I m p r i r n 6 le 12 a v r l l 1957.

(12)

114 D A V I D G . K E N D A L L A N D G . ~ . H . R E U T E R

4. Feller processes: the solution to ProMem C

4 . t . Suppose t h a t a m a t r i x Q of finite real elements q*t is given, such t h a t q~j>_0 when i - j , Z q i ~ - - 0 for all i.

Suppose f u r t h e r t h a t the conservative m a t r i x Q is

regular;

i.e. t h a t the " m i n i m a l "

process constructed b y Feller [11] is

honest

(satisfies ~ p ~ ( t ) = 1), or equivalently t h a t there is

exactly one

Markov process such t h a t p[j ( + 0) = q~j. (See Doob [8], R e u t e r [31]).

We write x e D (Q) whenever (a) x El,

(b)

~x~q:~i

is absolutely convergent for each ?',

(c) ZIZx q ;l<

1 a

and we define an operator Q with domain ~ (Q) b y setting

(Qx)j~Zx~q~,j (xEO(Q)).

(16)

q.

The set O 0 of " f i n i t e " vectors (those with only finitely m a n y non-zero components) is contained in D(Q), and we define Q0 to be the restriction of Q to O ( Q 0 ) ~ ) 0 . Because O0 is dense in 1 we can define the adjoint Q~ of Q0, a n d this can be shown to be given b y

(yQ~),-~q,~ya (yeD(Q~))

(17)

O~

the domain D(Q~) of Q~ consisting of those vectors y E m for which (17) defines an element

y Q~

of m.

N o w let

~F

generate the Feller semigroup associated with the given q's. Then 1

Q0 - ~ r - ~ Q , (18)

and hence Q * ~ ~ ~ Qo * *; (19)

f u r t h e r for each ~ > 0 and x E l, the equation

2 ~ - ~ ~ = z (20)

has exactly one solution ~ ( I ) ~ x in ~ ( ~ ) . When x_>0, t h e n (I)~x_>0 and ~ ( I ) ~ x is the least positive solution (in 0 (Q)) of the equation

2 8 - Q S = x .

(21)

1 The properties of ~F which we state here can be proved without undue difficulty by exam-

~6 . . )

ining FELLER'S construction [11] of his rmmmal ' semigroup; see [31].

(13)

T H E C A L C U L A T I O : N O F T H E E R G O D I C P R O J E C T I O : N F O R M A R K O V C H A I N S 115 W e n o w m a k e use of our a s s u m p t i o n t h a t Q is regular, i.e. t h a t g2r generates a

transition

semigroup. This implies t h a t 2(I)~ is a t r a n s i t i o n operator, a n d 1 t h a t t h e nullspace

T I ( 2 I - Q ~ )

contains o n l y t h e zero vector, for each 2 > 0 . Using these facts, we are able t o eliminate t h e explicit references to ~ in T h e o r e m s 4 a n d 5, a n d re- place t h e m b y s t a t e m e n t s involving t h e q's alone. To do this, we prove

T H E O R E M 7.

tion semigroup, then

I / Q is regular, and ~ generates the (unique) associated transi-

Tl + ( ~ ) = Tl + (Q), (22)

~ + ( ~ ) = ~ + (Q~). (23)

Proo[.

Clearly (18) implies t h a t ~ + (~p)___~+ (Q), a n d (22) will follow if we can prove t h e reverse inclusion. Suppose t h e n t h a t x ~> 0, x E ~ (Q), a n d Q x = 0, a n d choose some fixed 2 > 0 . W e shall t h e n h a v e 2 x - Q x = 2 x ~ 0 , so t h a t ~ = x is a positive solution of t h e e q u a t i o n

2 ~ - Q ~ = 2 x > _ O

(~ e ~ ( Q ) ) . (24) B u t (cf. (21)) the least positive solution of (24) is ~ = ( P ~ ( 2 x ) , so t h a t x>_(I)~(2x)=

2 (I)z x ; also we c a n n o t h a v e x ~= 2 (I)~ x because this would n o w give [[ x [[ > [I 2 (I)x x [I, con- t r a d i c t i n g t h e fact t h a t 2 (I)~ is a t r a n s i t i o n operator. I t follows t h a t x = (I)~ (2x)E D ( ~ r ) , so t h a t x E T/+ ( ~ r ) ; this proves t h a t ~ + ( Q ) ~ + (~F), a n d (22) follows.

W e shall d e d u c e (23) f r o m t h e sharper s t a t e m e n t t h a t

$ $

~ F = Q0, (25)

a n d to p r o v e this it will suffice, b y (19),. to prove t h a t

O (D~) = ~ (Q~). (26)

W e shall need here one f u r t h e r fact f r o m semigroup t h e o r y , n a m e l y t h a t w h e n 2 > 0 a n d x E D (~F), t h e n

(I)~ (21 -- ~F) x = x.

F r o m this it follows at once t h a t

a n d t h a t w O~ ( 2 1 - ~ ) = w

for

all w Em.

1 The condition, ~ (Z I - Q~) = {0}, is given in KATe'S paper [20]. The condition can be proved to be equivalent to the regularity of Q; see [31].

(14)

1 1 6 D A V I D G. K E N D A L L A N D G. E . t I . R E U T E R

N o w if (26) were false, we could find y u= 0 such t h a t y E ~) (Q~) b u t y ~ ~ ( ~ ) . F i x 2 > 0, a n d define

z = - y ( , ~ I - Q ~ ) C p ~ . T h e n z E ~ (g2~), so t h a t z ~= y, b u t also

z ( 2 I - Q~)) = z (21 - g]~) = y ( 2 I - Q~) O~ (21 - F~*)

= y ( 2 I - Q ~ ) ,

so t h a t ( z - y ) would be a non-zero element of ~ ( ~ I - Q ~ ) , c o n t r a d i c t i n g t h e r e g u l a r i t y of Q. T h u s (26) m u s t hold, a n d (23) follows. (For (26), see also [31], w 7.2.)

4.2. To o b t a i n a solution to Problem C, w e h a v e m e r e l y to combine T h e o r e m 7 w i t h T h e o r e m s 4 to 6. This leads us to

T H E O R E M 8. Let Q=- (q~j : i, j = 0 , 1, 2 . . . . } be a regular conservative q-matrix, and let (p~j (t) : t >_ O} be the unique process such that p[j ( + O) = q~j. Then:

(i) A state is positive i/ and only i/ it lies in the support of some x E ~ + ( Q ) ; two positive states lie in di//erent positive classes i / a n d only i/ there exists an x E Tl + (Q) whose support contains one o/ the states but not the other.

(ii) I / ~ is a positive state, then the set o/ l-vectors x E ~+ (Q) with x j = 1 has a least member x j, and i/ no`-xJ/[[xJH then ~o` depends only on the positive class C ~ containing ~ and has C ~ as its support.

(iii) I] Co` is a positive class, then the set o/ m-vectors y E ~+ (Q~) with (y, ~zo`)= 1 has a least member v90`.

(iv) The limits z~j = lim p~j (t)

are given by z ~ j = 0 (all i) when j is not a positive state, and by

xe~j = (wq)~ (7~o`)j (all i) when ] lies in the positive class Co`.

I n order t o a p p l y T h e o r e m 8, we h a v e o n l y to use t h e facts t h a t ~ + (Q) consists of all positive vectors x E l such t h a t

~x~q~j=o

( ] = 0 , 1 , 2 . . . . ), (27)

(15)

THE CALCULATIOI~ OF THE ERGODIC P R O J E C T I O 5 FOR MARKOV CHAINS 117

a n d ~/+ (Q~) consists of all p o s i t i v e v e c t o r s y E m s u c h t h a t

q ~ y ~ = O ( i = O , 1, 2 . . . . ). (28)

c ~ = O

T h e r e l e v a n c e t o t h e ergodic p r o b l e m of t h e p o s i t i v e c o n v e r g e n t s o l u t i o n s t o (27) a n d of t h e p o s i t i v e b o u n d e d s o l u t i o n s t o (28) has, of course, l o n g b e e n r e c o g n i s e d b y s t a t i s t i c i a n s ; t h e i m p o r t a n c e of T h e o r e m 8 is t h a t i t allows t h e a p p r o p r i a t e s o l u t i o n s t o be i d e n t i f i e d in cases of n o n - u n i q u e n e s s .

5. E x a m p l e s

5.1. T h e r a n d o m w a l k . W e b e g i n w i t h a n e x a m p l e i l l u s t r a t i n g t h e s o l u t i o n t o P r o b l e m A ; i t is a f a m i l i a r one a n d h e r e t h e ergodic b e h a v i o u r is well u n d e r s t o o d (ef. F o s t e r [14], H a r r i s [16], J e n s e n [18], K a r l i n & M c G r e g o r [19]). W e l a b e l t h e s t a t e s of a M a r k o v c h a i n as . . . . - 1 , 0, 1 . . . . a n d t h e n p u t

[

P:I if ? ' = i + l , if i = i - 1 ,

if j : ~ i •

w h e r e Pt > 0, q~ > O a n d p~ + q~ = 1, for all i. To f i n d t h e n u l l s p a c e of A we m u s t solve t h e d i f f e r e n c e e q u a t i o n s

x] = P ] - I xj 1 -~ q]+l X]+l (all j), a n d we w r i t e t h e s e as

u j - p j x j - p j _ l x j _ l = q j + l Xj + l - q j x j .

E v i d e n t l y 1 u E l if x E l, so t h a t we m u s t h a v e

~} Xj = Uj -~ U]_l -~ Uj_2 + . . . , qj xj = - (uj + uj+l + uj+2 + "" "),

(29)

a n d we t h e r e f o r e p u t

J

- r - o c J

so t h a t (29) b e c o m e s p~ x j = v j , qs x j = v j - l - a .

B e c a u s e b o t h x a n d u a r e in l, we k n o w t h a t x.,. a n d vj t e n d t o zero w h e n j - - > - ~ ; t h u s a = O. T h e l a s t p a i r of e q u a t i o n s n o w gives v j = (Ps/qJ)vj-1, a n d h e n c e

' A typical /-vector now takes the form x - ( . . . . x , , %, x, . . . . ), with I I x l l -

- o o

(16)

118 D A V I D G . K E N D A L L A N D G . E . H . R E U T E R

L e t us set

/PIP2 ... ~ v

~ qx q2 ... qJ o (J >0), v j =

|qJ+~qJ+~ "-': qJ v o (j<O).

( PJ+I Pj+2 ... P0

- 1 1 qj+l ... q o q _ l + ~, 1 - - ~ , V l " ' " ~i9"/

(30)

- - - .

R - = _ ~ P j P j + I P0 Po 1 P j q 1 . - - q j

I f R = o~, t h e n Vo=0 , t h e nullspace of A contains t h e zero v e c t o r only, a n d e v e r y state is dissipative. I f R < o~, t h e n t h e nullspaee of A is s p a n n e d b y a single posi- tive vector, e v e r y state is positive, a n d t h e states f o r m a single positive class. I n b o t h cases, we shall h a v e

i1 qJ+ ...qo 1

Pj p j + l . . . P 0 R if j < 0 ,

:z,j= ] 1 / ( p o R ) if j = 0 , (31)

] l p l " ' ' p ' I if j > O , [ PJ ql ... qj R

for all i (these expressions all being zero w h e n R = o~).

T h e nullspace of A* can readily be f o u n d for t h e present example, b u t (cf. 2.2) this is never required when, as here, ~ (A) is either zero-dimensional or is one-dimen- sional with a strictly positive g e n e r a t i n g vector.

5.2. The "/lash o/ /lashes". W e n e x t give t w o examples illustrating t h e solution t o problem B, a n d we h a v e chosen for this p u r p o s e t h e t w o m o s t pathological pro- cesses which we know. T h e first of these has a c o n s e r v a t i v e q-matrix which is so h i g h l y non-regular as t o be associated with a c o n t i n u u m of processes all satisfying t h e same set of " b a c k w a r d " a n d " f o r w a r d " differential equations. P r o b l e m C would here be quite meaningless a n d t h e process will be specified b y giving its infinitesimal g e n e r a t o r ~ .

T h e space 1 will n o w be so labelled t h a t a t y p i c a l l-vector becomes x=--(..., x -1, x ~ x 1, ...)

where xS---( .... xS-1, x0,S xl,S ...)

a n d t h e x s n are real n u m b e r s such t h a t

- o o - o o

(17)

T~E CALCULATIO~r OF THE ]~RGODIC rROJECTION FOR M ~ K O V C~AINS 119 N o w l e t a s (s, n = . . . , - 1 , 0 , 1 . . . . ) b e p o s i t i v e r e a l n u m b e r s such t h a t ~ I / a S < ~ , a n d d e f i n e t h e c o n s e r v a t i v e q - m a t r i x Q b y

rs [ - as~ if n = m ,

q m n = O ( r : ~ s ) ; qmnS~ = i +ares if n = m + l , 0 o t h e r w i s e .

T h e o p e r a t o r ~ is t h e n d e f i n e d t o be t h e r e s t r i c t i o n of t h e m a t r i x - o p e r a t o r Q ( d e f i n e d as a t (16)) t o t h e d o m a i n of / - v e c t o r s x such t h a t

(i)

Y Y l a g - l x g - , - a g x g l < ~ ,

(ii) U ~ x = L S + Z x ( s = . . . , - 1 , 0 , 1 . . . . ), (iii) l i m U " x = l i m U ' x ,

o--~-t- oo a - - ~ , - o o

w h e r e U s x = l i m a~ x ~ n ~ L ~ x-= lim a~ x~.

( I t is s h o w n in K e n d a l l [21] t h a t s g e n e r a t e s a t r a n s i t i o n s e m i g r o u p . ) W e m u s t n o w f i n d t h e n u l l s p a c e of ~ . I f x fi 7/(C2), t h e n

s x s a s x s

a n - 1 n - 1 - - n n ~ 0

for a l l s a n d n, a n d so

x s - cS/a ~ r t - - / rt , w h e r e c s = U s x = L ~ x.

C o n d i t i o n (ii) t h e n s h o w s t h a t c s is i n d e p e n d e n t of s, a n d t h e o t h e r c o n d i t i o n s a r e n o w s a t i s f i e d a u t o m a t i c a l l y . T h u s ~ ( ~ ) is o n e - d i m e n s i o n a l a n d is s p a n n e d b y t h e v e c t o r w h o s e (~)th c o m p o n e n t is 1 / a ~ . I t follows t h a t all t h e s t a t e s a r c p o s i t i v e , t h a t t h e y f o r m a single p o s i t i v e class, a n d t h a t

~ j = ~ , = ~ - (32)

a~

for all v a l u e s of r, s, m a n d n. A s in 5.1 t h e r e is no n e e d to c a l c u l a t e T/(~*).

5.3. A sequence o] ]lashes c o m m u n i c a t i n g v i a a n i n s t a n t a n e o u s state. I n t h i s e x a m p l e (also t a k e n f r o m K e n d a l l [21]) t h e M a r k o v p r o c e s s h a s a h i g h l y n o n - c o n - s e r v a t i v e q - m a t r i x ; one of s t a t e s , l a b e l l e d 0, is " i n s t a n t a n e o u s " (has % 0 = - c ~ ) a n d t h e c o r r e s p o n d i n g r o w of t h e q - m a t r i x c a n be w r i t t e n a s

( - o ~ , 0 , 0 , 0 . . . . ).

As in 5.2 t h e process will be specified b y g i v i n g i t s i n f i n i t e s i m a l g e n e r a t o r ~ . T h i s t i m e 1 is so l a b e l l e d t h a t a t y p i c a l l - v e c t o r b e c o m e s

(18)

120 D A V I D O . K E N D A L L A N D G . E . H . R E U T E R z - - ( x ~ x 1, x ~ . . . . )

where x ~ is a real n u m b e r a n d x s is a real v e c t o r

X S ~ ( . . . . X__I,S X ~ , X ~ . . . . )*

T h e n o r m is defined b y

I1 11 1 ~ §

(*=1 c~- - oo

5: Izgl< .

N o w choose positive n u m b e r s a~ ( s = l , 2, 3 . . . . ; n = . . . , - 1 , 0, 1 . . . . ) such t h a t

~ . ~ 1 / a ~ < c<, a n d define ~ ( ~ ) t o be t h e set of vectors x which satisfy (i) E E l a a - l a Xa:_a I - -

a~,xr

* = x ~ (all s ~ > l )

a n d (ii) L* x =- lira a= xn

n---> - oo

(such vectors necessarily belong to l). F i n a l l y define ~Qx f o r x e D ( ~ ) b y

oo

(f~ x ) ~ - E ( U " x - x ~

s s s s ( s > l , all n), ( ~ x ) ~ ---an-1 X n - l - - a n z~

where U s x ~- lim a~ x~

~/.--~ -I- OO

(this last limit necessarily exists a n d t h e series e q u a t e d t o (f2x) ~ is necessarily ab- solutely convergent). E v i d e n t l y s 0 if a n d o n l y i f a s xS~ = c ~ x ~ a n d so ~ / ( ~ ) is one-dimensional a n d is s p a n n e d b y t h e v e c t o r whose c o m p o n e n t s are

x ~ = 1, xn-* - 1 / a ~ .

T h u s all t h e states are positive a n d f o r m a single positive class, a n d re ~176 = A , 7~.~~ = A / a ~ ,

YO r s __

J

: 7 " ~ m . = A , ~mn - A / a S ~ , ( 3 3 )

where 1 / A ~ 1 § ~ ~ ]//a~. Once again there is no n e e d to find ~/(~2").

5.4. A g e n e r a l M a r k o v i a n q u e u i n g p r o c e s s . W e n o w t u r n to P r o b l e m C: t h e cal- culation of t h e ergodic projection for Feller processes. As a first example we consider t h e M a r k o v process h a v i n g t h e q-matrix

- b o b o 0 0 ...

a 1 - ( a l + b z ) b 1 0 . . .

0 a 2 - ( a ~ § b 2 . . .

0 0 a 3 - ( a a + b 3) . . .

. ~ ~ . . . . . . . . . . 9

(34)

(19)

T H E C A L C U L A T I O N O F T H E E R G O D I C P R O J E C T I O N F O R M A R K O V C H A I N S 121 w h e r e b0, a 1 bl, a 2 . . . . a r e g i v e n positive r e a l n u m b e r s . 1 I n t h e classical q u e u i n g process of E r l a n g we h a v e a 1 = % . . . a a n d b 0 = b l = b 2 . . . b; t h e s t a t e - l a b e l r is e q u a l t o t h e n u m b e r of p e r s o n s w a i t i n g o r b e i n g s e r v e d a n d so a can be i d e n t i f i e d as t h e r e c i p r o c a l of t h e m e a n service t i m e a n d b a s t h e r e c i p r o c a l of t h e m e a n t i m e b e t w e e n a r r i v a l s , e a c h of t h e s e t i m e s h a v i n g a n e g a t i v e - e x p o n e n t i a l d i s t r i b u t i o n . I n t h e m o r e g e n e r a l s y s t e m c o n s i d e r e d h e r e e a c h of a a n d b is a l l o w e d t o d e p e n d on t h e n u m b e r r of p e r s o n s p r e s e n t in t h e queue. A s i m i l a r e x t e n s i o n of t h e classical q u e u i n g s i t u a - t i o n h a s b e e n c o n s i d e r e d p r e v i o u s l y b y J e n s e n [18].

T h e q - m a t r i x a t (34) is c o n s e r v a t i v e : i t will b e r e g u l a r a n d so d e f i n e a u n i q u e M a r k o v p r o c e s s if a n d o n l y if t h e s e t of e q u a t i o n s

(~ + b0) Yo = b0 Yi,

( ~ + a r + b r ) y r = a r y r - l § (r_> 1),

h a s no b o u n d e d s o l u t i o n o t h e r t h a n Yo = Yl = Y2 . . . 0 for a n y one ( a n d t h e n for all)

~ > 0. I n l o o k i n g for a n o n - n u l l s o l u t i o n we m a y c l e a r l y a s s u m e t h a t Y0 = 1 a n d t h e I l t h e r e l a t i o n s

y l = 1 § ~/bo,

b r ( y r + ~ - y , ) = 2 y ~ + a ~ ( y ~ - y r - 1 ) , ( r > _ l ) t (35) show i n d u c t i v e l y t h a t 1 = Y0 < Yl < Y, < "" ". W e t h e r e f o r e p u t Y-= l i m y, _< ~ . F r o m (35) we f i n d t h a t

l y , a~ yr-1 a . . . . a l Y0/

Y r + l - Y r = ~ ~- + ~ 4 " ' + b ~ b lbo] ~ (36) for all r_>0. N o w if

t h e n (36) gives

1 ar ar ... a 1

= - - -~- § (r >_ O),

c~-- br ' b~br_l b . . . . bib o

~Cr<_yr+l--yr<_~Cryr ( r ~ 0 ) ,

O o

a n d so l + 2 ~ c r _ < Y_< I ~ I ( l + 2 c r ) .

0 0

W e c o n c l u d e t h a t the q . m a t r i x (34) is regular i / and only i /

r-0 +b, (37/

T h i s r e s u l t is d u e t o D o b r u ~ i n [6], w h o d e d u c e d i t f r o m F e l l e r ' s r e g u l a r i t y c r i t e r i o n ; t h e a d v a n t a g e s of t h e a l t e r n a t i v e a n a l y t i c a l c r i t e r i o n for r e g u l a r i t y a r e v e r y well s h o w n b y t h i s e x a m p l e .

1 We now revert to 0, 1, 2, ... a s t h e s t a t e - l a b e l s .

(20)

1 2 2 D A V I D G . K E N D A L L A N D G . E . H . R E U T E R

W e n o w s u p p o s e t h a t (37) is satisfied, so t h a t (34) is a s s o c i a t e d w i t h a u n i q u e M a r k o v process. T h e s o l u t i o n t o P r o b l e m C r e q u i r e s t h a t we f i n d all p o s i t i v e / - v e c t o r s x such t h a t

- b o x o + a l x 1 = 0, ( 3 8 )

br_lxr_l-(ar+br) xr+ar+lXr+l~O (r>_ 1). (39)

T h e s e e q u a t i o n s h a v e a o n e - d i m e n s i o n a l s e t of s o l u t i o n s g e n e r a t e d b y

b 0 b 0 b I b 0 ... br 1

x 0 ~ l ~ X l ~ - - , X 2 - ~ . . . , X r : - - ~ . . . ,

a 1 a 1 a 2 a 1 . . . a r

so t h a t we m u s t d i s t i n g u i s h b e t w e e n t w o cases, d e p e n d i n g on t h e n a t u r e of

S----l+ ~ b~ "'" b~-i or (40)

r = 1 a l a 2 9 9 9 a r

I f S = o~, t h e n e v e r y s t a t e is d i s s i p a t i v e , w h i l s t if S < 0o t h e n all t h e s t a t e s a r e p o s i t i v e a n d f o r m a single p o s i t i v e class. I n b o t h cases

1 b 0 ... bi-1 1

: r i 0 = ~ , ~r~i=a 1 . . . a j S (]_>1), (41)

for all i.

I t s h o u l d be n o t e d t h a t S = ~ a n d S < ~ a r e e a c h c o n s i s t e n t w i t h t h e r e g u l a r i t y c o n d i t i o n (37). I f a~=a a n d b~ = b for all v a l u e s of r t h e n ( 3 7 ) w i l l h o l d a n d we f i n d t h a t S < ~ if a n d o n l y if b < a (a w e l l - k n o w n result). T h e i m p o r t a n c e of t h e series (40) in q u e u i n g p r o b l e m s h a s b e e n p r e v i o u s l y n o t e d b y J e n s e n [18].

5.5. The general birth-and-death process. W e n o w c o n s i d e r t h e M a r k o v p r o c e s s a s s o c i a t e d w i t h t h e c o n s e r v a t i v e q - m a t r i x (34) w h e n b 0 = 0 a n d a~ > 0, br > 0, for r _> 1.

N a t u r a l l y we m u s t a g a i n r e q u i r e t h e q - m a t r i x t o be r e g u l a r , a n d t h e r e g u l a r i t y condi- t i o n will b e d e r i v e d in a m o m e n t . T h e s t a t e - l a b e l r will n o w be i d e n t i f i e d w i t h t h e n u m b e r of i n d i v i d u a l s in a p o p u l a t i o n for w h i c h t h e c h a n c e s of a b i r t h o r d e a t h o c c u r r i n g in t h e s h o r t t i m e i n t e r v a l 5 t a r e

b ~ t + o ( S t ) a n d a ~ t + o ( ~ t ) ,

r e s p e c t i v e l y . T h e c o n d i t i o n b 0 = 0 ensures t h a t t h e p o p u l a t i o n c a n n o t r e c o v e r if i t once b e c o m e s e x t i n c t . T h e f a m i l i a r " s i m p l e " b i r t h - a n d - d e a t h p r o c e s s c o r r e s p o n d s t o t h e choice

a f t r a , br--rb for t h e p a r a m e t e r s .

(21)

T H E C A L C U L A T I O N O F T H E E R G O D I C P R O J E C T I O N F O R M A R K O V C H A I N S 1 2 3

T h e q - m a t r i x will be r e g u l a r if a n d o n l y if, for s o m e one ( a n d t h e n for all)

> 0, t h e set of e q u a t i o n s

2y0 = 0,

(,~ + a~ + br ) y~ = a~ y r - l + b~ yr + ~ ( r > 1),

h a s no n o n - n u l l b o u n d e d solution. W i t h o u t loss of g e n e r a l i t y we m a y p u t Y0 = 0 a n d Yl = 1, a n d t h e n we s h a l l h a v e

Y2 = 1 + (~

+ al)/bi,

b ~ ( y r + l - y ~ ) = 2 y ~ + a r ( y ~ - y ~ - ~ ) (r_> 2),

so t h a t 1 = Y l <Yz < " " . A g a i n i t is c o n v e n i e n t t o p u t Y ~ lira y~, a n d v e r y m u c h a s

r - - ~

b e f o r e we f i n d t h a t

2d~ + e~ -<y~+x - Yr -< (2dr + er) y~

] ar ar ... a s

w h e r e dr ~ ~ + ~ - ] 4 " - + b~ b 2 b I '

(r_> 1), ar ... a 2 a l b~ ... b~ b I '

oo oo

a n d so 1 + ~ (er § ~ dr) <_ :Y ~ I-[ (1 + er + 2 dr).

1 1

I t follows t h a t the q - m a t r i x (34), w i t h b o = 0, i s r e g u l a r i / a n d o n l y i /

t l ar a . . . . a2 I = (42)

T h i s r e s u l t also is t o b e a t t r i b u t e d t o D o b r u ~ i n [6]. 1 N o t e t h a t (37) is in effect a c o n d i t i o n on bl, a2, b 2 . . . . o n l y , a n d t h a t i t is e q u i v a l e n t t o (42), so t h a t t h e r e g u l a r i t y of t h e s y s t e m does n o t d e p e n d on w h e t h e r t h e s t a t e r = 0 is or is n o t a b s o r b i n g .

W e n o w a s s u m e t h a t (42) h o l d s a n d f i n d t h e s o l u t i o n t o P r o b l e m C. F i r s t we m u s t f i n d all p o s i t i v e / - v e c t o r s x such t h a t

a 1 x 1 = 0~

- ( a I § bl) x 1 § a s x 2 = 0 ,

b~ - l X~- l - ( ar + br ) x~ + ar + l X~ + l = O (r_> 2),

a n d we see a t once t h a t t h e g e n e r a l s o l u t i o n is a n a r b i t r a r y n o n - n e g a t i v e m u l t i p l e o f t h e v e c t o r

u ~ 0, 0, 0 . . . . ].

T h u s t h e z e r o - s t a t e is p o s i t i v e a n d f o r m s b y i t s e l f t h e o n l y p o s i t i v e class C; all o t h e r s t a t e s a r e d i s s i p a t i v e . A c c o r d i n g l y we shall h a v e

1 See also KARLIN & MCGREGOR [19].

(22)

1 2 4 D A V I D G . K E N D A L L A N D G . E . t I . R E U T E R

~,j = 0 (j_> 1, all i)

a n d 7~i0 = ~5~ (i, C) (all i),

so t h a t t h e missing c o l u m n of t h e H - m a t r i x consists of t h e e x t i n c t i o n - p r o b a b i l i t i e s (i, C) ~ lira p~ 0 (t) (i = 0, 1, 2 . . . . ) ;

t--~+ ~

it is clear t h a t this limit is a t t a i n e d m o n o t o n i c a l l y , a n d t h a t it could be i n t e r p r e t e d as t h e chance t h a t t h e p o p u l a t i o n , initially of size i, will u l t i m a t e l y b e c o m e extinct.

Our solution to P r o b l e m C shows t h a t t h e v e c t o r ~ whose i t h c o m p o n e n t is (i, C) is t h e least n o n - n e g a t i v e b o u n d e d solution y t o t h e e q u a t i o n s

aryr 1 - ( a r + b r ) y ~ + b ~ y ~ + l = O ( r = 1, 2, 3 . . . . ), (43) subject to t h e r e q u i r e m e n t t h a t

(y, u ~ = 1.

T h e general solution to t h e difference e q u a t i o n (43) is ( r ~ al ... as)

y o = A , y ~ = A + B 1 + ( r > l ) ,

where A a n d B are a r b i t r a r y constants, a n d t h e n a t u r e of its b o u n d e d solutions will d e p e n d on

a l . . . a s

T ~ 1 + (44)

s=l bl bs"

I f T = ~ , we m u s t h a v e ~ [ 1 , 1, 1 . . . . ]

a n d e x t i n c t i o n is a l m o s t certain w h a t e v e r t h e initial state. I f h o w e v e r T < ~ , t h e n

~ ( Q ~ ) will be t w o - d i m e n s i o n a l a n d t h e m i n i m a l i t y condition comes into p l a y ; we find t h e n t h a t t h e v e c t o r ~ a n d t h e i n d i v i d u a l extinction probabilities are g i v e n b y

~ 0 = 7~00 = 1, /

1 ~

a 1...

a~ / (45)

~ = zti o = ~' s=~'-" b 1 .. . bs (i >~ 1).

As in 5.4 it should be n o t e d t h a t T = ~ a n d T < ~ are b o t h consistent w i t h t h e r e g u l a r i t y condition (42): for i n s t a n c e if a ~ = r a a n d b ~ = r b (the " s i m p l e " b i r t h - a n d - d e a t h process) t h e n (42) a l w a y s holds, whilst T < ~ if a n d o n l y if a < b. I t is also w o r t h o b s e r v i n g t h a t t h e conditions S = ~ (in 5.4) a n d T = ~ (in 5.5) are e n t i r e l y different in character. R o u g h l y s p e a k i n g a queuing process will be c o m p l e t e l y dissi- p a t i v e (S = ~ ) w h e n t h e ratios b~/a~ are too large, whilst t h e c o r r e s p o n d i n g b i r t h - a n d - d e a t h process will h a v e t h e u n i v e r s a l e x t i n c t i o n p r o p e r t y ( T = ~ ) w h e n t h e s e

(23)

T H E C A L C U L A T I O N O F T H E E R G O D I C P R O J E C T I O N F O R M A R K O V C t t A I N S 1 2 5

ratios are too small. This is of course quite reasonable from the intuitive standpoint.

Finally it should also be mentioned t h a t the H - m a t r i x for the examples in 5.4 and 5.5 has been previously found b y L e d e r m a n n and R e u t e r [26] assuming the q-matrix to be regular (the regularity conditions (37) and (42) were not known to t h e m ) ; the present method is however m u c h simpler.

6. The calculation of R ( I I ) and ~'/(FI)

6.t. A di//erent approach to Problem B.

I n [22] we t r e a t e d a generalisation of Problem B: to determine the subspace F of "ergodic" vectors x E X and the associated

"ergodic projection operator" [I (defined on F), for a one-parameter semigroup ( P t : t _ > 0 } of operators on a Banach space X. A vector x was there called ergodic whenever [I x ~ lim

P t x

existed as some kind of generalised ]imit and with regard

t-->co

to some suitable topology for X. This work formed a natural continuation of earlier investigations in general ergodic theory b y Dunford [10], Hille ([17], Ch. X I V ) and Phillips [30], b u t for us it was also p r o m p t e d b y a desire to solve Problem B of the present paper. I f we set

X ~ l

in [22], the resulting theorems are not always ap- plicable to Problem B, b u t the methods of [22] can be a d a p t e d to yield a partial solution. This has an entirely different character from the solution given in w 3, where the lattice properties of 1 were exploited: we shall now have to s t u d y the interplay of a v a r i e t y of weak topologies. I t should be emphasised t h a t the solution of w 3 is superior in t h a t it is always availabJe; the methods to be described now m a y sometimes fail altogether b u t have their own merits whenever t h e y can be applied.

Problem A can also be treated b y similar m e t h o d s ; the analysis is then simpler a n d we leave the details to t h e reader.

As in w 3, we consider a Markov process whose a r r a y of transition probabilities is {p~j(t):i, ] = 0 , l, 2 . . . . }. L e t ~ be the infinitesimal generator of the associated transition semigroup

(Pt

: t ~ 0 } on l; also, with z i j - - l i m

pij(t)

as before, define the ergodic projection operator II b y

(H x)j--=

~ x~,zt~s (xel).

r

We recall (el. (9) and (15)) t h a t

I I 2 = P t I I = I I P t = H

for all t_>0. (46) I t is i m p o r t a n t to note t h a t the operator II is in general

not

the same as the operator 1] of [22].

(24)

126 D A V I D G . K E N D A L L A N D G . E . H . R E U T E R

Because II is idempotent we can write a n y x E l uniquely in the form x = x ~ + x2, where x 1E ~ ( [ I ) and x 2 E ~ (II), and x 1 - I x. Thus we have the direct decomposition

1 = ~ (I]) Q ~/(II). (47)

If we can find the summands ~(1-I) and ~/(H) in (47), then we can find H x , for any x E1, by taking the component of x in ~ ( [ I ) . I t will now be seen t h a t we m a y rephrase Problem B as follows.

P r o b l e m B I : Determine ~ ( I I ) and ~ ( I I ) when ~ is given.

We shall see t h a t ~ ( I I ) is easy to identify, and coincides with ~/(~). The deter- mination of ~/(II) is more troublesome ; it turns out t h a t ~ (g2) _c ~/(1]), and we shall t r y to reach T/(II) by closing ~ ( ~ ) with regard to several weak topologies for l.

6.2. WeaIc topologies. I t will be convenient for future reference to state some results which we shall need concerning weak topologies for a Banach space X. (Cf.

[5] and [3], Ch. IV.)

Let G be a linear set of funetionals g E X * which is " t o t a l " for X, i.e. such t h a t the vanishing of (g, x) for all g E G implies x = 0. Then the G-weak topology for X is the (Hausdorff) topology generated by the sub-basic open sets

{x:xeX,~<(g,x)<~} (~<~),

where ~, fl range over the real numbers and g ranges over G. If E _ X then we shall write E for the strong and [E]G for the G-weak closures of E. Also if A G X and B c _ X * we shall write A • and B T for the annihilators of A in X* and B in X :

A • * and ( y , x ) = O for all x E A ) , (48)

B T - ( x : x E X and ( y , x ) = 0 for all y E B } . (49) The following fact (Dieudonn~ [5], Th. 5) will often be used:

when L is a linear subset o/ X , then

[L]~ = (L~ n G) T. (50)

I n particular, strongly closed linear subsets of X being also weakly closed (i.e. closed in the weak topology obtained b y taking G ~ X * ) :

when L is a linear subset o/ X , then

L = (L• T. (51)

(25)

T H E C A L C U L A T I O N OF T H E E R G O D I C P R O J E C T I O N F O R M A R K O V C H A I N S 127 The preceding considerations a p p l y equally well, of course, to the Banach space X*. We shall need only the " w e a k * " topology (cf. Loomis [29], w 9): this is the weak topology induced on X* b y X (regarded as a subspace of X**). The s t a t e m e n t at (50) t h e n becomes:

when M is a linear subset o/ X*, then the weak* closure o] M is (MT) •

Finally we shall need the fact t h a t every/inite-dimensional linear subset o / X * is weak*

closed (see Bourbaki [3], Ch. I, w 2, No. 3).

The preceding results will be applied chiefly to the space X - - l and its adjoint X * ~ m , b u t at one point it will be useful to note t h a t t h e y apply equally to the space X ~ e o and its adjoint X*=--l; some care will t h e n be necessary in manipulating the symbols ( )l and ( )T. (We assume t h a t the reader is familiar with the ele- m e n t a r y properties of the spaces Co, l and m ; these can be found in Banach [1].

As usual we write c o for t h a t subspaee of m which consists of sequences z~(zo, z i . . . . ) such t h a t z~-->0 when ~ - ~ . )

I n w h a t follows we shall often require the G-weak closure of the linear subset

~ ( ~ ) of X ~ l for various total linear subsets G of X * ~ m . I t is readily seen ([22], p. 167, eq. (42/) t h a t ( ~ ( ~ ) ) l = ~ ( ~ * ) ; this shows incidentally t h a t 7/(fl*), being of the form E • (where E E l ) ,

from (51) and (50) t h a t

and

is always a weak* closed subset of m = l * . I t follows

R ( ~ ) = ( ~ (n*)) T (52)

[~ (~)]G = (7/(~*) N G) T. (53)

6.3. A partial solution to Problem B r We shall write u ~ and v j for the i t h and j t h unit vectors in l and m, so t h a t (u*)j = (vS),=(~ij and p,j(t)= (v j, Ptu*). Then, for each i and j, (v j, ( P t - H ) u * ) - ~ 0 as t - - > ~ . B u t I I P t - I I H < 2 so t h a t a double ap- plication of the Banach-Steinhaus theorem, z together with the facts t h a t the linear sets spanned b y the u ~ a n d the v j are dense in l and in co, yields the i m p o r t a n t relation lim (z, Pt x) = (z, I I x) (x E l, z E co). (54) We now introduce the transition operator 2 J a defined for all ;t > 0 b y

2 J ~ x - - f t e - ~ t P t x d t (xEl) (55)

0 I S e e H I L L E [17], T h . 2 . 1 2 . 1 .

Références

Documents relatifs

As an example, the Home Agent may reject the first Registration Request because the prepaid quota for the user is reached and may attach a Message String Extension with the

“A banda de la predominant presència masculina durant tot el llibre, l’autor articula una subjectivitat femenina que tot ho abasta, que destrueix la línia de

Mucho más tarde, la gente de la ciudad descubrió que en el extranjero ya existía una palabra para designar aquel trabajo mucho antes de que le dieran un nombre, pero

La transición a la democracia que se intentó llevar en Egipto quedó frustrada en el momento que el brazo militar no quiso despojarse de sus privilegios para entregarlos al

L’objectiu principal és introduir l’art i el procés de creació artística de forma permanent dins l’escola, mitjançant la construcció d’un estudi artístic

también disfruto cuando una parte de la clase opina algo mientras la otra opina lo contrario y debatimos mientras llegamos a una conclusión acerca del poema.”; “he

Zelda se dedicó realmente a realizar todas estas actividades, por tanto, mientras que en la novela que ella misma escribió vemos el deseo de Alabama de dedicarse y triunfar, por

As described above, while there are some teachers who discourage L1 use because they believe that to succeed in second language learning students should be exposed extensively to