• Aucun résultat trouvé

Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system

N/A
N/A
Protected

Academic year: 2021

Partager "Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01674970

https://hal.archives-ouvertes.fr/hal-01674970

Submitted on 11 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system

Rhouma Mlayeh, Samir Toumi, Lotfi Beji

To cite this version:

Rhouma Mlayeh, Samir Toumi, Lotfi Beji. Backstepping boundary observer based-control for hyper-

bolic PDE in rotary drilling system. Applied Mathematics and Computation, Elsevier, 2018, 322,

pp.66–78. �10.1016/j.amc.2017.11.034�. �hal-01674970�

(2)

Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system

Rhouma Mlayeh

b,

, Samir Toumi

a,b

, Lotfi Beji

a

aIBISC-EA 4526 laboratory, University of Evry, 40 rue du Pelvoux, Evry 91020, France

bLIM laboratory, Polytechnic School of Tunisia, BP 743, La Marsa 2078, Tunisia

Itiswellknownthattorsionalvibrationsinoilwellsystemaffectthedrillingdirections andmaybeinherentfordrillingsystems.Thedrillpipemodelisdescribedbysecondorder hyperbolicPartialDifferentialEquation(PDE)withmixedboundaryconditionsinwhicha sliding velocityisconsideredatthe topend. Inthispaper,weconsider theproblemof boundaryobserverdesign forone-dimensionalPDEwiththe usuallyneglected damping term.Themainpurposeistheconstructionofacontrollawwhichstabilizesthedamped wavePDE,using onlyboundarymeasurements.Fromthe Lyapunovtheory,weshow an exponentially vibration stability of the partially equipped oilwell drilling system. The observer-basedcontrollawisfoundusingthebacksteppingapproachforsecond-orderhy- perbolic PDE. Thenumerical simulationsconfirm theeffectivenessof theproposed PDE observerbasedcontroller.

1. Introduction

Acommontype ofinstabilityinoilwell drillingsystemisstick-slip oscillation(moredetails in[1]), causedbyfriction betweenthedrillbit andtherockresultingintorsionalvibrations ofthe drillstring,whichreduce penetrationrates and increasedrillingoperationcosts.Thestick-slipphenomenonisanundesirablelimitcycleofthedrillstringvelocityyielding potentiallysignificantdamagesonoilproductionfacilities.Inthelastcentury,manyresearcheffortontheavoidingtorsional vibrations hasbeen proposed [2–10]. Despite the development ofseveral techniques for eliminating torsional vibrations (stick-sliposcillations),nowadaysmanyproblemsremainsopenfordrillingsystems.Thetorsionaldynamicsofadrillstring aremodeledasadampedwavePDEthatgovernsthedynamicsoftheangulardisplacementofthedrillstring.Basedonthe linearizationofitsdynamics,acontrolmethodforthestabilizationofthedrillinginstabilityispresentedin[11].Theenergy functionisproposedbySaldivaretal.in[6]forthetorsionaldistributedmodelallowstofindacontrollawthatensuresthe energydissipationduringthedrilling.

In[12]theauthorsaredevelopedasimplifiedmodel,wherethereisnodampinginthedomainandthedrillbithasno inertia andhaveproposed anoutput feedbackadaptive controller.The anti-dampingwave equation usedinthe paperby Bresch-PietriandKrstic[12]isonlyanapproximationofthemodelcommonlyusedinourpapertoaccountforthestick-slip phenomenoninwhichafrictionODEisusedastheboundaryconditioninstead.

Corresponding author.

E-mail address: rhouma.mlayeh@ipeit.rnu.tn (R. Mlayeh).

(3)

Fig. 1. Drilling system.

In thiswork, we are concerned with the problemof boundary observer stabilizationfor a system ofhyperbolic PDE whichdescribes thedrilling systems.Basically, inour designs we usethe backstepping techniques(more details in [13]) andtheLyapunovtheorytostudythestabilityanalysis.Initially,thebacksteppingapproachdevelopedforparabolicequa- tions,ithasbeenappliedtononlinear PDE,first-orderhyperbolic equations,second-orderhyperbolicequations,fluidflow [13,14].Historically,in1990,thebacksteppingapproachiswellknowninordinarydifferentialequations(ODE)stability.Itis developedbyKokotovic[15]foranalyzing thestability ofnonlinear ordinarydifferential equation.Ithas theability tocope withthecontrolsynthesis,andaround2000thistechniquebecomesausefultoolintheboundarycontrolofPDE[13].The mainpurposesofthisworkare:first,thedesignofanobserverusingonlyboundaryvelocitymeasurementsatthetopand theconstructionofan observationerrorsystem;second,thedevelopmentofacontrol lawtakingintoaccount in-domain dampingusuallyneglected;andfinally,thewell-posedness problemoftheobservertorsionalvibration.We usetheback- steppingapproachtodesignafull-statefeedbackobserverlawthatmakestheclosed-loopsystemexponentiallystable.The stabilityanalysisisconductedwithinfinite-dimensionalbacksteppingtransformations forthedampedwave PDEstateand byconstructingaLyapunovfunctional.

Thepaperisstructuredasfollows.InSection2,werecallthePDEwiththeboundaryconditionsthatpermitstodescribe thetorsionalvibrationproblem.Anobserverbasedcontrol lawispresentedinthissection. InSection3,we findthe out- putinjectiongain andweprove theconvergenceoftheestimationerrorsystemusingLyapunovtheoryandbackstepping technique.ThesimulationresultsaregiveninSection4.Someconcludingremarksandperspectivesarealsointroduced.

2. Boundaryobserverbasedcontrol

2.1. Distributedparametermodel:dampedwaveequation

Amoreexhaustivedescriptionoftherotarysystemcanbefoundin[1].Oneoftheprincipalproblemsistheappearance ofoscillatory behaviors,that causea decreasingofthe drillingperformance fromtheview pointsofdifferentparameters (rotationalspeedofthe bit,rateofpenetration atthe surface)andso provokingthe mechanicalfailure ofthedrillstring.

Somecausesofstick-sliposcillationsarebacklashbetweencontactingparts,nonlineardamping,hysteresis,andgeometrical imperfectionswhich are verydifficult tomodel.However, the maincause ofsuch vibrations indrillstring isthe friction appearingbycontactwiththerockformation[16].Accordingly,amodeldescribingthedrillstringbehaviorshouldinclude abit-rockfrictiontorquemodeladequateenoughtoproperlyreproducethiseffect(Fig.1).

(4)

Thedynamicofthetorsionalvariableϑ(t,

ς

)alongthedrillpipeisgovernedby[4,6,17]:

GJ

ϑ

ςς

(

t,

ς )

I

ϑ

tt

(

t,

ς )

σϑ

t

(

t,

ς )

=0 (1)

ς

(0,L),t(0,+∞),withtheboundaryconditions

GJ

ϑ

ς

(

t,0

)

=ca

( ϑ

t

(

t,0

)

ω (

t

))

(2)

GJ

ϑ

ς

(

t,L

)

+Ib

ϑ

tt

(

t,L

)

=−T

( ϑ

t

(

t,L

))

(3)

whereListhelength ofthedrillpipe,Iistheinertia,Gtheshearmodulus,Ib ischosentorepresenttheassemblyatthe bottom hole,Jthe geometricalmomentofinertia, ca theslidingtorque coefficient,

σ

thedrillstring damping,and

ω

the

controlinput(angularvelocityduetotherotarytable).Theextremity(

ς

=L),issubjecttoatorqueonthebitT(∂ϑt(t,L)), whichisafunctionofthebitvelocity[18].

Inordertoimproveclarity,weintroducethenormalizedrodlengthx=ςL,andthenextvariablechange[2]:

v (

t,x

)

=

ϑ

L

I

GJt,L

(

1x

)

, x

(

0,1

)

. (4)

Then,thedynamicofthetorsionalvariablereads

v

tt

(

t,x

)

=

v

xx

(

t,x

)

ιv

t

(

t,x

)

(5)

v

x

(

t,1

)

=

(

t

)

(6)

v

tt

(

t,0

)

=a

v

x

(

t,0

)

+aF

( v

t

(

t,0

))

(7)

where (t)= cGJaL

ω

(t)1L

GJ I

v

t(t,1)

,

ι

=

σ

L

1

IGJ,F(

v

t(t,0))=−GJLT

1 L

GJ I

v

t(t,0)

,anda=LII

b. Tolinearizethetipboundarycondition(7),weusethenextform[3]

v

¯

(

t,x

)

=

ι

wr

2 x2F

(

wr

)

x+wrt+

v

0 (8)

asareferencetrajectory,suchthatwr=

v

¯t(t,x).

Thenweobtainthenextlinearizedofequationssystem

v

tt

(

t,x

)

=

v

xx

(

t,x

)

ι v

t

(

t,x

)

(9)

v

x

(

t,1

)

=

(

t

)

(10)

v

tt

(

t,0

)

=a

v

x

(

t,0

)

+ab

v

t

(

t,0

)

(11)

whereb= F(wur) andu(t)=

v

t(t,1).

One ofthe mainchallenge duringdrilling operation liesinthe poorknowledge ofthe downholeconditions (pressure andtemperatureconditions,gasandoilratios).Inthenext,weproposeanapproachtoestimateunknownparameterswhile drillingoilwell.Hence, themainpurposeinthisstudy,isthestabilityanalysisoftheobserverPDEwhichencounteredin andrillingsystem.

In thissection, we designan observerforthe systemgivenabove when one boundary measurement isavailable. We assumethatvelocityatx=1ismeasured(i.e.thetopboundarycondition,meaningthedrillstringhead).

We denote the estimates by a widehat, and we construct system behavior that integrates from an output injection term:

v

tt

(

t,x

)

=

v

xx

(

t,x

)

ι

v

t

(

t,x

)

(12)

v

x

(

t,1

)

=

(

t

)

γ ( v (

t,1

)

v (

t,1

))

(13)

v

tt

(

t,0

)

=a

v

x

(

t,0

)

+ab

v

t

(

t,0

)

(14)

where

γ

istheoutputinjectiongaintobedesigned.

(5)

2.2.Observertargetsystemandbacksteppingtransformation

Thissection showstheimportance of observertarget system, backsteppingtechniques,andthe Lyapunovtheory,pro- vidingausefulanalysisforstabilityin oilwell drillingsystem. Here, themain purposeisto finda controllaw(t) that transforms(12)–(14)toanextdesignedobservertargetsystem,

wtt

(

t,x

)

=wxx

(

t,x

)

ι

wt

(

t,x

)

(15)

wx

(

t,1

)

=0 (16)

wtt

(

t,0

)

=aeηwx

(

t,0

)

(

2a

+1

)

wt

(

t,0

)

. (17) The

η

and

parameterswillbedefinedbythefollowingLemma.

Lemma1. Letusintroducethefunction V

(

t

)

= 1

2 1

0

eη

(

wx

)

2+eη

(

wt

)

2+

eηx

(

1x

)

wtwx

dx

+1

a

(

wt

(

t,0

))

2, with 12>

>0,

η

≤ −(2+1x),suchthatx∈[0,1[,andthenormwhere

2

(

t

)

=

wt

2L2([0,1])+

wx

2L2([0,1])+

|

wt

(

t,0

) |

2.

Thenn12(t)V(t)n22(t)wheren1=min

{

e2ηe4η,1a

}

andn2=max

{

e2η+e4η,1a

}

. Proof.UsingtheCauchy–SchwarzandYoung’sinequalities,weobtain

V

(

t

)

= 1 2

1

0

eη

(

wx

)

2+eη

(

wt

)

2+

eηx

(

1x

)

wtwx

dx

+1

a

(

wt

(

t,0

))

2

eη

2

wt

2+e2η

wx

2+1a

|

wt

(

t,0

) |

2

eη

2 1

0

|

wtwx

|

dx

eη 2 −

eη

4

(

wt

2+

wx

2

)

+1

a

|

wt

(

t,0

) |

2

≥min

eη 2 −

eη

4 ,1 a

2

(

t

)

. Ontheotherhand,

V

(

t

)

= 12 1

0

eη

(

wx

)

2+eη

(

wt

)

2+

eηx

(

1x

)

wtwx

dx+1

a

(

wt

(

t,0

))

2

eη

2

wt

2+e2η

wx

2+1a

|

wt

(

t,0

) |

2+

eη

2 1

0

|

w˜tw˜x

|

dx

eη 2 +

eη

4

(

wt

2+

wx

2

)

+1

a

|

wt

(

t,0

) |

2

≤max

eη 2 +

eη

4 ,1 a

2

(

t

)

.

Thenn12(t)V(t)n22(t)withn1=min

{

e2ηe4η,1a

}

andn2=max

{

e2η+e4η,1a

}

. Now,weareinterestedinthestabilizationoftheobservertargetsystem.

Theorem1. (Observertarget systemstability)Considersystem (15)–(17),withinitial conditionw0=w(0,x)L2([0,1]).Then thezeroequilibriumofthesystem(15)–(17)isexponentiallystableinthesenseofthenextnorm

2

(

t

)

=

wt

2L2([0,1])+

wx

2L2([0,1])+

|

wt

(

t,0

) |

2.

Proof.In order to prove the observer target system stability, let us consider the proposed V(t) asa Lyapunov function candidate,

V

(

t

)

= 1 2

1 0

eη

(

wx

)

2+eη

(

wt

)

2+

eηx

(

1x

)

wtwx

dx

+1

a

(

wt

(

t,0

))

2

(6)

DifferentiatingVwithrespecttotime,weget V˙

(

t

)

=

1

0

eηwtxwx+eηwttwt+1

2

eηx

(

1x

)

wttwx+1

2

eηx

(

1x

)

wtxwt

dx +1

awtt

(

t,0

)

wt

(

t,0

)

=−

ι

eη1

0

w2t + 1

0

eηwtxwx+eηwxxwt+1

2

eηx

(

1x

)

wxxwx

+1

2

(

1x

)

wtxwt

dx+1

a

(

wtt

(

t,0

)

wt

(

t,0

))

ι

2 1

0

eηx

(

1x

)

wtwxdx

=−eηwt

(

t,0

)

wx

(

t,0

)

4wx

(

t,0

)

2

4wt

(

t,0

)

21

0

η (

1x

)

2 eηxw2x

2 dx

−2a

+1

a w2t

(

t,0

)

+eηwt

(

t,0

)

wx

(

t,0

)

1

0

η (

1x

)

2 eηxw2t

2 dx

ι

2 1

0

eηx

(

1x

)

wtwxdx

ι

1

0

eηw2tdx

≤ −eη 1

0

eηw2x 2 dx−1

aw2t

(

t,0

)

ι

2 1

0

eηx

(

1x

)

wtwxdx

ι

1

0

eηw2tdx

≤ −min

(

eη,

ι

,1

)

V

(

t

)

. ByLemma1,wehave

n1

2

(

t

)

V

(

t

)

n2

2

(

t

)

. Hencethereexistc>0andk≥0suchthat

(

t

)

cekt

(

0

)

.

This implies that the observer target system (15)–(17) is exponentially stableat the equilibriumin the sense of the norm.

In orderto convert the observerplant intothe observer target systems (i.e.

v

(t,x)−→w(t,x)), we consider the next backsteppingtransformation

w

(

t,x

)

=

v (

t,x

)

x

0

k

(

x,

ξ )

v (

t,

ξ )

d

ξ

β (

x

)

v (

t,0

)

x

0

p

(

x,

ξ )

v

t

(

t,

ξ )

d

ξ

x

0

l

(

x,

ξ )

v

ξ

(

t,

ξ )

d

ξ

. (18)

Pluggingthebacksteppingtransformation(18)intotheobservertargetsystem(15)–(17),integratingbyparts,andusingthe boundaryconditions,weobtain:

• Kernelsurfaceterms(x,

ξ

):

lξξ

(

x,

ξ )

=lxx

(

x,

ξ )

, (19)

kξξ

(

x,

ξ )

=kxx

(

x,

ξ )

, (20)

pξξ

(

x,

ξ )

=pxx

(

x,

ξ )

, (21)

• Kerneldiagonalterms(x,x):

lx

(

x,x

)

=0, kx

(

x,x

)

=0, px

(

x,x

)

=0. (22)

• Kernelverticalterms(x,0)andpoint-wiseterms(0,0):

lξ

(

x,0

)

=k

(

x,0

)

, kξ

(

x,0

)

=

β

(

x

)

, (23)

p

(

x,0

)

=0, pξ

(

x,0

)

=0 (24)

l

(

x,0

)

=

β (

x

)

,l

(

0,0

)

=

β (

0

)

(25)

kξ

(

0,0

)

=aeηk

(

0,0

)

+aeη

β (

0

)

=

β

(

0

)

. (26)

(7)

ThekernelofthebacksteppingtransformationsatisfiesaninterestingsystemofwavePDEwhichiseasilysolvable.These equationsaredefinedonatriangulardomain=

{

(x,

ξ

)∈R2:0≤

ξ

x≤1

}

.

Atthisstep,introducingthebacksteppingtransformation(18)into(16),wededucethenextcontrollaw

(

t

)

= 1

1−l

(

1,1

)

k

(

1,1

)

v (

t,1

)

+ 1

0

kx

(

1,

ξ )

v (

t,

ξ )

d

ξ

+p

(

1,1

)

v

t

(

t,1

)

+

1

0

px

(

1,

ξ )

v

t

(

t,

ξ )

d

ξ

+ 1

0

lx

(

1,

ξ )

v

ξ

(

t,

ξ )

d

ξ

+

β (

1

)

v (

t,0

)

+

γ ( v (

t,1

)

v (

t,1

))

. (27)

Itisworthnoticingthat1−l(1,1)=1−

β

(0)=0andcannotbezerosince

β

(0)=1here.

It remains to study the behavior of the observer plant system from the inverse backstepping transformation (i.e.

w(t,x)

v

(t,x)) andthe stabilityconditionsunder thecontrol law(27).Letusconsider theinverse backsteppingtrans- formationasfollows

v (

t,x

)

=w

(

t,x

)

+ x

0

e

(

x,

ξ )

w

(

t,

ξ )

d

ξ

+ x

0

f

(

x,

ξ )

wt

(

t,

ξ )

d

ξ

+

π (

x

)

w

(

t,0

)

+

x 0

h

(

x,

ξ )

wξ

(

t,

ξ )

d

ξ

. (28)

Introducingtheexpression(28)intotheobserverplantsystem(12)-(14),wefind:

• Kernelsurfaceterms(x,

ξ

):

hξξ

(

x,

ξ )

=hxx

(

x,

ξ )

, eξξ

(

x,

ξ )

=exx

(

x,

ξ )

, fξξ

(

x,

ξ )

= fxx

(

x,

ξ )

,

• Kerneldiagonalterms(x,x):

hx

(

x,x

)

=0, ex

(

x,x

)

=0, fx

(

x,x

)

=0.

• Kernelverticalterms(x,0)andpoint-wiseterms(0,0):

e

(

x,0

)

=hξ

(

x,0

)

, eξ

(

x,0

)

=

π

(

x

)

,

π (

0

)

=0 f

(

x,0

)

=0, h

(

x,0

)

=

π (

x

)

, fξ

(

x,0

)

=0 e

(

0,0

)

=hξ

(

0,0

)

=0, h

(

0,0

)

=

π (

0

)

=−1.

Itiseasilytoverifythatthisequationsaredefinedonatriangulardomain=

{

(x,

ξ

)∈R2:0≤

ξ

x≤1

}

.

ThemainresultregardingtheobserverplantsystemstabilityissummarizedinthenextTheorem.

Theorem2. (Observerplantsystemstability) Considersystem (12)–(14) withinitialcondition

v

0L2([0,1]),andwithcontrol law(27)where thekernelsk,p,andlareobtainedfrom(19)–(26).Thenthesystem(12)–(14)isexponentiallystableatthezero equilibriuminthesenseofthenextnorm

2

(

t

)

=

v (

t,.

)

2L2([0,1])+

v

t

(

t,.

)

2L2([0,1])+

v

x

(

t,.

)

2L2([0,1])+

|

v

t

(

t,0

) |

2.

Proof.Firstly, wedenotebyL2=L2([0,1])andletintroducethenextnorms(forexample)as:

β

=supx[0,1]

| β

(x)

|

,k= max(x,ξ )

|

k(x,

ξ

)

|

22,andsoonforl,(pξξ),p,where

|

k(x,

ξ

)

|

22denotestheclassicaloperatornorm.Wewillprove thatthereexist

ζ

1>0and

ζ

2>0suchthat

ζ

1

(

t

)

(

t

)

ζ

2

(

t

)

.

Recallthatpξ(x,0)=0,p(x,0)=0,px(x,x)=0,l(x,0)=

β

(x).Consequently,wt isrewritteninthisform

wt

(

t,x

)

=

v

t

(

t,x

)

x

0

k

(

x,

ξ )

v

t

(

t,

ξ )

d

ξ

p

(

x,x

)

v

x

(

t,x

)

x

0

pξξ

(

x,

ξ )

v (

t,

ξ )

d

ξ

+ x

0

ι

p

(

x,

ξ )

v

t

(

t,

ξ )

d

ξ

l

(

x,x

)

v

t

(

t,x

)

+ x

0

lξ

(

x,

ξ )

v

t

(

t,

ξ )

d

ξ

β (

x

)

v

t

(

t,0

)

.

UsingCauchy–Schwarz’sinequalities,weprove

wt

(

t,.

)

2L2

(

1+k+l+

(

lξ

)

+

ι

p

)

v

t

(

t,.

)

2L2+p

v

x

(

t,.

)

2L2

+

((

pξξ

)

v (

t,.

)

2L2+

β

|

v

t

(

t,0

) |

2

)

a1

2

(8)

wherea1=max

{

1+k+l+(lξ)+

ι

p,(pξξ),p,

β

}

.

As

v

(t,0)=

v

(t,x)x

0

v

y(t,y)dy,wefind

wx

(

t,.

)

2L2a2

(

v

x

(

t,.

)

2L2+

v (

t,.

)

2L2+

v

t

(

t,.

)

2L2

)

wherea2=max

{

1+l+(lx)+

β

,k+(kx)+

β

,p+(px)

}

.

Also,wehave

|

wt(t,0)

|

2

|

v

t(t,0

|

2.Hence,thereexist

ζ

1>0suchthat

ζ

1( t)( t). Recallthattheinversebacksteppingtransformationisgivenby

v (

t,x

)

=w

(

t,x

)

+ x

0

e

(

x,

ξ )

w

(

t,

ξ )

d

ξ

+

π (

x

)

w

(

t,0

)

+

x

0

f

(

x,

ξ )

wt

(

t,

ξ )

d

ξ

+x

0

h

(

x,

ξ )

wξ

(

t,

ξ )

d

ξ

.

Asw(t,0)=w(t,x)x

0wy(t,y)dy,usingPoincare’sinequality,weobtain

v (

t,.

)

2L2a3

(

wx

(

t,.

)

2L2+

wt

(

t,.

)

2L2

)

,

wherea3=max

{

a0(1+e)+

π

(1+a0)+h,f

}

>0,a0>0. Besides,as

f

(

x,0

)

=0,h

(

x,0

)

=

π (

x

)

, fξ

(

x,0

)

=0, fx

(

x,x

)

=0

weget,

v

t

(

t,.

)

2L2a4

(

wt

(

t,.

)

2L2+

wx

(

t,.

)

2L2

)

,

wherea4=max

{

1+e+h+(hξ)+

ι

f,f+a0(fξξ)

}

≥0. Also,asw(t,0)=w(t,x)x

0wy(t,y)dywefind

v

x

(

t,.

)

2L2a5

(

wx

(

t,.

)

2L2+

wt

(

t,.

)

2L2

)

,

wherea5=max

{

1+a0e+a0(ex)+h+(hx)+

π

(1+a0),f+(fx)

}

.

Finally,wehave

|

v

t(t,0)

|

2≤4

|

wt(t,0)

|

2.Accordingly,thereexits

ζ

2>0suchthat( t)

ζ

2( t). Thisimpliesthatthesystem(12)–(14)isexponentiallystableinthesenseofthenorm.

Remark1. TheproofofTheorem2isperformedinthreesteps:first,thestabilityoftheobservertargetsystem;second,the mappingbetweenthe observerplantsystemandthe observertarget,andthe computationoftheobserverbased control law;finally,thestabilityoftheobserverplantsystem.

3. Outputinjectiongain

The first goal of this section is to prove the existence anduniqueness solution using Lumer–Phillips’s theorem. The secondoneisthestabilitystudyoftheestimationerrorsystem.

3.1. Well-posednessproblem

Inthenext,weusesemigrouptheory(Furtherdiscussioninthistheoryin[19])toprovetheexistenceanduniquenessof theproposedobserversolutions.Then,byprovingtheexistenceanduniquenessoftheestimationerrormodel,weconclude theexistence anduniqueness oftheproposed observersystem. Inaddition,duetothe presenceofa nonlinearandcom- plexrelationresultingfromthebit-rockinteractionatthetipboundary,thewell-posednessoftheestimationerrorsystem becomesnottrivial.Hence,inthenext,wetreatthiscontributionusingthesemi-grouptheory.

We denote the estimationerror by

v

˜=

v

v

.Let T>0, the naturalsolution of the Cauchy problemis written in this form

v

˜tt

(

t,x

)

=

v

˜xx

(

t,x

)

ι

˜

v

t

(

t,x

)

(29)

v

˜t

(

t,1

)

=

IGJ

ca

v

˜x

(

t,1

)

γ v

˜

(

t,1

)

(30)

v

˜tt

(

t,0

)

=a

v

˜x

(

t,0

)

+aF

( v

˜t

(

t,0

))

(31)

v

˜

(

0,x

)

=

v

˜0

(

x

)

,

v

˜t

(

0,x

)

v

1

(

x

)

(32)

wherex∈(0,1),t∈(0,T),

v

˜0K:=

{ v

˜H1(0,1);

v

˜0(0)=0

}

,and

v

˜1L2(0,1).

(9)

ThevectorspaceKisequippedwiththescalarproduct

v

˜1

(

t,x

)

,

v

˜2

(

t,x

)

K = 1

0

˜

v

1x

(

t,x

) v

˜2x

(

t,x

)

dx.

ItisobviousthatKisaHilbertspace.

LetusintroduceY=(

v

˜(t,x),

v

˜t(t,x),

v

˜(t,1),˜

v

t(t,0))T.Eqs.(29)–(32)canbecompactlywrittenas

Y˙

(

t

)

=AY

(

t

)

+H

(

Y

(

t

))

+f

(

t

)

Y

(

0

)

=Y0

(33) where

A=

⎜ ⎜

0 1 0 0

xx

ι

0 0

IGJ

ca

δ

1(x),.

γ

0 0 0

a

δ

0(x),.

0 0 0

⎟ ⎟

, H(Y(t))=

⎜ ⎝

0 0 0 aF(˜

v

t(t,0))

⎟ ⎠

, and f(t)=

⎜ ⎜

0 0 L

I GJ

ω

(t)

0

⎟ ⎟

such as

δ

denotes the

Diracfunctionforwhich

δ

1(x),

v

˜(t,x)

=−

v

˜x(t,1)and

δ

0(x),

v

˜(t,x)

=−

v

˜x(t,0).

Firstly,letusconsidertheproblem(33)withH(Y)=0and f(t)=0,consequentlywehavethenextTheorem.

Theorem3. TheoperatorAgeneratesaC0semigroupS(t),t≥0ofcontractionsonE.

Proof.Letusconsiderthefollowingspace E=

⎧ ⎪

⎪ ⎩

⎜ ⎝ v

˜(t,x)

v

˜t(t,x)

v

˜(t,1)

˜

v

t(t,0)

⎟ ⎠

,

v

˜K,

v

˜tL2([0,1]),˜

v

(t,1)∈R,˜

v

t(t,0)∈R

⎫ ⎪

⎪ ⎭

.

ThisvectorspaceEisequippedwiththeinner-product

! ⎛

⎜ ⎝ v

˜1

(

t,x

) v

˜1t

(

t,x

) v

˜1

(

t,1

) v

˜1t

(

t,0

)

⎟ ⎠

,

⎜ ⎝ v

˜2

(

t,x

) v

˜2t

(

t,x

) v

˜2

(

t,1

) v

˜t2

(

t,0

)

⎟ ⎠

"

E

=

v

˜1,

v

˜2

K+

v

˜t1,

v

˜t2

L2[0,1]+

v

˜1

(

t,1

)

,

v

˜2

(

t,1

)

R

+

v

˜t1

(

t,0

)

,˜

v

2t

(

t,0

)

R. Wedenoteby

.

thenorminEassociatedtothisscalarproduct.

LetA:D(A)⊂EEbethelinearoperatordefinedby D(A)=

{

⎜ ⎝ v

˜(t,x)

v

˜t(t,x)

v

˜(t,1)

v

˜t(t,0)

⎟ ⎠

E,

v

˜H2(0,1),

v

˜tK,

v

˜x(t,1)

v

x(t,0)=0,

v

˜(t,1)∈R,

v

˜t(t,0)∈R

}

. Wehave

A

⎜ ⎝ v

˜

(

t,x

) v

˜t

(

t,x

)

˜

v (

t,1

) v

˜t

(

t,0

)

⎟ ⎠

=

⎜ ⎝

v

˜t

(

t,x

) v

˜xx

(

t,x

)

ι v

˜t

(

t,x

)

−√

IGJ

ca

v

˜x

(

t,1

)

γ v

˜

(

t,1

)

a

v

˜x

(

t,0

)

⎟ ⎠

.

Moreover

AY,Y

E=

ι

1

0

v

˜2tdx

γ v

˜

(

t,1

)

20,

YD

(

A

)

.

Itiseasytoverifythat

y=

⎜ ⎝

f1

f2 f3 f4

⎟ ⎠

E,thereexistsw=

⎜ ⎝

w1

w2 w3 w4

⎟ ⎠

D(A) suchthat wAw=y.Then,D(A) isdenseinE

andAisclosed.Hence,usingtheLumer–Phillipstheorem(TheoremA.4in[20])Aistheinfinitesimalgeneratorofastrongly continuousgroupofisometriesS(t),t≥0,onE.

Now,wearegoingtoprovetheexistenceanduniquenessofthesystem(33)withH(Y)andf(t)aredifferentfromzero.

Theorem4. LetfL1([0,T],E)andY0D(A),thentheproblemY˙(t)=AY(t)+H(Y)+f(t)hasauniquesolution YC1

(

[0,T],E

)

#C0

(

[0,T],D

(

A

))

givenby:

Y

(

t

)

=S

(

t

)

Y

(

0

)

+ t

0

S

(

ts

)(

H

(

Y

(

s

))

+f

(

s

))

ds

Références

Documents relatifs

In this paper previous stability results are generalized using perturbation theory in infinite dimensional Hilbert space, including more general hyperbolic systems and

Failure scenarios of tripping operations in conventional overbalanced drilling and managed pressure drilling are studied using fault tree analysis. These scenarios are

From the field to the database: a user-oriented approach to promote cyber-curating of scientific continental drilling cores.. AGU American Geophysical Union, Oct 2017, San

Abstract: We present an adaptive observer design for a first-order hyperbolic system of Partial Differential Equations with uncertain boundary parameters.. The design relies on

An ODE is used to described pressure dynamics of a fluid along the wellbore and a radial diffusion equation is used to described the diffusion of the fluid in a porous

This paper establishes math- ematical models of cuttings transport during stable foam drilling of vertical/near-vertical sections, a transition sec- tion, and

Combining the tools and the approach facilitated the creation of a learning environment in which use of technology and the choice of activities centered on a problem provided

Abstract — The dynamics of a population whose mathematical model is the équation of Verhulst is considered From the population by discrete outer effects (in theform of impulses)