• Aucun résultat trouvé

Oceanic units in the core of the External Rif (Morocco): Intramargin hiatus or South-Tethyan remnants?

N/A
N/A
Protected

Academic year: 2021

Partager "Oceanic units in the core of the External Rif (Morocco): Intramargin hiatus or South-Tethyan remnants?"

Copied!
18
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Journal of Geodynamics

j o ur na l h o me p a g e : h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / j o g

Oceanic units in the core of the External Rif (Morocco): Intramargin hiatus or South-Tethyan remnants?

Mohamed Benzaggagh

a

, Abdelkader Mokhtari

a

, Philippe Rossi

b,c

, André Michard

d,∗

, Abdelkhader El Maz

a

, Ahmed Chalouan

e

, Omar Saddiqi

f

, Ech-Cherki Rjimati

g

aUniversitéMoulayIsmail,FacultédesSciences,DépartementdeGéologie,BP11201BeniM’Hamed,Meknès,Morocco

bBRGM,BP36009OrléansCedex02,France

cCCGM,77rueClaude-Bernard,75005Paris,France

d10,ruedesJeûneurs,75002Paris,France

eUniversitéMohammedV-Agdal,FacultédesSciences,DépartementdesSciencesdelaTerre,AvenueIbnBatouta,BP1014Rabat,Morocco

fLaboratoireGéosciences,UniversitéHassanII-Casablanca,BP5366Maârif,Casablanca,Morocco

gMinistèredel’EnergieetdesMines,DirectionduDéveloppementMinier,DivisionduPatrimoine,BP6208RabatInstituts,Morocco

a r t i c l e i n f o

Articlehistory:

Received10March2013

Receivedinrevisedform1October2013 Accepted14October2013

Availableonline25October2013 Inmemoryofourprofessorandfriend MichelDurand-Delgawhoencouragedour researchintheareaoverseveralyears.

Keywords:

WestMediterranean Alpinebelts Maghrebides Morocco Suture Paleomargin Ophiolite Thrusttectonics Transcurrenttectonics

a b s t r a c t

Theaimofthispaperistodescribethemaficrocksthatcropoutinthecentral-westernMesorifZone (ExternalRifBelt),anddiscusstheirgeodynamicsignification.Basaltflows,olistolithsandbrecciasoccur inOxfordian–BerriasiandepositsofMesorifunitsascribedtothedistalpartoftheAfricanpaleomargin.

TheclimaxofvolcanicactivityisobservedatthenorthernborderofaKimmeridgiancarbonateplatform progressivelydismemberedduringtheTithonian–Berriasian.Inspiteofthealterationofthebasalts,their petrologicalandgeochemicalcharacterspointtoE-MORBaffinities.Thestudiedgabbromassifs(BouAdel, KefelRharwestandnorth)occurasrestrictedsliversorklippeswithintheSenhadjanappeormélange oftheinternalMesorif,whichoverliesthebasalt-bearingunitsandother,moreexternalMesorifunits.

Thecompositionsrangefromtroctoliticolivinegabbrotoferrogabbrowithfrequentortho-toheteradcu- mulatetextures;theydisplaytypicaltholeiiticaffinity.Thegabbromassifsarecrosscutbytrondjhemite dykesandoverlainbymetabasalts,fault-scarpbreccias,ophicalcites,marblesandradiolarites.Composi- tionfeaturinginitialnearliquidcomposition,displaymultielementspatternsclosetothoseofE-MORB, withaweakEunegativeanomalyandevidenceofslightcrustalcontamination.Thesegabbromassifswere regardedasJurassic–Cretaceousintrusions,locallydated(K–Ar)at166±3Ma.Conversely,weassume theyrepresentdiscretesamplesofaJurassic–Cretaceousoceanicbasement(ophiolites),emplacedtec- tonicallyintheSenhadjanappe(mélange)ofthecentralMesorif.Thecorrelationofboththesetypesof maficrockassociations(paleomarginbasaltsandophioliteklippes)withtheserpentinitesoftheeastern Mesorif(BeniMalek)andOranmountains(Algeria)isthenbrieflydiscussed.Weconcludethattheprevi- oushypothesisofanintramargin“Mesorifsuturezone”mustbereconsidered,beingchallengedbythat ofamajor,syn-collisional“Oran-MesorifStrike-SlipFault”.Inthelatterhypothesis,thenewlydescribed MesorifoceanicklippeswouldrepresentallochthonousremnantsoftheLigurian–Maghrebian(Tethyan) oceanicdomain.

©2013ElsevierLtd.Allrightsreserved.

1. Introduction

TheExternalZonesofanycollisionalbeltsarebydefinitionout- sidethesuturezone(i.e.intheforelandsideoftheorogen)and, accordingly, theyareexpected tobe devoidof ophioliticunits, exceptintheformoftectonicklippesasinthePrealps(e.g.Schmid etal.,1996).IntheRifBelt,asinthewholeMaghrebides(Fig.1), theExternalZoneslieonthenorthernmarginoftheAfricanplate,

Correspondingauthor.Tel.:+33142360483.

E-mailaddress:andremichard@orange.fr(A.Michard).

fromwhichtheyderive(Durand-DelgaandFontboté,1980;Wildi, 1983;Favreetal.,1991).Theyareseparatedfromthedismem- beredInternalZones(AlboranDomain,Kabylias,Peloritan-Calabria unitswithEuropean/Alpineaffinities)bytheMaghrebianFlyschs suturezone(Bouillinetal.,1986;Guerreraetal.,2005).Thissuture iscurrentlyregardedastheresultoftheSE-toSW-wardretreat ofthesubductingLigurian–MaghrebianslabofwesternNeotethys (FrizondeLamotteetal.,1991;LonerganandWhite,1997;Jolivet andFaccenna,2000;SpakmanandWortel,2004;Carminatietal., 2012,andreferencestherein).However,ifthissuturezoneisrich in ophiolite remnants in the east (Ligurian nappes of Calabria, Sicily)asexpectable,suchremnantsbecomerareinthewest,with 0264-3707/$seefrontmatter©2013ElsevierLtd.Allrightsreserved.

http://dx.doi.org/10.1016/j.jog.2013.10.003

(2)

M.Benzaggaghetal./JournalofGeodynamics77(2014)4–21 5

Fig.1. LocationofthestudyareaintheMaghrebideBeltofNorth-Africa(A)andpaleogeographicsketchesshowingtheEoceneextensionoftheLigurianTethys(B)andthe MiddleMiocenecollisionalsettingoftheWestMediterraneanAlpinebelts(C).(B)and(C)refertothemostcommoninterpretationoftheWestMediterraneanevolution (seetextforreferences).

thelastserpentinite-gabbro-basaltassemblageseenbeneaththe LesserKabyliaMassif(Bouillinetal.,1997).IntheRifBelt,theonly maficrocksassociatedwiththeMaghrebianFlyschsareafewolis- tolithsandsliversofE-MORBpillowbasaltsfoundintheeastern partofthesuturezone(Durand-Delgaetal.,2000).Thenaques- tionarises:wherearethesouthTethyan(Ligurian)ophiolitesinthe Alborantransect?

Curiously, a serpentinite massif associated withmetabasites wasmappedsinceyears withintheExternalZonesoftheeast- ernRif,nexttoBeniMalekvillagewestoftheTemsamanemassif (Suter,1980a,b;Choubertetal.,1984).TheBeniMalekmassifwas interpretedsubsequentlyasamantlesliverdetachedfromanintra- marginhiatusdistinctoftheLigurianTethysitself,althoughbeing coevaltoit(Michardetal.,1992).Thesignificantextensionofthis sliveratdepthwascalibratedthroughmagneticanomalyinterpre- tation(Elazzabetal.,1997).Morerecently,Michardetal.(2007) emphasizedthattheallegedintramarginsuturecontinueseast- wardover200kmorso,uptotheOranregionatleast(Algeria), beingassociatedwithlow-grade,intermediatepressuremetamor- phismasin thenorthernTemsamaneunits(Negroetal., 2007, 2008).However, thewestwardcontinuation ofthis unexpected externalsutureremainedunknown,anditstectonicinterpretation poorlyascertained.

Theaimofthepresentpaperisfirstlytodescribethevarious occurrencesofJurassic–Cretaceousmaficassemblageswestofthe BeniMalekmassif,basedonnewfieldcampaignsandstratigraphic studies.Somehavebeenalreadydescribed(BenYaïchetal.,1989;

Benzaggagh,2011),andconsistsofbasaltflowsandclastsinpale- omarginunits.Othersare describedhereforthefirsttime, and correspondtosmallgabbromassifsassociatedwithoceanic-type cover sequences.We present thefirstpetrological–geochemical

descriptionofboththesemaficunits.Finallywebrieflydiscussthe tectonicinterpretationofthesecontrasting,paleomargin-typeand oceanic-typemaficunitswithintheRifExternalZone.

2. Geologicalsetting

In the Rif Mountains (Fig. 2), the Internal Zones constitute twopiecesofadismembered,Miocenemetamorphiccorecom- plex(García-Due ˜nasetal.,1992;Michardetal.,2006),namelythe NorthernRifandtheBokkoyamassifs.ThefamousBeniBousera mantleperidotitesandgranuliteslaywithinthelowerplateofthe complex,i.e.itslowestandmoremetamorphicunits(Sebtides).

The upperplate(Ghomarides) correspondsto severalsliversof low-gradePaleozoicrocksinterleavedwiththeirTriassic–Cenozoic coverrocks.TheMesozoic–Cenozoic“DorsaleCalcaire”unitsthat fringethesouth-westfrontoftheNorthernRifandconstitutemost oftheBokkoyaareremnantssouthernorsouth-westernpaleomar- ginoftheAlboranDomainnorthoftheMaghrebianOcean(Wildi, 1979,1983;Durand-Delga,1980;ElHatimietal.,1991;Blidiand Hervouët,1991;ElKadirietal.,1992;ChalouanandMichard,2004;

Guerreraetal.,2005;Durand-Delga,2006).

TheMaghrebianFlyschnappesareformedbythreemainthrust sheets (Mauretanian, Massylian, Numidian nappes) originating from thesedimentary infill of theLigurian–Maghrebian Ocean.

TheMauretanianandMassylianJurassic-EarlyCretaceousbedsare associatedwithE-MORBpillowbasalts(Durand-Delgaetal.,2000) southof theeastern BokkoyaMassif(Fig.2).These nappesroot beneaththeInternalZonesandoverlietheExternalZones,except forsomeback-thrustunits(e.g.northernmostRifandKabylias).

Thus,thefaultthrustcontactbetweentheAlboranDomainandthe FlyschNappesrepresentsthemainsuturezoneoftheMaghrebide

(3)

Fig.2.StructuralmapoftheRifBeltafterSuter(1980b)andChalouanetal.(2008),withlocationofFigs.3and4(framed),andoftheBeniMalek-TresForcasorMesorif SutureintheeasternRif(Michardetal.,2007).

Orogen.TheFlyschNappesareinturnobductedanddiverticulated ontotheuppermostunitsoftheExternalZones(TangierandHabt units)inthewesternRif,andontoslightlydeeperunitsofthesame zones(Ketama,Aknoul)inthecentralandeasternRif.

TheMaghrebideExternalZonesderivefromtheNorth-African paleomargininverted during theEarlyMiocene collision ofthe Internal Zones(Wildi, 1983;Favre et al., 1991;Guerrera et al., 2005;Crespo-BlancandFrizondeLamotte,2006).IntheRifBelt, theyaredivided,fromNE toSW and fromtop tobottom,into theIntrarif,MesorifandPrerifZones(Suter,1980a,b).Withineach ofthese zones,deeprooted, para-autochthonous unitscontrast withdiverticulated,gravity-driven nappesthrustoverthemore externaldomains.TheIntrarifzoneincludestheKetamaunit(Tri- assictoAlbo-Cenomanian),theTangierandLoukosunits,partly detachedfromtheKetamaunit,andtheHabtandAknoulnappes (LateCretaceous-Cenozoic),entirelydetached.TheMesorifZone shows allochthonous units including Triassic toPaleogene for- mations thrustover allegedlyautochthonous tectonicwindows whoseseriesendwithMiddle-UpperMioceneturbiditesandolis- tostomes.ThePrerifZoneasawholeconsistsofJurassic–Miocene unitsdetachedontheunderlyingTriassicevaporitesandthrust overtheUpper Mioceneforedeepdeposits(GharbBasin,Saiss).

Theparticular,InternalPrerifZonecorrespondstoslicesofJurassic- EarlyCretaceouslimestonesthatformastringofsteephills(“sofs”) betweentheMesorifand ExternalPrerifZones. Theearly(Tor- tonian)fold andthrustcontactsaresealedbythetransgression of Upper Tortonian–Messinian conglomerates and sandy marls (molasses), that have been subsequently folded (e.g. Taounate

“post-nappe”syncline;Samakaetal.,1997).

ThetectonicstructuresobservedintheRifExternalunitsand overlyingMaghrebianFlyschoutliersshowanoverallsouthwest- warddisplacement(Frizonde Lamotteet al.,1991, 2004).Two majorNE-trendingleft-lateralfaults,namelytheJebhaandNekor

Faults(Fig.2),giveadditionalevidenceoftheobliquityofthecol- lisionoftheAlboranDomainagainstAfrica(LeblancandOlivier, 1984;FrizondeLamotte,1985).Thisisaccountedforbythecurrent modelsofslabroll-backoftheLigurian–Maghrebiansubduction beneath theEuropeanlithosphere(Spakmanand Wortel,2004;

Jolivetetal.,2008).

3. Basalt-bearingpaleomarginunits

Inthissectionwepresentthevolcanicandvolcano-sedimentary formationsthatoccurmostlyintheKimmeridgian–Berriasiancar- bonateformationsoftheMesorifZone.Thestudiedoutcropsare locatedintwoareasoftheExternalRif(Fig.2),i.e.theOuezzane areaofWesternRif(Fig.3A),andtheTaounate-Tainesteareaof CentralRif(Fig.3B).InthewesternMesorifZone,thevolcanicevent hasbeenascribedtotheBathonian–Callovian (BenYaïch etal., 1989; BenYaïch,1991), whereas it wasregarded asBarremian inthecentralMesorifZone(Vidal,1979,1983a,b).Newaccurate datingsbasedonplanktonicassemblageshavebeenpublishedby Benzaggagh(2000),BenzaggaghandHabibi(2006)andBenzaggagh (2011).

Thecarbonateformationsoccureverywhereontopofathick (1000–1500m)Callovian–Oxfordianturbiditeformationknownas the“Ferrysch”that sealstheLower-MiddleJurassic tilted-block andhemigrabenstructuresofthepaleomargin(Wildi,1981;Favre, 1992).TheFerryschdepositsarebroadlyidenticalallovertheInter- nalPrerif,MesorifandIntrarifZones,butthickensfromthePrerifto theMesorif.FromtheKimmeridgianuptotheBerriasian,carbon- atefaciesdevelopeverywhereabovetheFerryschturbidites.Inthe InternalPrerif,theyconsistbasicallyofpelagicfacies(ammonite- bearingthin-beddedlimestonesandammoniticorossofacies).In contrast,intheMesorifZone(e.g.JebelTaharBouZhaier,Fig.4A), thecarbonatesequencebeginswiththicklayersofcalciruditesor

(4)

M.Benzaggaghetal./JournalofGeodynamics77(2014)4–21 7

Fig.3.LocationofthestudiedoutcropsintheMesorifframework(seeFig.2formaplocation).NumbersrefertotheanalyzedsamplesofTable2.(A)Basalt-bearingoutcrops ofthewesternMesorifZone(Ouezzanearea).SketchcontoursofthestructuralzonesafterSuter(1964a,1980b)andBouhdadi(1999).(B)Basalt-bearingoutcropsandmafic oceanicunitsofthecentralMesorifZone(Taounate-Taïnestearea).SketchcontoursofthestructuralzonesafterSuter(1980b)andLeblanc(1983).Framed:detailmapsFigs.6 (BouAdel)and9(KefelRhar).

monogeniccarbonatebreccias,moreorlesssiliceous(Fig.4B),of Kimmeridgianageaccordingtotheirbenthicforaminifercontent (BenzaggaghandAtrops,1997).TheMesorifcarbonatesequence continuesupwardintheTithonianwithvariedfaciesofbreccias, either massive layers of carbonate breccias or chaotic breccias withrareclayeymatrix(Fig.4C).Ammonitesarescarce,anddat- ingsarebasedontheplanktonicassemblages(Benzaggagh,2000;

BenzaggaghandHabibi,2006).Theamountofclayandsiltincreases intheBerriasiandeposits,whichalsocontainsbrecciasinsomeof thestudiedsections(Figs.4Dand5A,B).

Mostoftheelementsofthebrecciasareshallowwater,plat- formcarbonates(upto60–80cminsize)datedasKimmeridgianor lowerTithonianintheUpperTithonianbrecciasandUpperTitho- nianintheBerriasianbreccias(Benzaggagh,2011).Likewise,the layeredlimestonesfrequentlycontainreworkedalgaeandbenthic foraminifers(Fig.5BandC).Thissuggestsredepositionbymass flowsandturbiditycurrentsrelatedtocannibalismphenomena, andaccountsforthefrequentandimportantvariationsinthethick- nessoftheUpperJurassiccarbonatesequence(Fig.5),asalready quotedbySuter(1965).

Besidesofthedominantcarbonateclasts,allofthestudiedout- crops(Fig.3)showanalmostconstant occurrenceofmagmatic clastswithin thechaotic breccias. Theyspansfrom a few cen- timeterstoseveralmetersinsize,withmostfrequentblocksand boulders(Fig.4EandF).Theirlithologyrangesfromtypicalbasalts todolerites,tofinegrainedgabbros(seeSection5.1).Somebasalt flowsorfragmentsoflavaflowarepreservedbyplace(Fig.5A,C andD).Theearliestmagmaticeventisrecordedbypyroclasticlay- ersbytheveryendoftheOxfordian(Fig.5E),whereasthelatest wouldbeUpperTithonianorBerriasianinage.Theoccurrenceof abasaltdykeintheFerryschformationofSidiKassem(Fig.3)next totheKerkorvolcano-sedimentarybreccias(Fig.5D)confirmsthat theUpperJurassic–Berriasianvolcaniccenterswerelocatedinthe MesorifZone.

Inadditiontothecarbonateandvolcanicclasts,thechaoticbrec- ciasalsocontainpebblesorcobblesofsandstonewithFerrysch-like facies.Theabundanceandsizeofsuchelementsseemstoincrease upward. Largeolistoliths oftypical Ferryschfacies occurinthe BerriasiansequenceatJ.Mazoura(Fig.5C).

4. Theexoticgabbromassifs

In thissectionwe describetheexotictectonicunitsthatwe definehereforthefirsttime intheCentralMesorifatBouAdel andKefElRhar(Fig.3Bforlocation).Theyarecharacterizedby theoccurrenceofathickgabbrobasementoverlainbyvaried,low- grademetavolcanitesandmetasedimentaryrocks.Weparticularly developtheBouAdelcasestudy.

4.1. BouAdelunit

TheBouAdelgabbrocropsoutonabout2km2 (Fig.6)inthe deeply incised Oued Azrou valley where it is exposed in steep slopesupto150mhigh(Fig.7A).Theplutonicbodywasregarded asaPaleozoicgranitesliverincludedinthe“Senhadjanappe”by Suter (1964b, 1965),whereas Vidal(1983a) recognizeditsgab- broic nature in the freshoutcrops of theconcave slope of the valley.ThelatterauthorclassifiedthemassifasaCretaceous(Bar- remian?)intrusion. However,revisionof themapcontours and detailed petrological data (see below)enable us todiscard the intrusion hypothesis and define herea tectonic unit (Bou Adel unit)includingaplutonicbasementanditsvolcanic-sedimentary cover.

The tectonic unitsoverlying the BouAdel unit (Fig.6) con- sist dominantly of platform carbonates classified as Lower to UpperLiassicbySuter(1964b)andVidal(1983a,b),althoughsome couldbeUpperJurassic(Bulundwe, 1987;Papillon,1989).Any- way,thesecarbonateunitsoverlaintheBouAdelunitthrougha thrustcontactastheyaredevoidofthelow-grademetamorphism thataffectstheBouAdelunit,andshowdistinctfoldstructures.

Theywould correspondtoa stack oftwo largeunitsseparated by sliversofFerrysch (Callovian–Oxfordian) andsurroundedby Middle-UpperMiocenepebblymarls(Tortonianmélangematrix;

Vidal,1983a).

TheplutonicpartoftheBouAdelunitiscomposedofdiffer- enttypesofgabbro(Table2).Thedominantfaciesisacoarseto mediumgrainedtroctoliticgabbrothatdisplaysanigneouslayer- ingdipping40±10totheNW(Figs.6and7B),revealedbythin (lessthanonecentimeterthick)lightlayersofplagioclasethatcan

(5)

Fig.4.UpperJurassic–Berriasiansuccessionandvolcano-sedimentarybreccias.(A)GeneralviewontheJ.TaharBouZhaiermountainslope,lookingeastward(seeFig.3Bfor location).(B)WeatheredsurfaceofaKimmeridgiancarbonatebreccia(J.Alebra;seeFig.3Aforlocation).(C–F)TithonianfromtheJ.TaharBouZhaier.(C)Clast-supported chaoticbreccia(LowerTithonian).Noticethelargelimestoneslabbeneaththehammer,andtheoccurrenceofabasaltcobble(arrow).(D)Chaoticbrecciawithanincreased proportionofmarlymatrix(UpperTithonian)toppedbyLowerBerriasianmarlsandlimestones.(E)Closeviewofabasaltblockinamassivecarbonatebreccia.(F)Massive boulderofdoleriteorfine-grainedgabbro.

befollowedforsomemeters.Pegmatiticveinsorpocketscanbe observedelsewhere(Fig.7D).Typicaltroctolitesamples(BA1,BA6) werecollectedalongtheOuedAzrou(Fig.6).

Fromthecentraltothesouthwesternpartofthemassifthegab- broisreddishduetoweathering.TypicalsamplesareBA2,BA3,BA5, BA7(Fig.6)withacompositionofTi–Fegabbro,hereaftercalledfer- rogabbro(Fig.7E).Layeringshowsaratherconstantstriketrending N70Ewhereasdipmaychangefrom30NWtosubvertical.Thin leucocraticdykes,sometimesenrichedindarkmineralsoneach sideandaffectedbysheardeformation,crosscuttheferrogabbro.

Fieldsurveydidnotprovideopportunitytoobservethetransition betweentroctoliticandferrogabbroiczonesbecausescreeandsoils hidealargepartoftheoucrops.Howeversomeobservationscan bemadeonthewesternbankoftheOuedAzrourivernearthe highestpartofthemaficcomplex(N34,53529;W4,50551)where onemetricenclaveofpossibletroctoliteisincludedinferrogabbro.

Closetothislastoucropa1m-thick,N100E-trendingdykeofpla- giogranite(BA9)crosscutssharplythegabbroatthevicinityofthe volcanic-plutoniccontact.Greenschist-faciessecondaryminerals arewidespread(e.g.epidote,Fig.7D).

Atboth thewestern and eastern tips of the massif(Fig.6), thevolcanic cover sequence of thegabbro massifis preserved.

Itbasicallyconsistsofspilitizedbasaltsanddolerites.Thewest- ernoutcropsarethemostinterestingastheyinclude,nexttothe metabasalts(Fig.7A):(i)amassofcoarsevolcanic-gabbroicbreccia withchlorite-serpentinitematrix,extendingoverca.100m×20m at thebottom of the slope (Fig. 7F); we interpret this outcrop asasubmarinefault-scarpbreccia; (ii)typicalophicalcitefacies (Fig.7G)insomeblocksofthiscoarsebreccia;(iii)whitemarbles transgressiveontocarbonate-cementedvolcanicbreccias(Fig.7H andJ);(iv)bandedvolcaniclasticmarblescloselysimilartoophi- oliticsandstone layers in thesenseof Lagabrielle and Lemoine (1997)(Fig.7I).Noticethatblocksofwhitemarblesarescattered intheadjoiningfault-scarpbreccia.Conversely,detritalelements of gabbro, doleriteand basalt can be foundwithin the marble facies(Fig.7J).Insomecase,aclearmetamorphicfoliationcanbe observed(Fig.7J),whichhasbeenaffectedbylate-metamorphic folding(Fig.7K).

The volcanic cover of the plutonicmassif shows basically a domeshape.Accordingtothelayeringstrikeanddipinthegabbro,

(6)

M.Benzaggaghetal./JournalofGeodynamics77(2014)4–21 9

Fig.5.StratigraphiccolumnsofsomeofthestudiedMesorifsections(seeFig.3forlocation).NoticethealmostconstantassociationofthebasaltoccurrenceswithKim- meridgiantoUpperBerriasianchaoticbreccias.Theearliestbasaltsarealsoassociatedwithresedimentedbeds(“Ferrysch”,layeredlimestoneswithalgaeandbenthic foraminifers).

basicallyENEandtotheNW,respectively,thelessdifferentiated troctoliticgabbroislocatedtothetopofthesequence,whereasthe moredifferentiatedferrogabbroremainssituatedinlowerposition.

Ifoneconsidersthatthemassifresultsmainlyofasimpleprocess offractionalcrystallizationitcouldbeconcludedthatthecomplex wastiltedbeforebeingoverheadbyitsvolcanicandsedimentary cover.

4.2. KefelRharunits

ThreemassifsofgabbrocropoutclosetotheKefelRharvillage, 20kmeastofBouAdel(Fig.3).Thetwolargest(KefelRharmas- sifsproperlysaid)areexposedabout1.5kmnorthofthevillage (Fig.8),whereastheDarBouAzamassifcropsoutsome6kmwest ofit.Thedimensionsandgeologicalframework(Senhadja“nappe”) ofthesethreemassifsaresimilartothatoftheBouAdelmassif,and theywerealsoclassifiedasLowerCretaceousintrusionsbyVidal (1983a,b).However,liketheBouAdelmassif,theyshowremnants ofmetavolcanitesandmetasedimentarycoverformationssuggest- inganoriginfromalostoceanicseafloor.

ThepoorlyexposedDarBouAzamassif,5kmwestofKefelRhar, issurroundedbyMiocenemarlsandconglomerates,exceptonits southernboundary,whichisatectoniccontactbetweenthegab- broandanoverlying“Flyschnoir”unit,accordingtoVidal(1983a).

Wefoundatthenorthernboundaryofthemassifanoutcropof marblesthatoverlay directlythelow-grademetagabbroicrocks

andcontainscatteredpebbleofmetabasaltsandmetagabbros,and boudinagedcherts(Fig.9A).Thesebedsarecloselysimilartothe BouAdelvolcaniclasticmarbles(Fig.7H–J).

TheKefelRharmassifss.str.formapairofklippesorslivers surroundedbyMioceneclasticmarls(mélangematrixaccordingto Vidal,1983a,b)andoverhangedbyvariouscarbonateunits(Fig.8).

Athickvolcaniccover,locallyassociatedwithmarbles,isassociated tothesouthernklippe.Remarkably,thenorthernklippepreserves awell-developed,low-grademetasedimentarycovermadeupof palegreen,pinkorredradiolarites(Fig.9B–D).Theseradiolarites arefollowedupwardbyblacklimestones-blackshalesalternations whosefaciesarewidespreadintheLowerCretaceousExternalRif sequences.Thestructuresobservedintheradiolarites(Fig.9D)are consistentwithanupper-greenschistfaciesmetamorphism,which alsoaffecttheunderlyinggabbroitself.

5. Petrographyandgeochemistry

5.1. Materialandmethods

Six basaltic rocks sampled in the Upper Jurassic–Berriasian formationsoftheIzzareneWindowandBouHaddoudNappe(pale- omarginunits)havebeenanalyzed(Table1andFig.3).Intheexotic gabbrounits,the9analyzedsamples(Table2)wereallcollectedin theBouAdelmassif(Fig.6).

(7)

Fig.6. GeologicsketchmapoftheBouAdelmassifbasedonthemapsbySuter(1964b)andVidal(1983a),modified.SeeFig.3Bforlocation.Severalmetabasaltblocksare foundamidsttheslopeformationsbeneaththeJ.Keilcarbonatecliffs.Layeringstrikeanddiparevisibleonthewesternpartofthegabbromassif.

ThinsectionswereproducedandstudiedbothattheDepart- mentofGeology,MeknèsUniversityandtheBureaudeRecherches Géologiques et Minières (BRGM, Orléans, France). The samples wereanalyzed at theBRGM: majorelementsby X-rayfluores- cence(XRF),transitionelementsbyparInductivelyCoupledPlasma

Atomic Emission Spectroscopy (ICP-AES), and Rare Earth and otherelementsbyInductivelyCoupledPlasmaMassSpectroscopy (ICP-MS)NEPTUNEandchemicalmineralanalysesonaCAMECA SX 50 Electron Probe Micro-Analyser (EPMA) equipped with five wavelength-dispersivespectrometers using an acceleration Table1

Locationandstratigraphicageoftheanalyzedbasaltsamples(seemapsFig.3AandB)withlossonignition(L.O.I.)toestimateweathering.

Sample# Location Stratigraphicposition L.O.I

2 Harrara,100mnorthofthevillage DykewithintheFerrysch(Callovian–Oxfordian) 7.7

4 Zendoulapathabovethevillage(lavaflow) EndofLowerTithonianlimestones 3.6

5 BouHaddoudNappe,J.TaharBouZhaier Beckeri/Hybonotumzones(baseofLowerTithonian) 12.2

6 EastofKerkor,lavaflow LowerTithonian 7.0

8 OuedMarticha,Msilaarea LowerTithonian 18.5

9 EastofJ.Mguedrouz Tithonian-LowerBerriasian 14.1

Table2

LocationandpetrographiccharactersofthenineanalyzedsamplesfromtheBouAdelgabbromassif(seemapFig.6),withlossonignition(L.O.I)toestimateweathering.

SampleR1(troctolite)islocatedveryclosetoBA1.

Sample# Location Petrographictype L.O.I.

BA1 SofBouAdelsprings,rightbankofAzrouriver Troctolite 1.5

BA2 EofBouAdelsprings,rightbankofAzrouriver Ferrogabbro 0.6

BA3 EofBouAdelsprings,rightbankofAzrouriver Ferrogabbro 3.3

BA4 SofBouAdelsprings,leftbankofAzrouriver Diorite(?)dyke 2.0

BA5 EofBouAdelsprings,rightbankofAzrouriver Ferrogabbro 0.8

BA6 SEofBouAdelsprings,alongtheAzrouriver Troctolite 1.3

BA7 EofBouAdelsprings,rightbankofAzrouriver Ferrogabbro 2.5

BA8 EofBouAdelsprings,rightbankofAzrouriver Leucocraticvein 2.0

BA9 SofBouAdelsprings,leftbankofAzrouriver Trondjhemitedyke 0.8

BA10 SEtipofthemassif,leftbankofAzrouriver Congelationmargin(?) 3.0

(8)

M.Benzaggaghetal./JournalofGeodynamics77(2014)4–21 11

Fig.7.BouAdelunitoutcropsandtypicalrockfacies.(A)ViewofthewesterntipofthegabbromassiffromthenorthernslopeoftheOuedAzrouvalley(seeFig.6forlocation).

(B)Freshoutcropsoflayeredgabbrosalongtheunpavedroadonthenorthernslopeofthevalley.(C)Trondjhemitedykesintheeasternpartofthemassif.(D)Pegmatitic trondjhemitepocket,about500meastof(B).(E)Freshferrogabbrofromthesameareaas(C).(F)Coarsegabbro-basaltbreccia(probableoceanicfaultscarpbreccia)atthe uppermostBouAdelspring(seephotoAforlocation).(G)Ophicalcite(infloatclosetoF).(H)Stratigraphiccontactbetweenvolcanicbrecciaandwhitemarble,justabovethe breccia(F)alongthepaththatclimbsonthesouthslopeofthevalley(seephotoA).(I)Limestoneswithvolcaniclasticsandstonelayerssourcedfrommaficrocks;thisfacies cropsoutalongthewesternslopeofthegabbromassif,southoftheBouAdelsprings.(J–K)TwofreshblocksinfloatintheOuedAzrouriverbedwith(J)Foliatedmarblewith thin,boudinagedvolcaniclasticlayersincludingalargedolerite/gabbropebble,and(K)foliated,impuremetamorphiclimestonewithminorfolds.

(9)

Fig.8. GeologicalsketchmapofthenorthernKefelRharmassifbasedonthemap byVidal(1983a),modified.Heavyblacklinesareshallow-dippingtectoniccontacts (teethtowardupperunitwhenrecognized).

voltageof20kVandabeamcurrentof100nA;aPaPcorrection programwasusedtocorrectmatrixeffects.

5.2. Basaltsofthepaleomarginunits 5.2.1. Petrography

Theserockssufferedgenerallystrongalteration(spilitisation andp.p.weathering)andthinsectionexaminationdidnotprovide criticalmineralinformationwiththeexceptionofonekeydoleritic basaltsample(#6)fromtheeastofKerkor.Inthisdoleriticbasalt, interbeddedinLowerTithonianseries,examinationrevealsinthe plagioclaselattice:augite,pigeoniteandscarceolivine(Fig.10A).

Pigeonite was demixed into clinopyroxene and orthopyroxene arranged according toa typicalherringbone texture(Fig. 10B).

Matrixismainlyformedbylatticeofsubautomorphicplagioclase andrare(secondary?)quartzandTi–Feoxydes.Thepresenceof pigeonitewasusedbyKuno(1968)todefinethe‘pigeoniticseries’, nowadaysknownastholeiiticseries.

5.2.2. Geochemistry

Lossonignition(L.O.I)ofbasalts(Table3)iscomprisedbetween 7and18.5%andrevealsastrongalteration(spilitisationandweath- ering).Majorelementanalyseswererecalculatedwithoutwater.

Unfortunately,thepartofthesample#6thatwasanalyzedwasnot thesamewherethethinsectionwasrealized.Inthesampling,there isnoanalysiscorrespondingtoanoriginalmagmaticcomposition.

Alargepartofthemajorelementswasenrichedordepleted.Among traceelements,thesumCr+Ni∼250ppmandtheratioZr/Hf=31 arecharacteristicofabasalticcomposition.Plotofanalysesonto aWinchesterandFloyd(1977)diagramfallsfranklyinthefieldof subalkalinebasalt(Fig.11).

Analyseswereplottedinamulti-elementsdiagramnormalized toprimitivemantle(SunandMcDonough,1989)anddisplaytwo maingroupsoneachsideofTa(Fig.12).ThefirstgroupfromRbto

Table3

AnalysesofbasaltsamplesfromtheMesorifpaleomarginunits(Table1andFig.3A andBforlocationandstratigraphiccontext).

2 4 5 6 8 9

SiO2 46.2 51.3 41.5 48.1 34.7 38.8

Al2O3 16.5 14.8 15 16.2 10.2 13.4

Fe2O3t 8.9 9.9 9.5 9.1 6.3 10.7

MgO 13.1 9.7 4.7 11 10.1 5.6

CaO 0.9 3.7 10.8 2.7 18 12.2

MnO 0.04 0.14 0.05 0.1 0.07 0.11

K2O 4.77 1.25 0.11 1.3 0.03 0.12

Na2O 0.4 4.9 4.9 3.9 1.3 4.3

TiO2 1.09 1 1.01 1.01 0.68 1.12

P2O5 0.13 0.11 0.12 0.11 0.08 0.13

L.O.I. 7.7 3.6 12.2 7 18.5 14.1

Total 99.73 100.4 99.89 100.52 99.96 100.58

SiO2 50.20 53.00 47.33 51.43 42.60 44.87

Al2O3 17.93 15.29 17.11 17.32 12.52 15.49

Fe2O3t 9.67 10.23 10.83 9.73 7.73 12.37

MgO 14.23 10.02 5.36 11.76 12.40 6.48

CaO 0.98 3.82 12.32 2.89 22.10 14.11

MnO 0.04 0.14 0.06 0.11 0.09 0.13

K2O 5.18 1.29 0.13 1.39 0.04 0.14

Na2O 0.43 5.06 5.59 4.17 1.60 4.97

TiO2 1.18 1.03 1.15 1.08 0.83 1.30

P2O5 0.14 0.11 0.14 0.12 0.10 0.15

100.00 100.00 100.00 100.00 100.00 100.00

U 0.5 0.3 0.4 0.4 0.7 1.2

Th 6.2 4.1 4.9 4.1 4.2 4.5

Ta 0.5 0.4 0.4 0.4 0.4 0.4

Nb 8.3 6.6 6.1 6.7 6.1 8.1

Hf 2.8 2.3 1.8 2.3 1.8 1.7

Zr 86 70 50 72 55 45

Cr 209 165 139 298 123 206

Co 36 41 33 37 26 47

Ni 72 78 67 85 53 83

Rb 50 29 2 14 0.9 0.9

Sr 41 131 129 74 86 160

Ba 239 98 42 117 9 36

Y 28 19 13 16 10 17

La 17 7 5.7 3.8 4 13.5

Ce 38 16 14 12 9.3 30

Pr 4.7 2.2 2 1.7 1.2 4.1

Nd 20 10 9.2 7.6 5.5 18

Sm 5 2.7 2.3 1.9 1.5 4.2

Eu 1.3 0.8 0.4 0.7 0.4 0.7

Gd 5.4 3.2 2.5 2.3 1.6 4.3

Tb 0.9 0.5 0.4 0.4 0.3 0.6

Dy 5.9 3.5 2.3 2.8 1.9 3.4

Ho 1.2 0.7 0.5 0.6 0.4 0.7

Er 3.1 2.1 1.5 2 1.3 1.7

Tm 0.4 0.3 0.2 0.3 0.2 0.2

Yb 2.3 1.9 1.1 2 1.3 1.2

Lu 0.3 0.3 0.2 0.3 0.2 0.2

Kshowsnormalizedvaluescomprised(foralargepart)between 20and100,butwithstrongvariationswhereasthesecondgroup fromTatoYbshowssmoothervariationsandnormalizedvalues thatremainequalorunder10.Curvesofanalyses#2,#8and#9 thatshownumerousandsharpvariationswillnotbeconsidered hereafter.

Inthefirstgroup,RbtoKelementspatternfitswithcontinen- tal(RudnickandGao,2003)crustorvolcanicarcs(Mauryetal., 1998),butstrongandantithetic(e.g.K),variationscouldberelated tospilitisationand/orweathering.Inthesecondgroupvariations arenotsosharpandREEpatterns(Fig.13)aresmoothedandtheir shaperevealsthatREEwerenotmobile.Thepossibleoriginofthese basaltswillbediscussedfurther.

(10)

M.Benzaggaghetal./JournalofGeodynamics77(2014)4–21 13

Fig.9.MetasedimentsoverlyingthegabbrosoftheKefelRharregion(Fig.3Bforlocation).(A)IntenselydeformedmarblesontopoftheDarBouAzamassif.Noticethe boudinagedchertnodules,thefragmentsofwhicharerotated.CoordinatesN343012,W041851.(B)Low-grademetasedimentarysuccessionontopofthemainKef elRhargabbromassif(detaillocationinFig.8).Theradiolarites(totalthicknessca.25m)arealternativelypalegreenorred.Theunderlyinggabbroisnotvisibleinthephoto.

(C)Closeviewofthin-bedded,pinkradiolarites.(D)Closeviewofanotherradiolariteoutcroprichinslumpfolds(markedwithwhitedashes)withsuperimposedtectonic structures.Thelattercomprise(i)S/Cstructuresassociatedwithapenetrativecleavage(S0-1,paralleltothestratificationplaneS0)intheclayeymatrixaroundthesiliceous hinges,and(ii)conjugateextensionalfaults.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

5.3. BouAdelgabbromassif 5.3.1. Petrography

In thin section (Fig. 10D), the troctolite displays an ortho- to heteradcumulate texture. Grains of olivine are often grouped as clusters of about ten crystals and are surrounded by automorphic, weakly zoned plagioclase (labrador). Both olivine and plagioclase are embedded in large poikilitic diop- side clinopyroxene. Opaque mineral are mainly composed of ilmenite.

Chemicalanalyses(EPMA) ofolivine,clinopyroxeneandpla- gioclasearegiveninTable4.InthetroctoliteBA1,plagioclaseis composedofalargecore(An64)andsmallerrim(An60).Olivine compositionvariesfrom:Fo70±0.3toFo63±0.8and,insample R1,fromFo72±0.6toFo68±0.1.Thecompositionofclinopyrox- eneisratherconstant(Wo45.6,En42.9Fs11.4)inthediopsidefield, andCr2O3contentcanreach1%.Ti-richbiotite(0.64<XMg<0.70) is scarce, its composition plots toward the phlogopite corner.

Ferrogabbrodisplaysorthocumulatetexture.Olivine(BA5:Fo 53.2±0.2;BA2:Fo53.2±0.24)istheearliestmineralsurrounded byautomorphicplagioclasecomposedofalargeunzonedcoreand

athinnerrim(e.g.BA5,core:An59–56–rimAn51orBA2:core An50–rimAn47).Theclinopyroxeneisnotpoikiliticandisin automorphiccrystals(Wo44,En40, Fs16).It isinsomeplace partly transformedinamphibole ofedenite composition(Leake etal.,1997).Ilmenite(dominantonmagnetite)isdispersedinthe matrix.Ti-richbiotite(0.56<XMg<0.60)surroundsmostfrequently ilmenite.

In spite oflack of textural evidencebecause of postsolidus low-temperaturealteration,thethreefollowingsampleswillbe furthertested ascandidates tolookfor a possibleinitialliquid ofthemaficcomplex:(i)BA4fromadykeonthewesternbank of the Oued Azrou, (ii) BA8 from a dyke in the center of the massif, and (iii) BA10 sampledat thetop of thegabbro at the basisofthevolcaniccover,whichcouldbeacongelationcumu- late.

To summarize, when magmatic texture is preserved, one can observe the crystallization of every type of gabbro is characterized by an early appearance of a medium An con- tent plagioclase at liquidus, more or less in the same time as Fo rich olivine, which is a typical tholeiitic sequence of crystallization according to Kuno’s (1968) original defini- tion. Experimental data in the system forsterite-fayalite show

(11)

Fig.10.Thinsections(A)BasaltfromtheKerkorlavaflowwithlargecrystalofdemixedpigeonite;sampleBA6,Table2.(B)Closeviewoftheexsolutionlamellae.(C) TrondjhemitefromaBouAdeldyke;sampleBA9.(D)Troctolitewithcumulativeplagioclase,olivinegrainsandpoikilicclinopyroxene.

Fig.11.PlotofthecompositionsofUpperJurassicvolcanicrocksfromtheIzzarene windowandBouHaddoudnappe(circles)ontoWinchesterandFloyd(1977)dia- gram.PossibleinitialliquidoftheBouAdelcomplex(sampleBA10)isalsoplot (square).

Fig.12.Multi-elementsdiagramofUpperJurassicbasaltsfromtheIzzarenewindow andBouHaddoudnappe(seeTable1forlocation).E-MORBcomposition(dotted blackline)valuesandnormalizationtoprimitivemantleusingvaluesfromSunand McDonough(1989),continentalcrustcomposition(dottedredline)afterRudnick andGao(2003).(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthearticle.)

(12)

M.Benzaggaghetal./JournalofGeodynamics77(2014)4–21 15 Table4

Chemicalanalyses(EPMA)ofolivine(4A),clinopyroxene(4B)andplagioclase(4C)fromBouAdelgabbrosamples(S.D.:standarddeviation).

Sample BA1 R1 BA5 BA2

Med.3anal. S.D. Med.8anal. S.D. Med.7anal. S.D. Med.3anal. S.D. Med.4anal. S.D. Med.3anal. S.D.

a:Olivines

SiO2 38.28 0.11 37.22 0.17 38.59 0.20 37.65 0.24 35.61 0.49 35.31 0.25

FeO 27.00 0.29 32.00 0.64 25.41 0.60 28.16 0.04 40.01 1.16 39.25 0.09

MnO 0.41 0.03 0.49 0.06 0.38 0.08 0.41 0.02 0.67 0.02 0.60 0.05

MgO 35.94 0.16 31.47 0.49 37.08 0.44 34.76 0.09 24.78 1.23 25.40 0.31

Total 101.62 0.17 101.18 101.46 100.98 101.062 100.56

Si 1.000 1.002 1.002 0.997 1.000 0.924

Fe2+ 0.590 0.721 0.552 0.624 0.940 0.924

Mn 0.090 0.010 0.008 0.009 0.016 0.014

Mg 1.400 1.263 1.436 1.373 1.037 1.066

Fo 70.04 0.27 63.33 0.76 71.93 0.68 68.44 0.07 52.04 0.13 53.19 0.24

Sample BA1 BA2 BA5

Med.3anal. S.D. Med.4anal. S.D. Med.3anal. S.D.

b:Clinopyroxenes

SiO2 50.92 0.24 53.01 0.52 51.48 0.35

Al2O3 3.74 0.18 1.16 0.82 2.50 0.20

FeO 6.77 0.05 9.45 0.74 8.75 0.64

MgO 14.69 0.05 14.12 0.35 14.03 0.02

CaO 21.71 0.12 22.36 0.51 22.36 0.25

Na2O 0.50 0.04 0.45 0.06 0.48 0.05

MnO 0.16 0.09 0.20 0.09 0.11 0.12

TiO2 1.59 0.05 0.65 0.46 1.26 0.22

Cr2O3 0.88 0.01 0.04 0.06

Total 100.94 101.44 100.99

Si 1.871 1.956 1.906

AlIV 0.129 0.044 0.094

AlVI 0.033 0.006 0.015

Fe2+ 0.208 0.292 0271

Mg 0.804 0.777 0.775

Ca 0.854 0.884 0.887

Na 0.036 0.032 0.035

Mn 0.005 0.006 0.003

Ti 0.044 0.018 0.035

Cr 0.025 0.001

Wo 45.63 45.15 4579

En 42.97 39.69 39.98

Fs 11.37 15.20 14.17

Sample BA1 R1 BA5 BA2

C:Plagioclases

SiO2 52.23 52.60 51.62 52.42 52.92 54.35 55.13 56.26 56.00

Al2O3 30.38 29.35 30.62 30.36 29.36 28.97 28.46 27.50 27.91

CaO 13.34 12.80 13.93 12.82 12.72 12.02 11.05 10.00 10.71

K2O 0.13 0.20 0.12 0.25 0.25 0.18 0.26 0.33 0.31

Na2O 4.07 4.52 3.86 4.45 4.82 4.93 5.58 5.80 5.70

FeO 0.17 0.23 0.17 0.21 0.27 0.21 0.09 0.12 0.16

Total 100.31 99.71 100.32 100.52 100.33 100.66 100.58 100.00 100.78

Si 2.365 2.395 2.341 2.369 2.398 2.444 2.473 2.528 2.505

Al 1.621 1.575 1.637 1.617 1.568 1.535 1.504 1.457 1.471

Ca 0.647 0.624 0.677 0.621 0.618 0.579 0.531 0.481 0.513

K 0.007 0.012 0.007 0.014 0.014 0.010 0.015 0.019 0.017

Na 0.357 0.399 0.339 0.390 0.423 0.430 0.485 0.505 0.494

Fe2+ 0.006 0.009 0.007 0.008 0.010 0.008 0.003 0.005 0.006

Ab 35.29 38.56 33.18 38.06 40.12 42.18 47.06 50.24 48.21

An 63.99 60.30 66.16 60.55 58.52 56.83 51.48 47.88 50.09

Or 0.71 1.13 0.66 1.38 1.36 0.99 1.46 1.88 1.70

that mineral composition is not affected by pH2O varia- tion, whereas in the system albite-anorthite water controls the An content of the plagioclase. A plot of the Fo con- tent of olivine against the An value of the plagioclase (after Smith et al., 1983) improves the discrimination between the calc-alkaline (“wet”) and the tholeiitic (“dry”) series (Fig.14).

5.3.2. Geochemistry

PlotoftheanalysesoftheBouAdelsamples(Table5)ontothe Miyashiro(1974)diagramfranklydiscriminatesBouAdelmafics inthetholeiiticfield(Fig.15)inaccordancewithpetrographicand chemicalmineraldata.

RareEarthelement(REE)patterns(Fig.16)werenormalizedvs.

mantle(normalizingvaluesafterSunandMcDonough,1989).The

Références

Documents relatifs

La modélisation des différents constituants de la turbine et de son système d’asservissement dans la zone MPPT pour en extraire une puissance maximale pour un variable

Le modèle du champ effectif posé par Sablik-Jiles-Atherton [19, 20] pour décrire le comportement magnéto-mécanique des matériaux ferromagnétiques sera étendu par

This study on diabetes screening shows that fasting plasma glucose is frequently assessed in at risk patients in routine general practice in France, which probably explains the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Le suivi d’endommagement lors d’un essai mécanique peut être également assuré par l’étude de l’énergie acoustique cumulée de chaque Hit enregistrés.. La Figure 4

No two nodes have the same priority and a given node is allowed to use the channel in a given slot only if it has a packet ready for transmis- sion and all nodes

This article examines sorne of the exciting opportunities and depressing realities in this area by focusing on the needs of adult distance learners, selected case studies of

Title Page Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc.. Printer-friendly Version