• Aucun résultat trouvé

PERIODIC INFECTIVITY OF PLASMODIUM GAMETOCYTES TO THE VECTOR.

N/A
N/A
Protected

Academic year: 2022

Partager "PERIODIC INFECTIVITY OF PLASMODIUM GAMETOCYTES TO THE VECTOR. "

Copied!
9
0
0

Texte intégral

(1)

PERIODIC INFECTIVITY OF PLASMODIUM GAMETOCYTES TO THE VECTOR.

A REVIEW

GAUTRET P.* & MOTARD A.**

S u m m a r y :

Frank Hawking, in 1 9 6 6 postulated that in synchronous malaria infections, the brief period of infectivity of gametocytes was timed to occur when the vector bites. Since this early work, numerous studies had contributed to confirm and explain this phenomenon with bird, rodent and primate Plasmodium. Data on the periodic production of gametocytes, the duration of their maturation, the effect of the schizogony on the infectivity and the circadian bioavailability of gametocytes provide some more informations on the periodic Plasmodium gametocyte infectivity to the vector. This paper is intended to be a review of contributions on the "Hawking phenomenon" and to summarize the principal causal hypotheses.

The conclusion stresses the practical consequences for experimental studies and epidemiological surveys.

KEY WORDS : Plasmodium, Leucocytozoon, gametocytes, infectivity, transmission, sequestration, periodicity.

Resume : INFECTIVITÉ PÉRIODIQUE DES GAMÉTOCYTES DE PLASMODIUM POUR LE VECTEUR. MISE AU POINT

Franck Hawking en 1966 énonce et confirme l'hypothèse suivante : dans les infections palustres synchrones, la période d'infectivité maximale des gamétocytes coincide avec le pic d'activité des moustiques vecteurs. Depuis, de nombreux travaux ont confirmé ses observations et expliqué ce phénomène pour

certains Plasmodium d'oiseaux, de Rongeurs et de Primates. Les observations sur la production périodique des gamétocytes, la durée de leur maturation, l'effet de la rupture des schizontes sur leur infectivité et les variations circadiennes de leur biodisponibilité pour le moustique ont permis des avancées dans la

compréhension du mécanisme de périodicité d'infectivité des gamétocytes de Plasmodium. Cet article a pour objectif de présenter une compilation des données disponibles sur le

"phénomène de Hawking" et d'en résumer les principales hypothèses explicatives. La conclusion indique les conséquences pratiques pour les travaux expérimentaux et les études

épidémiologiques.

MOTS CLÉS : Plasmodium, Leucocytozoon, gamétocytes, infectivité, transmission, séquestration, périodicité.

A

remarkable feature o f most o f bird, rodent and primate malaria is the p r e c i s e timing o f its recurrent attacks w h i c h are generally at s o m e multiple o f 24 hours. This implies that the duration o f the erythrocytic asexual cycle is stable and that all t h e parasites b e h a v e synchronously, reaching s c h i z o - g o n y at the s a m e time. Cell division takes p l a c e at an hour o f the day constant for e a c h s p e c i e s o f malaria parasite w h i c h d e p e n d s o n the location o f the host or for s o m e s p e c i e s mostly on the time o f inoculation o f the parasite. T h e biological p u r p o s e o f such an a c c u r a t e timing in the c y c l e o f Plasmodium w a s s h o w n b y Hawking ( 1 9 7 0 ) to assist them to present infective g a m e t o c y t e s at t h e time m o s q u i t o e s bite and

* Laboratoire de Parasitologie et de Mycologie Médicale, CHU La Milétrie, BP 577, 86021 Poitiers Cedex, France.

** 32 Lot. Alvina, 97354 Remire, Guyane Française.

Correspondence: Dr. Philippe Gautret.

Tel: 0033(0)549443959 - Fax: 0033(0)549443908.

E-mail: parasitologie@chu.univ-poitiers.fr

s o rendering the transmission m o r e efficient. In other terms, Hawking s h o w e d that the production o f short- lived g a m e t o c y t e s was cyclic, leading to circadian variations in the ability o f Plasmodium to infect the m o s q u i t o v e c t o r and it was called by G a r n h a m &

P o w e r s ( 1 9 7 4 ) , "the Hawking p h e n o m e n o n " . Since Hawking's work, n e w data o n periodic infectivity o f Plasmodium and o t h e r Haemosporidia to the v e c t o r have b e e n published and experimental work has b e e n d o n e in order to determine its m e c h a n i s m . This per- iodic infectivity d e p e n d s o n the duration o f g a m e t o - cyte maturation, periodic sequestration o f g a m e t o - cytes and periodic release o f parasite and/or vertebrate host c o m p o u n d s that regulate the g a m e t o c y t e infecti- vity. This p a p e r is intended to b e a review o f contri- butions o n the periodic infectivity o f the g a m e t o c y t e s o f the Haemosporidia to their vectors and to sum- marize the principal causal h y p o t h e s e s . T h e c o n c l u - sion stresses the practical c o n s e q u e n c e s o f the Haw- k i n g p h e n o m e n o n for e x p e r i m e n t a l s t u d i e s a n d e p i d e m i o l o g i c a l surveys.

Parasite, 1999, 6, 103-111

Mise au point 103

Article available athttp://www.parasite-journal.orgorhttp://dx.doi.org/10.1051/parasite/1999062103

(2)

PERIODIC PRODUCTION OF GAMETOCYTES

T

h e periodicity o f the production o f g a m e t o c y t e s can b e assessed in different ways ( T a b l e I ) . Total g a m e t o c y t e counts can b e m a d e at short timed intervals over a period o f several days, exfla- gellation rate can b e o b s e r v e d at regular intervals and m o r p h o l o g i c a l analysis o f the g a m e t o c y t e s c a n b e made over time. G a m e t o c y t e m o r p h o l o g y u nde r goe s age-related transformations so that different morpho­

logical stages can b e defined, although all intermediates can b e observed. During the course o f normal ageing, the gametocyte diameter increases at first and b e c o m e s then smaller while its chromophilic character increases.

T h e nucleus is at firts relatively small, then enlarges before b e c o m i n g c o n d e n s e d and progressively smaller.

T h e nucleus is granular at the begining o f its evolu­

tion and colloidal at the e n d (Landau et al, 1 9 7 9 ) .

AVIAN PLASMODIUM

Periodic production o f sexual stages was first d e m o n s - traded with avian Plasmodium. In 1934, Shah claimed that the n u m b e r o f g a m e t o c y t e s o f P. cathemerium ( 2 4 hour c y c l e ) in the peripheral circulation o f Serinus canarias varied at different periods during the day, and s h o w e d a daily increase around 6 p. m. This was the first report o f a periodicity in the production o f Plas­

modium sexual stages. In a continuation o f that ear­

lier work, Gambrell ( 1 9 3 7 ) also observed a p e a k in the n u m b e r o f g a m e t o c y t e s at 6 p. m. Hawking et al.

( 1 9 6 8 a ) c o n f i r m e d the periodical c h a r a c t e r o f the g a m e t o c y t o g e n e s i s o f P. cathemerium and s h o w e d a

nocturnal p e a k o f exflagellating m i c r o g a m e t o c y t e s at 4-6 a. m. A corresponding cycle was demonstrated in the morphology o f the gametocytes w h i c h undergo six maturation stages.

P. relictum matutinum was studied by Gambrel ( 1 9 3 7 ) and w a s s h o w n to present a definite increase in num­

bers o f g a m e t o c y t e s around the time o f segmentation which takes place daily at 8 a.m. P. gallinaceum game­

tocytes w e r e s h o w n by Lumsden & Bertram ( 1 9 4 0 ) to b e p r o d u c e d in b r o o d s and to p e a k at about the s a m e time as the p e r c e n t a g e o f schizonts increased (i. e.

alternatively at midnight and at midday in relation to the 3 6 hour cycle). Similarly, Hawking et al. ( 1 9 7 2 ) des­

c r i b e d a p e a k o f exflagellation o f P. gallinaceum m i c r o g a m e t o c y t e s w h i c h d e v e l o p p e d in four matura­

tion stages. Roller & D e s s e r ( 1 9 7 3 ) demonstrated that the numbers o f Leucocytozoon simondi gametocytes in ducks p e a k e d during day time w h e n the activity o f the vector Simulium rugglesi was maximum. Similar fluc­

tuations o f the numbers o f g a m e t o c y t e s in the per­

ipheral b l o o d were seen in L. smithi infected fowls. T h e diurnal p e a k s o c c u r e d at the time w h e n S. slossonae, the vector, bites (Noblet & Noblet, 1 9 7 6 ) . T h e inver­

sion o f the photo-period shifts the p e a k s by 12 hours (Noblet & Noblet, 1 9 7 7 ) and c o n t i n u e d e x p o s u r e o f fowls to light suppressed the periodicity o f gametocytes in the peripheral b l o o d ( G o r e & Noblet, 1 9 7 7 ) . Pinea- lectomy, h o w e v e r did not have any effects on this per­

iodicity ( G o r e et al., 1 9 8 2 ) .

RODENT PLASMODIUM

With rodent malaria, the first observation o f a rhythm in the production o f g a m e t o c y t e s was that o f Hawking et al. ( 1 9 7 2 ) w h o s h o w e d that the exflagellating P. cha-

Time o f

Number Interval between

Total g a m e t o c y t e Exflagellation o f g a m e t o c y t e two g a m e t o c y t e s

peak peak stages described b r o o d s ( h o u r s )

P. catbemerium 6 p.m. 4-6 p.m. 6 stages 24

P. relictum 8 a.m. NS NS 24

P. gallinaceum noon/midnight noon/midnight 4 stages 36

L. simondi day time NS NS 24

L. smithi day time NS NS 24

P. chabaudi NS midnight-4 p.m. 4 stages 24

P. vinckei NS NS 4 stages 24

P. bergbei * NS NS NS

P. yoelii NS 4 stages 24

P. cynomolgi NS midnight (Langur)

6 p.m. (Nilgiri)

8 stages 48

P. knowlesi midnight midnight 4 stages 24

P. falciparum NS night time 5 stages 48

P. vivax λ S NS 7 stages 48

NS = not studied; * = Depending to the time of parasite inoculation.

Table I. - Periodic production of Haemosporidia gametocytes.

104 Mise au point Parasite, 1999, 6. 103-111

(3)

PERIODIC INFECTIVITY O F PLASMODIUM GAMETOCYTES

baudi g a m e t o c y t e s w e r e in great n u m b e r at 0-4 a. m at the time o f schizogony. Later, a 24 hour rhythm o f production o f g a m e t o c y t e s was confirmed by Gautret et al. ( 1 9 9 6 c ) with P. chabaudi as w e l l as with P. vinckei vinckei and P. v. petteri (Gautret et al., 1995;

1996α). Landau et al. ( 1 9 7 9 ) described four evolutio­

nary stages (0, I, II and III) in rodent Plasmodium gametocytes. In parasites like P. berghei and P. yoelii, a periodic production o f g a m e t o c y t e s can also b e s h o w n after synchronization. P. berghei w a s synchro­

nized b y Hawking et al. ( 1 9 7 2 ) in Thamnomys sur- daster by repetitive p a s s a g e s from Thamnomys to Jbamnomys and s h o w e d a p e a k o f exflagellation o f m i c r o g a m e t o c y t e s at a time depending o f the time o f inoculation o f the parasite to the rodent. P. y. yoelii and P. y. nigeriensis w e r e synchronized by Percoll-glu- c o s e concentration o f y o u n g stages for inoculation ( D e h a r o et al, 1994) and a 24 hour rhythm o f pro­

duction o f g a m e t o c y t e s was demonstrated (Gautret et al. 1995; 1996b.).

PRIMATE PLASMODIUM

W o r k was also performed with primate Plasmodium.

Light stages o f maturation were identified with P. cyno- molgi ceylonensis, Langur strain (C strain) gametocytes in rhesus m o n k e y s (Hawking et al., 1968α) with a peak o f exflagellation occuring at midnight every 4 8 hours.

Rao et al ( 1 9 7 1 ) also o b s e r v e d a p e a k o f exflagella- tion but it o c c u r e d at 6 a. m. probably b e c a u s e they used the Nilgiri strain and w o r k e d in Delhi w h e r e a s Hawking w o r k e d in London. Similarly, five stages o f maturation w e r e d e m o n s t r a t e d with P. knowlesi in rhesus m o n k e y s and the total numbers o f gametocytes increased at midnight every 24 hours as well as the numbers o f exflagellating gametocytes (Hawking et al, 1968a). P. vivax has b e e n less studied. B o y d (1935) estimated the duration o f the maturation o f m o r p h o ­ logically infective gametocytes to b e 4 8 hours and des­

cribed s e v e n evolutive stages.

P. FALCIPARUM

P. falciparum g a m e t o c y t e s undergo five maturation stages in man (Field & Shute, 1956), in splenectomized Aotus ( H a w k i n g et al, 1 9 7 1 ) and in vitro (Smalley, 1976). Stage V n e e d s nine days to b e p r o d u c e d but three m o r e days are required for the g a m e t o c y t e s to be able to exflagellate (Jeffery & Eyles, 1 9 5 5 ) . O b s e r ­ vation with P. falciparum in man s h o w e d m o r e exfla- gellations at night than during day time and, exflagel­

lation p e a k s w e r e o b s e r v e d at 4 8 h o u r intervals ( H a w k i n g et al, 1 9 7 1 ) . T h e authors c o n s i d e r e d this observation to b e related to a circadian t e n d e n c y in the production o f infective sexual stages. However, the difficulty to e v i d e n c e this periodicity, due to both the

approximate 4 8 hour rhythm o f P. falciparum asexual stage d e v e l o p m e n t and the long time o f gametocyte maturation led Hawking to c o n c l u d e that his results required futher investigations to b e confirmed.

Thus, in all the s p e c i e s studied, n e w g a m e t o c y t e s are p r o d u c e d f o l l o w i n g s u c c e s s i v e s c h i z o g o n i e s a n d undergo morphological maturation stages leading to the formation o f g a m e t o c y t e s infective to the vector at a precise timing. T h e life cycle o f the parasites is carefully timed s o that they are most ready for transfer from the vertebrate host to m o s q u i t o during the hours w h e n the m o s q u i t o e s are most likely to b e feeding (Hawking, 1 9 7 5 ) . T h e c a s e o f P. gallinaceum with an alternative production o f infective gametocytes at mid­

night and at n o o n , in relation with its 36 hour schi- zogonic rhythm could b e the c o n s e q u e n c e o f an adap­

tation to the bitting habits o f Aedes or Culex vectors in Asia.

INFECTIVE STAGES OF GAMETOCYTES AND DURATION OF THEIR MATURATIONS

The chronology o f gametocyte development (i. e.

the time required by a merozoite to undergo the different evolutionary stages o f g a m e t o c y t o g e - nesis) can b e assessed by evaluating the relative pro­

portion o f e a c h stages at short timed interval during the c o u r s e o f g a m e t o c y t a e m i a ( T a b l e II). T h e scatte­

ring o f the pigment or the exflagellation ability o f male g a m e t o c y t e s are used by several authors as an indi­

cator o f the maturity/infectivity o f sexual stages. W e consider, however, correlation analysis b e t w e e n the proportion o f e a c h stage at the time o f v e c t o r feeding and the n u m b e r o f oocyst in insect midgut to b e a much m o r e accurate and reliable parameter for the identification o f the infective g a m e t o c y t e stage.

Duration Mean life Infective o f maturation span o f morphological from merozoite infective

stage to infective stage stage

P. cathemerium III (F)-IV (M) 24 h/30-36 h/26-29 h P. gallinaceum IV 60/64 h 17 h P. chabaudi II 48 h 3-6 h P. vinckei II 36 h 3-6 h P. berghei NS 26 h 7 h P. yoelii 0 24 h S h P. cynomolgi IV/V (F)-VII (M) 58 h 12 h P. knowlesi IV 31 h 5 h P. falciparum V 12 days 2.5 days

NS = not studied; h = hours; F = female; M = male.

Table II. - Infective stage of Plasmodium gametocytes and duration of their maturation.

Parasite, 1999, 6, 103-111

M ¡se au point 105

(4)

B I R D PLASMODIUM

Shah by studing the morphology o f P. cathemerium gametocytes c o n c l u d e d that they r e a c h e d their matu­

rity after about 24 hours, at the time o f schizogony.

Gambrel ( 1 9 3 7 ) , by contrast, considered the lenght o f the maturation o f a merozoite into mature gametocyte to b e 30-36 hours, and the gametocytes ageing 24 hours to b e premature gametocytes. Both authors c o n s i d e r e d the scattering o f the pigment as a criterion for matu­

rity. Hawking et al. (19638a), identified type III and type IV g a m e t o c y t e s to b e the mature stages respecti­

vely for m a c r o g a m e t o c y t e s and m i c r o g a m e t o c y t e s and the time required was 2 6 - 2 9 hours. T h e y c o n s i d e r e d the exflagellation to b e the indication o f the full matu­

rity o f the m i cr ogam et oc yt es . In this latter work, the authors u s e d an Italian strain isolated from a sparrow near R o m e in 1966 and the time o f s c h i z o g o n y w a s 11 p. m. Shah used a strain from the University o f Syra­

c u s e w h o s e origin w a s not m e n t i o n e d and Gambrell used the D strain from R o m e . B o t h strains underwent s c h i z o g o n y at 6 p. m. T h e discrepancies in the dura­

tion o f the g a m e t o c y t e maturation and in the time o f s c h i z o g o n y may b e due to the use o f different strains called P. cathemerium. P. gallinaceum g a m e t o c y t e maturity was c o n s i d e r e d by Lumsden and Bertram ( 1 9 4 0 ) to b e a c h i e v e d in 6 0 hours. This w a s confirmed by Hawking et al. ( 1 9 6 9 ; 1 9 7 2 ) w h o demonstrated a relatively brief period ( 1 7 hours) o f exflagellation o f male gametocytes and evaluated the duration o f the maturation to reach type IV gametocytes to b e 64 hours.

RODENT PLASMODIUM

With P. chabaudi, P. v. vinckei and P. v. petteri, the time o f maturation o f merozoites to type II infective g a m e t o c y t e s is 4 8 , 4 8 and 3 6 hours and they d e g e n e ­ rate in six to three hours (Gautret et al. 1 9 9 5 ; 1 9 9 6 a ; 1 9 9 6 c ) . P. chabaudi microgametocytes w e r e s h o w n by Hawking et al. ( 1 9 7 2 ) to b e able to exflagellate during seven hours. Mons et al. ( 1 9 8 5 ) synchronized the deve­

l o p m e n t o f P. berghei g a m e t o c y t e s in vitro and in vivo in rats and estimated the time o f maturation to b e 26 hours (confirming work by Hawking et al. ( 1 9 7 2 ) in Thamnomys) and the m e a n duration o f infectivity was s h o w n to b e about 13 hours. P. y. yoelii and P. y. nigeriensis, w h e n synchronized by the Percoll-glu- c o s e technic, d e v e l o p their merozoites into mature type 0 gametocytes in 24 hours and degenerate in three h o u r s . T h i s is c o n s i s t e n t with the o b s e r v a t i o n b y Killick-Kendrick & Warren ( 1 9 6 8 ) w h o s h o w e d that the first infective g a m e t o c y t e s appeared 24 hours after the rupture o f hepatic meronts. T h e discrepancy b e t w e e n the infective stages o f the different rodent Plasmodium (stage II for P. vinckei and P. chabaudi and stage 0 or P. yoelii) is surprising but correlates with a similar

discrepancy in the sequestration o f g a m e t o c y t e s in capillaries ( s e e b e l o w ) .

PRIMATE PLASMODIUM

P. cynomolgi ceylonensis (Langur С strain) merozoites transform into mature female (type IV and IV) and male (type VII) gametocytes in 5 8 hours and degenerate in about 12 hours (Hawking et al, 1 9 6 8 a ) . P. knowlesi mature type IV male and female g a m e t o c y t e s n e e d 31 hours to b e produced and degenerate in n o m o r e than five hours (Hawking et al, 1 9 6 8 a ; 1 9 6 8 b ) .

P. FALCIPARUM

T h e life span o f P. falciparum mature stage V g a m e ­ tocyte is longer than that o f other m a mma li a n Plas­

modium but relatively short. Smalley & Sinden ( 1 9 7 7 ) o b s e r v e d the p r e s e n c e o f exflagellating stage V g a m e ­ tocytes in the b l o o d smears obtained from patients fol­

lowing radical c h l o r o q u i n e treatment during a m e a n time o f 2.4 days. P. falciparum gametocytes can remain infective to the v e c t o r for m a n y days as demonstrated by Jeffery, Y o u n g & Eyles ( 1 9 5 6 ) and Smalley & Sinden ( 1 9 7 7 ) w h o successfully infected m o s q u i t o e s from g a m e t o c y t e carriers up to 11-12 days following radical chloroquine treatment. It must b e pointed out h o w e v e r that these infections led to considerably reduced oocyst burden per infected mosquito.

T h u s , with the e x c e p t i o n o f P. falciparum, mature infective g a m e t o c y t e s o f the different s p e c i e s o f Plas­

modium have a short life span w h i c h d o e s not e x c e e d 17 hours and is most o f the time, only b e t w e e n three and seven hours.

TEMPORARY LOSS OF GAMETOCYTE INFECTIVITY DURING SCHIZOGONY

I

ndependently o f cyclical maturation o f infective g a m e t o c y t e s , several authors recently d e s c r i b e d m e c h a n i s m s o f periodic production o f factors inhi­

biting g a m e t o c y t e infectivity.

RODENT PLASMODIUM

Motard et al. ( 1 9 9 0 ) s h o w e d that g a m e t o c y t e s in m i c e infected with P. v. petteri l o o s e temporarily their infec­

tivity for Anopheles stephensi at the time o f schizogony.

This t e m p o r a r y loss o f g a m e t o c y t e infectivity w a s demonstrated to b e linked with a p e a k o f production o f nitric o x i d e during the s c h i z o g o n y (Motard et al, 1993). T h e responsability o f antibodies in this p h e n o ­ m e n o n is very unlikely as g a m e t o c y t e infectivity inhi­

bition o c c u r s in P. berghei infected SCID mice for A. stephensi (Sinden et al., 1 9 9 3 ; Fleck et al., 1 9 9 4 ) .

106 Mise au point Parasite, 1999, 6, 103-111

(5)

PERIODIC INFECTIVITY O F PLASMODIUM GAMETOCYTES

PRIMATE PLASMODIUM

A transcient inhibition o f P. vivax g a m e t o c y t e infecti­

vity w a s o b s e r v e d in m a n at t h e time o f clinical paroxisms (Mendis et al. 1 9 9 0 ) . T u m o u r necrosis factor a n d g a m m a interferon l e v e l s are i n c r e a s e d w h e n P. vivax and P. cynomolgi g a m e t o c y t e s infectivity for A. tessellatus is reduced during clinical paroxisms (Karu- naweera et al., 1 9 9 2 ; Naotune et al, 1991). White b l o o d cells and reactive nitrogen intermediates are necessary to obtain an inhibition o f gametocyte infectivity by the supernatant o f cultured peripheral b l o o d mononuclear cells stimulated by frozen-thawed b l o o d stages o f Plas­

modium. This is the c a s e for P. vivax/A. tessellatus in man and for P. falciparum ( 3 D 7 ) / A . stephensi, in vitro (Naotunne et al, 1993).

In conclusion, inhibition o f Plasmodium g a m e t o c y t e infectivity at the time o f s c h i z o g o n y may b e the c o n s e ­ q u e n c e o f the activation o f cellular immunity effectors via the secretion o f cytokines and production o f nitric- oxides. It is very likely that parasite origin factors are released at the time o f s c h i z o g o n y also and play a role o f initial activators o f the white cells.

SEQUESTRATION AND ORCADIAN BIOAVAILABILITY OF GAMETOCYTES

A

n alternative explanation to the Hawking phe­

n o m e n o n is the e x i s t e n c e o f a circadian prefe­

rential distribution (sequestration, retention or r e l e a s e ) o f infective g a m e t o c y t e s in the capillaries, r e n d e r i n g t h e m a v a i l a b l e to t h e m o s q u i t o v e c t o r . Sequestration o f asexual b l o o d stages o f Plasmodium in d e e p capillaries is very well k n o w n and hundreds o f publications have b e e n p r o d u c e d since the first o b s e r v a t i o n with P. falciparum b y Marchiafava &

Bignami ( 1 8 9 4 ) . Sequestration o f other Haemosporidia g a m e t o c y t e s b y contrast have b e e n less studied.

B I R D PLASMODIUM

Missiroli ( 1 9 3 9 ) m a d e the first report o f sequestration o f P. praecox g a m e t o c y t e s in sparrows by demonstra­

ting an increase o f their n u m b e r s in the b l o o d o f birds submited to m o s q u i t o Culex bites. Roller & D e s s e r ( 1 9 7 3 ) s h o w e d that g a m e t o c y t e s o f L. simondi were in greater numbers in hepatic b l o o d than in cardiac b l o o d o f d u c k s w h e n the peripheral parasitemia w a s low at night.

RODENT PLASMODIUM

Experiments with rodent Plasmodium are very n u m e ­ rous and signifiant. Comparison b e t w e e n g a m e t o c y t e c o m p o s i t i o n o f b l o o d from the tail vein o f P. y. yoelii

infected mice and b l o o d from mosquito midgut i m m e ­ diately after e n g o r g e m e n t s h o w e d an enrichment o f type 0 and I m i c r o g a m e t o c y t e s in the latter w h e n the infectivity to the v e c t o r is maximal (Landau et al, 1979; Gautret et al., 1996b). This p h e n o m e n o n was nei­

ther s e e n b y J a n s e et al. ( 1 9 8 5 ) w h e n c o m p a r i n g P. berghei gametocyte composition o f b l o o d from mice tail vein, mice heart b l o o d and mosquito b l o o d meal nor by Mons et al. ( 1 9 8 5 ) w h o observed the same num­

bers o f exflagellating gametocytes in vitro and in vivo.

This is probably b e c a u s e it only occurs at the time o f m a x i m u m infectivity and affects the infective stage only. With P. v. petteri and P. chabaudi, stage II infec­

tive gametocytes are found in greater numbers in mos­

quito b l o o d meal than in mice tail vein b l o o d (Gautret et al, 1 9 9 6 a ; Gautret et al., 1 9 9 6 c ) . W h e n experiments w e r e performed with P. chabaudi at the time type 0 gametocytes peak in m i c e blood, n o sequestration was observed indicating that the retention o f gametocytes in d e e p capillaries affects only the infective stage and therefore occurs at a precise time in the cycle o f matu­

ration.

PRIMATE PLASMODIUM

With primates, Dei-Cas et al. ( 1 9 8 0 a ; 1 9 8 0 b ) also o b s e r v e d a difference in the counts o f various stages o f P. inui m a c r o g a m e t o c y t e s w h e n comparing per­

i p h e r a l m o n k e y b l o o d a n d m o s q u i t o m e a l s a n d c o n c l u d e d that a sequestration o f certain types o f gametocytes in m o n k e y capillaries occurs.

P. FALCIPARUM

P. falciparum mature g a m e t o c y t e s are detectable in h u m a n peripheral b l o o d around 10 days after asexual stages (Ross & T h o m s o n , 1 9 1 1 ) , c o r r e s p o n d i n g to 10 days after the first p e a k o f fever producing schi- zonts (Bray, personal communication). Immature game­

tocytes are s e q u e s t e r e d in spleen capillaries and in b o n e marrow ( D e Beaurepaire Arago, 1 9 3 0 ; Garnham, 1 9 3 1 ; T h o m s o n & Robertson, 1 9 3 5 ; Smalley et al, 1980) but not in placental vessels (Blacklock & Gordon, 1 9 2 4 ; Bray & Sinden, 1 9 7 9 ; Desowitz & B u c h b i n d e r , 1 9 9 2 ) . In s p l e n e c t o m i z e d Aotus y o u n g P. falciparum g a m e t o c y t e s are not s e q u e s t e r e d anymore, indicating that the spleen plays a major role in this p h e n o m e n o n ( H a w k i n g et al, 1 9 7 1 ; W a r d et al, 1 9 7 2 ) . Similar results w e r e obtained by Bray ( 1 9 5 8 ) in c h i m p a n z e e s . Van den B e r g h e ík C h a r d o m e ( 1 9 5 1 ) s h o w e d that P. falciparum gametocytes in man w e r e m o r e n u m e ­ rous in smears m a d e o f c u t a n e o u s scarifications than in peripheral b l o o d smears. T h e c h a n g e s o f shape o f erythrocytes parasitized b y P. falciparum gametocytes is associated with the d e v e l o p m e n t o f microtubules under the parasite m e m b r a n e (Sinden et al, 1 9 7 8 )

Parasite, 1999. 6, 103-111

Mise au point 107

(6)

which may m a k e the infected cell m o r e rigid, leading to a m e c h a n i c a l s e q u e s t r a t i o n in t h e c a p i l l a r i e s . Recently, specific c y t o a d h e r e n c e to C32 cells o f the red b l o o d cells parasitized in vitro by stages I and II P. fal- ciparum gametocytes was demonstrated (Rogers et al., 1996α). This adherence was inhibited by anti-CD36 anti­

bodies and by anti-ICAM I antibodies. Infected red cells use the modified b a n d 3 to adhere to C32 and CD36- transfected CHO cells (Rogers et al.,

1996b).

This adhe­

rence to C D 3 6 was confirmed by Day et al. ( 1 9 9 8 ) and demonstrated to b e linked with k n o b p r e s e n c e and HRP1 expression in parasitized red b l o o d cells.

In conclusion, p h e n o m e n o n o f sequestration/release o f infective g a m e t o c y t e s in the fine capillaries is cyclical and p r o b a b l y results from the cyclical production o f mature g a m e t o c y t e s . B y favoring the absorption o f the gametocytes b y the vector it facilitates the transmission o f the sexual stages from the mamalian to the insect.

PERIODIC TRANSMISSION

OF PLASMODIUM TO THE VECTOR

T

he logical c o n s e q u e n c e o f the a b o v e reported observations should b e a circadian cycle in the infectivity o f Plasmodium to t h e m o s q u i t o . T r a n s m i s s i o n e x p e r i m e n t s h a v e b e e n t h e r e f o r e c o n d u c t e d by several authors in order to investigate variations in the production o f oocysts in insects accor­

ding to the time o f feeding.

BIRD PLASMODIUM

A periodical variation in the n u m b e r s o f avian Plas­

modium oocysts o b t a i n e d in m o s q u i t o e s fed o n the v e r t e b r a t e host at different times o f the day w a s demonstrated with P. catbemerium (Shah et al. 1 9 3 4 ; Hawking et al, 1 9 6 8 a ) , P. gallinaceum (Lumsden &

Bertram, 1 9 4 0 ) , P. praecox (Missiroli, 1 9 3 7 ) . In all ins­

tances, the p e a k o f oocysts w a s found to b e b e t w e e n s c h i z o g o n i c peaks.

RODENT PLASMODIUM

With rodent malaria, it w a s demonstrated for P. v. pet- teri only (Motard et al 1 9 9 0 ; Gautret et al, 1 9 9 6 α ) . B y contrast, P. cbabaudi d o e s not s h o w any variation in its ability to infect A. stephensi m o s q u i t o e s throughout the day despite a circadian variation in the numbers o f type II infective g a m e t o c y t e s . This w a s c o n s i d e r e d to b e due to the c o e x i s t e n c e o f the p e a k o f type II g a m e t o c y t e s and o f the s c h i z o g o n y in this particular s p e c i e s (Gautret et al., 1 9 9 6 c ) . A circadian t e n d e n c y in the infectivity o f P. y. nigeriensis g a m e t o c y t e s to the m o s q u i t o was o b s e r v e d b y Motard during asynchro­

nous infections; the infectivity b e e i n g greater w h e n the

proportion o f mature s c h i z o n t s and rings w a s t h e lowest (unpublished data). No variation h o w e v e r , w a s o b s e r v e d over time, in the infectivity o f P. y. yoelii g a m e t o c y t e s b e c a u s e it d e v e l o p a s y n c h r o n o u s l y with different g a m e t o c y t e stages present at all the times (Gautret et al., 1 9 9 6 b ) .

PRIMATE PLASMODIUM

With P. cynomolgy ceylonensis (Langur С strain), it was found b y Hawking et al. (1966-1968α) that infectivity o f gametocytes to A. stephensi increased at midnight e v e r y 4 8 hours. This results w e r e c o n f i r m e d with P. cynomolgi cynomolgi (M strain) and A. maculatus (Coatney et al, 1971) and with P. cynomolgi ceylonensis (Langur С strain) and A. stephensi ( G a r n h a m & Powers,

1974). With P. knowlesi, oocyst numbers in A. ste­

phensi midguts w e r e higher w h e n feeding at midnight than at mid-day (Hawking et al. 1968b). P. coatneyi was s h o w n to have a 48-hour rhythm o f infectivity for A.

freebomi (Coatney et al, 1 9 7 1 ) . Y a n g et al. (1984) and Y a n g (1996) demonstrated that P. vivax g a m e t o c y t e infectivity to A. sinensis s h o w e d a 4 8 hour pattern in patients naturally infected with malaria.

P. FALCIPARUM

With P. falciparum, neither e x p e r i m e n t s by Bray et al.

(1976), or by G i t h e k o et al. (1993) s h o w e d a greater infectivity o f young g a m e t o c y t e carriers to m o s q u i t o e s during night-time. H o w e v e r , in Bray's e x p e r i m e n t , m o s q u i t o e s w e r e successively fed at 10 a. m. and 10 p. m. and in G i t h e k o ' s study, at 4 p. m. and 7 p. m.

Therefore, these results d o not e x c l u d e a variation o f P. falciparum g a m e t o c y t e infectivity during the day or over a 48-hour cycle as transmission experiments w e r e performed at 12 and s e v e n hour intervals. T h e 2.4 day life span o f P. falciparum infective gametocytes cannot a c c o u n t h o w e v e r , for an impairment o f periodical infectivity in fully synchronous infections. Mature game­

tocytes are p r o d u c e d at e a c h s c h i z o g o n y (i. e. at 4 8 hourly intervals) and released in the peripheral circu­

lation s o m e nine days after. If the great majority o f g a m e t o c y t e s remain infective for 2.4 days, infective g a m e t o c y t e s from t w o s u c c e s s i v e b r o o d s s h o u l d overlap during a brief period o f 0.4 days ( 1 0 hours).

B e t w e e n these overlaping period, the remaining infec­

tive p o p u l a t i o n s h o u l d b e t h e r e f o r e s i g n i f i c a n t l y r e d u c e d . In natural i n f e c t i o n s . P. falciparum c a n d e v e l o p synchronously in relatively n o n - i m m u n e chil­

dren in e n d e m i c areas (Bray, personal c o m m u n i c a t i o n ) but this is not the c o m m o n feature, particularly during t h e primary a t t a c k and in s e m i - i m m u n e p a t i e n t s , contrary to the other human plasmodia. Furthermore, in most natural P. falciparum infections, t w o b r o o d s o f parasites are present, cycling 2 4 hours out o f p h a s e (White et al., 1992). It is probable that variations in the

1 0 8 Mise au point Parasite, 1999, 6, 103-111

(7)

PERIODIC INFECTIVITY OF PLASMODIUM GAMETOCYTES

infectivity o f P. falciparum g a m e t o c y t e s has not b e e n shown, partly b y reason o f the w e a k synchronicity o f its s c h i z o g o n i c d e v e l o p m e n t . It should b e o f interest to study during t w o 4 8 hour cycles, the effect o f schi­

z o g o n y o n transmission in this particular species, in relation with the d e g r e e o f synchronicity o f the para­

sitemia a n d gametocytemia a n d the circadian bioavai­

lability o f the g a m e t o c y t e s for the mosquito.

In conclusion, in all fully synchronous Plasmodium spe­

cies, (with the e x c e p t i o n o f P. chabaudi) a periodicity o f infectivity o f gametocytes to mosquitoes c a n b e evi­

d e n c e d with an inter-schizogonic p e a k o f oocysts.

GENERAL CONCLUSION

Τ

η all the Plasmodium s p e c i e s , a periodic produc­

tion o f mature g a m e t o c y t e s c a n b e demonstrated, frequently associated with a sequestration/release p h e n o m e n o n o f infective gam e t o cy t e s. In most o f the cases, the kinetic o f morphologically mature g a m e t o ­ cytes in the vertebrate host a n d / o r the resulting infec­

tivity to the vector s h o w s an accurate circadian rhythm adapted to the bitting habits o f t h e insects. It has b e e n demonstrated for Leucocytozoon in ducks (Roller &

Desser, 1 9 7 3 ) a n d for t h e plasmodia o f Thamnomys rutilam (Gautret et al., 1 9 9 8 ) . T h r e e parasites fail to s h o w circadian variations in their infectivity to Ano­

pheles. P. chabaudi b e c a u s e s c h i z o g o n y a n d produc­

tion o f mature g a m e t o c y t e s c o i n c i d e , d o e s not s h o w any circadian variation o f gametocyte infectivity. P. fal­

ciparum g a m e t o c y t e s w e r e n o t demonstrated to s h o w a circadian rhythm in their ability to infect m o s q u i t o e s b e c a u s e infections in h u m a n are frequently asynchro­

nous. P. berghei b e c a u s e o f its s p o n t a n e o u s asyn­

c h r o n o u s development, produces mature g a m e t o c y t e s independently o f the time. With s y n c h r o n o u s s p e c i e s o f Plasmodium, w h e n experimental or natural infecti­

vity is studied, it is strongly r e c o m m e n d e d that the e x p e r i m e n t s are performed at the s a m e time o f the day if a valuable comparison is to b e made. It is impor­

tant to perform the experiment at the time o f maximum infectivity if o n e wants to study t h e influence o f the i m m u n e system or o f drugs o n transmission. During epidemiological records, the identification o f g a m e t o ­ cyte carriers should c o n s i d e r infective g a m e t o c y t e s while taking t h e morphological a n d c h r o n o b i o l o g i c a l data into account.

ACKNOWLEDGEMENTS

W

e are very grateful to I. Landau a n d A. G.

Chabaud for c o m m e n t s a n d suggestions a n d to R. S. Bray for pertinently reviewing this manuscript.

REFERENCES

BLACKLOCK B . & G O R D O N R.M. Malaria parasites i n the pla­

cental blood. Armais of Tropical Medicine and Parasito­

logy, 1924, 19, 35-45.

BOYD M.F. On the schizogonous cycle of Plasmodium vivax, Grassi and Feletti. American foumal of Tropical Medicine, 1935. 15. 605-615.

BRAY R.S. Studies on malaria in chimpanzees. V I Laveriana falciparum. American Journal of Tropical Medicine and

Hygiene, 1958, 7, 20-24.

BRAY R.S., MCCRAE A . W . R . & SMALLEY M.E. Lack of a circadian rhythm i n the ability of the gametocytes of Plasmodium falciparum to infect Anopheles gambiae. International Journal for Parasitology, 1976, 6, 399-401.

BRAY R.S. & SINDEN R.E. The sequestration of Plasmodium falciparum infected erythrocytes in the placenta. Tran­

sactions of the Royal Society of Tropical Medicine and Hygiene, 1979, 73, 716-719.

COATNEY G.R., COLLINS W.E., MCWARREN W. & CONTACOS P.G.

The primate malarias, 1971, US Government Printing Office, Washington.

DAY K.P., HAYWARD R.E., SMITH D . & CULVENOR J.G. CD36- dependent and knob expression of the transmission stages of Plasmodium falciparum is stage-specific. Molecular and Biochemical Parasitology, 1998, 93, 167-177.

DE BEAUREPAIRE ARAGAO H . Evolution of the gametes of Plas­

modium falciparum. Memorias do Instituto Oswaldo Cruz, 1930, 14, 41-56.

DEHARO E., GAUTRET P., GINSBURG H., CHABAUD A.G. & LAN­

DAU I. Synchnonization of Plasmodium yoelii nigeriensis and P. y. killicki infection i n the mouse by means of Per- coll-glucose gradient stage fractionation: determination of the duration of the schizogonic cycle. Parasitology Research, 1994, 80, 159-164.

DEI-CAS E., MAUROIS P., DUTOIT E., LANDAU I. & MILTGEN F.

Étude sur les gametocytes des Plasmodium de mammi- fères: Morphologie et infectivité de Plasmodium inui.

Cahiers de l'ORSTOM, Série Entomologie Médicale et Para- sitologie, 1980a, 18, 111-112.

DEI-CAS E., MAUROIS P., LANDAU L, DUTOIT E., MILTGEN F., VERNES A. & BIGUET J. Morphologie et infectivité des game- tocytes de Plasmodium inui. Annales de Parasitologie Humaine et Comparée, 1980b, 55, 621-633.

DESOWITZ R.S. & BUCHBINDER G. The absence of Plasmodium falciparum gametocytes in the placental blood of a woman

with a peripheral parasitaemia. Annals of Tropical Medi- cine and Parasitology, 1992, 86, 191-192.

FIELD J.W. & SHUTE P.G. A morphological study of the ery- throcytic parasites. I n The microscopic diagnosis of human malaria II, 1956, Kuala Lumpur Government Press.

FLECK S.L., BUTCHER G.A. & SINDEN R.E. Plasmodium berghei:

serum-mediated inhibition of infectivity of infected mice to Anopheles stephensi mosquitoes. Experimental Parasi- tology, 1994, 78, 20-27

GAMBREL W.E. Variations i n gametocyte production in avian malaria. American Journal of Tropical Medicine, 1937, 17, 689-727.

Parasite, 1999, 6, 1 0 3 - Ш

Mise au point 109

(8)

GARNHAM P.C.C. Observations on Plasmodium falciparum with special reference to the production of crescents.

Kenya and East African Medical Journal, 1931, 8, 2-21.

GARNHAM P.C.C. Malaria parasites and other haemosporidia.

Blackwell scientific publications Oxford, 1966.

GARNHAM P.C.C. & POWERS K . G . Periodicity of infectivity of plasmodial gametocytes: the "Hawking phenomenon".

International Journal for Parasitology, 1974, 4, 103-106.

GAUTRET P., CHABAUD A . G . & LANDAU I. Plasmodium vinckei vinckei and P. yoelii nigeriensis. pattern of gametocyte pro­

duction and development. Parassitologia, 1995, 37, 17-24.

GAUTRET P., CHABAUD A . G . & LANDAU I. Chronosexuality of murid rodent plasmodia in the Central African Republic.

Parassitologia, 1998 (in press).

GAUTRET P., GANTIER J . C . , BACCAM D . , MILTGEN F., SAULAI M . , CHABAUD A . G . & LANDAU I. The gametocytes of Plasmodium

vinckei petteri, their morphological stages, periodicity and infectivity. International Journal for Parasitology, 1996a, 26, 1095-1101.

GAUTRET P., MILTGEN F., CHABAUD A . G . & LANDAU I. Synchro­

nized Plasmodium yoelii yoelii: pattern of gametocyte production, sequestration and infectivity. Parassitologia, 1996b, 38, 575-577.

GAUTRET P., MILTGEN F., GANTIER J . C . , CHABAUD A.G. & LAN­

DAU I. Enhanced gametocyte formation by Plasmodium chahaudi in immature erythrocytes: pattern of production and infectivity to mosquitoes. Journal of Parasitology, 1996c, 82, 900-906.

G I T H E K O A . K . , BRANDLING-BENNET A . D . , B E I R M . , M B O G O С . М . , ATIELI F.K., O W A G A M.L., JUMA F. & COLLINS F.H. Confir­

mation that Plasmodium falciparum has aperiodic infec­

tivity to Anopheles gambiae. Medical and Veterinary Ento­

mology, 1993, 7, 373-376.

G O R E T.C. & N O B L E T G.P. The effect of photoperiod on the deep body temperature of domestic turkeys and its rela­

tionship to the diurnal periodicity of Leucocytozoon smithi gametocytes in the peripheral blood of turkeys. Poultry Science, 1978, 57, 603-607.

G O R E T.C., NOBLET G.P. & N O B L E T R. Effects of pinealectomy and occular enucleation on diurnal periodicity of Leuco­

cytozoon smithi Haemosporina gametocytes in the per­

ipheral blood of domestic turkeys. Journal of Protozoology, 1982, 29, 415-420.

HAWKING F. The clock of malaria parasites. Scientific Ame­

rican, 1970, 222, 123-132.

HAWKING F. Orcadian and other rhythm of parasites. Advan­

ces in Parasitology, 1975, 13, 123-182.

HAWKING F., GAMMAGE K. & W O R M S M.E. The asexual and sexual circadian rhythms of Plasmodium vinckei cha­

haudi, of P. berghei and of P. gallinaceum. Parasitology, 1972, 65, 189-201.

HAWKING F., WILSON M.E. & GAMMAGE K. Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1971, 65, 549-559.

HAWKING F., W O R M S M.E. & GAMMAGE K. 24 and 48 hours cycles of malaria parasites in the blood; their purpose, pro­

duction and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1968a, 62, 731-760.

HAWKING F., W O R M S M.E. & GAMMAGE K. Host temperature and control of 24-hours and 48-hours cycles in malaria para­

sites. The Lancet, 1968b, i, 506-509.

HAWKING F., W O R M S M.E. & GAMMAGE K. Duration of the mature gametocytes of P. gallinaceum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1969, 63, 421.

HAWKING F., W O R M S M.E., GAMMAGE K. & G O D D A R D P.A. The

biological purpose of the blood-cycle of the malaria para­

site Plasmodium cynomolgi. The Lancet, 1966, ii, 422-424.

JANSE C.J., MONS В . , ROUWENHORST R . J . , VAN D E R KLOOSTER P.F.J., OVERDULVE J.P. & VAN D E R KAAY H . J . In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes. Parasitology, 1985, 91, 19-29.

J E F F E R Y G.M. & EYLES D.E. Infectivity to mosquitoes of Plas­

modium falciparum as related to gametocyte density and duration of infection. American Journal of Tropical Medi­

cine and Hygiene, 1955, 4, 781-789.

JEFFERY G.M., Y O U N G M.D. & EYLES D.E. The treatment of Plas­

modium falciparum infection with chloroquine, with a note on infectivity to mosquitoes of primaquine and pyri- methamine-treated cases. American Journal of Hygiene, 1956. 64. 1-11.

KARUNAWEERA N.D., CARTER R., GRAU G . E . , KWIATKOWSKI D., D E L GIUDICE G . & MENDIS K.N. Tumour Necrosis Factor- dependent parasite-killing effects during paroxysms in non-immune Plasmodium vivax malaria patients. Clinical and Experimental Immunology, 1992, 88, 499-505.

KILLICK-KENDRICK R. & WARREN M. Primary exoerythrocytic schizonts of mammalian Plasmodium as a source of game­

tocytes. Nature, 1968, 220, 191-192.

LANDAU I., MILTGEN F., BOULARD Y . , CHABAUD A. G . & BACCAM D.

Études sur les gamétocytes des Plasmodium du groupe

"vivax" : morphologie, évolution, prise par les Anophèles et infectivité des microgamétocytes de Plasmodium yoelii.

Annales de Parasitologie Humaine et Comparée, 1979, 54, 145-161.

LUMSDEN W . H . R . & BERTRAM D.S. Observations on the biology of Plasmodium gallinaceum Brampt, 1935, in the domestic fowl, with special reference to the production of game- tocytes and their development in Aedes aegypti(V). Annals of Tropical Medicine and Parasitology, 1940, 34, 135-160.

MARCHIAFAVA E . & BIGNAMI A. On summer, autumn malarial fevers. Translated from the Ist Italian edition by J . H. Thomp- son, 1894, London, The New Sydenham Society.

MENDIS K.N., NAOTUNNE T.D.S., KARUNAWEERA N.D., D E L G I U - DICE G., GRAU G . E . & CARTER R. Anti-parasite effects of cyto- kines in malaria. Immunology Letters, 1990, 25, 217-220.

MISSIROLI A. Modificazioni periodiche del numero di game- tociti di Plasmodium praecox. Rivista di Parassitologia

1939, 4, 279-285.

MONS В . , JANSE C . J . , BOORSMA E . G . & VAN D E R KAAY H.J. Syn­

chronized erythrocytic schizogony and gametocytogenesis of Plasmodium berghei in vivo and in vitro. Parasitology, 1985, 91, 423-430.

110 Mise au point Parasite, 1999, 6, 103-111

(9)

PERIODIC INFECTIVITY O F PIASMODHM GAMETOCYTES

MOTARD Α., BACCAM D . & LANDAU I. Temporary l o s s of Plas­

modium gametocytes infectivity during schizogony.

Annales de Parasitologie Humaine et Comparée, 1990, 65, 218-220.

MOTARD Α., LANDAU L, NUSSLER Α., GRAU G., BACCAM D., MAZIER D .

& TARGETT G.A.T. The role of reactive nitrogen interme­

diates in modulation of gametocyte infectivity of rodent malaria parasites. Parasite Immunology, 1993, 15, 21-26.

NAOTUNE Τ D E S., KARUNAWEERA N . D . , DEL GIUDICE G . , KULA- RATNE M.U., GRAU G . , CARTER R. & MENDIS K . N . Cytokines kill malaria parasites during infection crisis: extracellular complementary factors are essential. Journal of Experi­

mental Medicine, 1991. 173, 523-529.

NAOTUNE Τ D E S., KARUNAWEERA N . D . , MENDIS K . N . & CARTER R.

Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology, 1993,

78, 555-562.

N O B L E T G . P . & NOBLET R. Periodicity of Leucocytozoon smithi gametocytes in the peripheral blood of domestic turkeys.

Poultry Science, 1976, 55, 1088-1093.

NOBLET G . P . & NOBI.ET R. Effect of photoperiod on the diurnal periodicity of Leucocytozoon smitbi gametocytes in the per­

ipheral blood of domestic turkeys. Poultty Science, 1977, 56, 1206-1208.

RAO C.K., G H O S E J . N . , KRISHNASWAMI A.K. & RAGHAVAN N . G . S .

Gametocyte cycle in P. cynomolgi Nilgiri strain infection in rhesus monkeys. Journal of Communicable Disease, 1971, 3, 190-194.

ROGERS N . J . , DARAMOLA O . , TARGETT G.AT. & HALL B . S . CD36 and Intercellular Adhesion Molecule 1 mediate adhesion of developing Plasmodium falciparum gametocytes. Infec­

tion and Immunity, 1996a, 64, 1480-1483.

ROGERS N . J . , TARGETT G.A. T . & HALL B . S . Plasmodium falci­

parum gametocytes adhesion to C32 cells via CD36 is inhi­

bited by antibodies to modified band 3. Infection and Immunity, 1996b, 64, 4261-4268.

ROLLER N.F. & DESSER S . S . Diurnal periodicity in peripheral parasitemias in ducklings Anas boschas infected with Leu­

cocytozoon simondi Mathis and Leger. Canadian Journal of Zoology, 1973, 51, 1-9.

Ross R. & THOMSON D . Some enumerative studies o n mala­

rial fever. Annals of Tropical Medicine and Parasitology, 1911, 4, 267-306.

SHAH K . S . The periodic development of sexual forms of Plas­

modium cathemerium in the peripheral circulation of canaries. American Journal of Hygiene, 1934, 19, 392-403.

SHAH K . S . , ROZEBOOM L.E. & D E L ROSARIO F . Studies on the infectivity of Plasmodium cathemerium of canaries for mos­

quitoes. American Journal of Hygiene, 1934, 20, 502-507.

SINDEN R., CANNING E.U., B R A Y R . S . & SMALLEY R.E. Gameto­

cyte and gamete development i n Plasmodium falciparum.

Proceedings of the Royal Society of London В Biological Sciences, 201, 375-399.

SINDEN R.E., BARKER G.C., PATON M.J., FLECK S.L., BUTCHER G.A., WATERS Α., JANSE C.J. & RODRIGUEZ M.H. Factors regulating natural transmission of Plasmodium berghei to the mos­

quito vector, and the cloning o f a transmission-blocking immunogen. Parassitologia, 1993, 35, Suppl, 107-112.

Parasite, 1999, 6, 103-111

SMALLEY M.E. Plasmodium falciparum gametocytogenesis in vitro. Nature, 1976, 264, 271-272.

SMALLEY M.E., ABDALIA S. & BROWN J . The distribution of Plas­

modium falciparum in the peripheral blood and bone marrow of Cambian children. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1980, 75, 103- 105.

SMALLEY M.E. & SINDEN R.E. Plasmodium falciparum game­

tocytes: their longevity and infectivity. Parasitology, 1977, 74, 1-8.

THOMSON J . G . & ROBERTSON A. The structure and development of Plasmodium falciparum gametocytes in the internal organs and peripheral circulation. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1935, 29, 31-40.

VAN D E N BERGHE L. & CHARDOME M. An easier and more accu­

rate diagnosis of malaria and filariasis through the use of the skin scarification smear. American Journal of Tropical Medicine, 1951, 31, 411-413.

W A R D R.A., HAYES D.E., HEMBREE S.C., RUTLEDGE L.C. ANDER­

SON S . J . & JOHNSON A . J . Infectivity of Plasmodium falci­

parum gametocytes from Aotus trivirgatus to anopheline mosquitoes. Proceedings of the Helminthological Society of

Washington, 1972, 39, special issue, 33-46.

W H I T E N . J . , CHAPMAN D . & W A I T G . The effects of multipli­

cation and synchronicity on the vascular distribution of parasites in falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1992, 86, 590- 597.

Y A N G B . Experimental and field studies on some biological characteristics of Plasmodium vivax isolated from tropical and temperate zones of China. Chinese Medical Journal, 1996, 109, 266-271.

Y A N G B . L . , W A N W . J . , W A N G W . R . , Нu H . X . , Li Η.Χ., W A N G Χ . Α . , LI X.L., LI С . Ζ . & HUANG G . Ζ . Experimental stu­

dies on the periodical viability of gametocytes of Plas­

modium vivax. Chi Sheng Chung Hsueh Yu Chi Sbeng Chung Ping Tsa Chih, 1984, 2, 238-242.

Reçu le 24 novembre 1998 Accepté le 25 mars 1999

Mise au D O i n t 111

Références

Documents relatifs

We detected DNA of Plasmodium only in three Culex pipiens samples (2× thorax, 1× abdomen), indicating that this mosquito species may not play the most important role for

However, this approach was also found to be very relevant to other VBDs, and to explore this a collaboration was initiated with the Swiss Agency for Development and Cooperation,

In this paper, we compare the results achieved on public graph databases for the classification of symbols and letters using this graph signature with those obtained using the

We prove the consistency (as the number of nodes and time steps increase) of the maximum likelihood and variational estimators of the model parameters, and obtain upper bounds on

(2012) Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection.. This is an open-access article distributed under

Each agent is represented by description of provided services and semantic connections with the descriptions of the other agents.. Formally, an agent is represented in a

edges so that the remaining graph is Euler, and then we extract relatively few long cycles to reduce the problem to a sparser case.. In the sparse case we will check the Tutte

Later, Byakov, Kulakov, Rumer and Fet (Konopel’chenko and Rumer, 1979) further de- veloped this group–theoretical approach of the periodic chart of chemical elements by introducing