• Aucun résultat trouvé

On the distortion of twin building lattices

N/A
N/A
Protected

Academic year: 2021

Partager "On the distortion of twin building lattices"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-00410671

https://hal.archives-ouvertes.fr/hal-00410671

Preprint submitted on 23 Aug 2009

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Pierre-Emmanuel Caprace, Bertrand Remy

To cite this version:

(2)

PIERRE-EMMANUELCAPRACE*ANDBERTRANDRÉMY**

Abstra t. We show that twin building latti es are undistorted intheir ambient group;

equivalently,the orbitmapofthelatti e to theprodu tofthe asso iated twinbuildingsis

a quasi-isometri embedding. As a onsequen e, we provide an estimateof the quasi-at

rankoftheselatti es,whi himpliesthatthereareinnitelymanyquasi-isometry lassesof

nitelypresentedsimplegroups. Inanappendix,wedes ribehownon-distortionoflatti es

isrelatedtotheintegrabilityofthestru tural o y le.

1. Introdu tion

1.1. Distortion. Let

G

bealo ally ompa tgroupand

Γ < G

beanitelygeneratedlatti e. Then

G

is ompa tlygenerated[CM08,Lemma 2.12℄andthereforeboth

G

and

Γ

admitword metri s, whi h are well dened up to quasi-isometry. It is a natural question to understand

the relationbetween the word metri of

Γ

and therestri tionto

Γ

of theword metri on

G

. Inorder toaddressthisissue,let usxsome ompa t generatingset

Σ

b

in

G

anddenoteby

kgk

Σ

b

the wordlength of anelement

g ∈ G

withrespe tto

Σ

b

;wedenote by

d

b

Σ

theasso iated word metri . Similarly, we x a nite generating set

Σ

for

Γ

and denote by

|γ|

Σ

the word length of an element

γ ∈ Γ

with respe t to

Σ

, and by

d

Σ

the asso iated word metri . The latti e

Γ

is alledundistortedin

G

if

d

Σ

isquasi-isometri totherestri tionof

d

Σ

to

Γ

. The onditionamountsto sayingthatthe in lusion of

Γ

in

G

denesa quasi-isometri embedding from themetri spa e

(Γ, d

Σ

)

to themetri spa e

(G, d

b

Σ

)

.

Asiswell-known, any o ompa tlatti e isundistorted: this follows fromthe’var Milnor

Lemma[BH99,PropositionI.8.19℄. Thequestionofdistortionthus entresaroundnon-uniform

latti es. Themainresultof[LMR01℄isthatif

G

isaprodu tofhigher-ranksemi-simple alge-brai groupsoverlo alelds(Ar himedeanornot),then anylatti eof

G

isundistorted. This relieson the deep arithmeti ity theorems due to Margulisin hara teristi 0 and

Venkatara-mana in positive hara teristi , and on a detailed analysis of the distortion of unipotent

subgroups.

Besides the higher-ranklatti esinsemi-simple groups, a lassof non-uniform latti esthat

hasattra tedsomeattentioninre entyearsaretheso- alledKa Moodylatti es(see[Rém99℄

or [CG99℄). A more general lass of latti es is thatof twin building latti es[CR09℄: a twin

building latti eis an irredu iblelatti e

Γ < G = G

+

× G

ina produ tof two groups

G

+

and

G

a tingstrongly transitively on(lo allynite) buildings

X

+

and

X

respe tively,and su hthat

Γ

preservesatwinningbetween

X

+

and

X

. Re allthat

Γ

isthennitelygenerated and that, inthisgeneral ontext, irredu iblemeans thatea h oftheproje tions of

Γ

to

G

±

isdense.

Date:July20,2009.

Keywordsandphrases. Latti e,lo ally ompa tgroup,Ka Moodygroup,building,distortion.

*SupportedbytheFundforS ienti Resear hF.N.R.S.,Belgium.

(3)

Theorem 1.1. Any twin building latti e

Γ < G

+

× G

isundistorted.

Itshouldbenotedthatea hindividualgroup

G

+

or

G

alsopossessesnon-uniformlatti es, obtainedforinstan ebyinterse ting

Γ

witha ompa t opensubgroup(e.g.,afa etstabilizer) of

G

or

G

+

,respe tively. Other non-uniformlatti eshave been onstru tedbyR.Gramli h andB. Mühlherr [GM℄. We emphasize that, beyond theane ase (i.e. when

G

+

is a semi-simple group over a lo al fun tion eld), a non-uniorm latti e in a single irredu ible fa tor

G

+

(or

G

) should be expe ted tobeautomati ally distorted (see Se tion 3.3below).

1.2. Quasi-isometry lasses. Non-distortionofalatti e

Γ

in

G

relatestheintrinsi geometry of

Γ

to thegeometryof

G

. Inthe aseoftwin buildinglatti es,thelattergeometryis (quasi-isometri ally) equivalent to the geometry ofthe produ t building

X

+

× X

on whi h

G

a ts o ompa tly. Non-distortion isespe iallyrelevant whenstudyingquasi-isometri rigidityof

Γ

(whi his still anopen problem). Asa onsequen e of Theorem1.1,we an estimatea quasi-isometri invariant ofa twinbuilding latti e

Γ

for

X

+

× X

,namely themaximal dimension of quasi-isometri allyembeddedat subspa esinto

(Γ, d

Σ

)

. Thisrankisboundedfrombelow bythemaximal dimension ofan isometri ally embedded at in

X

±

and from above bytwi e thesamequantity(3.4);furthermore,thankstoD.Krammer'sthesis[Kra09℄,thismetri rank of

X

±

an be omputed on retely by means of the Coxeter diagram of the Weyl group of

X

±

. Thisenables us todraw thefollowing group-theoreti onsequen e.

Corollary 1.2. There exist innitely many pairwise non-quasi-isometri nitely presented

simplegroups.

This orollary may also be dedu ed from the work of J. Dymara and Th. S hi k [DS07℄,

whi h givesan estimateofanother quasi-isometryinvariant fortwin buildinglatti es,namely

the asymptoti dimension.

Any nite simple group is of ourse quasi-isometri to the trivial group. Moreover any

nitely presented simple group onstru ted by M. Burger and Sh. Mozes [BM01℄ is

quasi-isometri tothe produ toffreegroups

F

2

× F

2

;thisisdueto[Pap95℄andto thefa tthatthe latter groups are onstru ted as suitable (torsion-free) uniform latti es in produ ts of trees.

Furthermore, on erningthe nitely presentedsimple groups onstru ted by G. Higman and

R.Thompson [Hig74℄, aswell astheiravatarsin[Röv99℄, [Bri04℄,[Bro92℄and[S o92℄, weare

not awareof a lassi ation up to quasi-isometryas of today. Howeversome results seem to

indi atethatmanyof them might bequasi-isometri to one another, ompare e.g.[BCS01℄.

1.3. Integrability of the stru tural o y le. Non-distortion of latti es is also relevant,

in a more subtle way, to the theory of unitary representations and its appli ations. More

pre isely, given a latti e

Γ < G

and a unitary

Γ

-representation

π

, one onsiders the indu ed

G

-representation

Ind

G

Γ

π

. For rigidityquestions(at least)andalso be ausethestru ture of

G

isri herthan that of

Γ

,it is desirable thatthe o y les of

Γ

with oe ientsin

π

extend to ontinuous o y lesof

G

with oe ientsin

Ind

G

Γ

π

. Asexplainedin[Sha00,Proposition1.11℄, a su ient onditionfor this to holdis that

Γ

be square-integrable. By denition, for any

p ∈ [1; ∞)

itissaidthat

Γ

(ormore pre iselythein lusion

Γ < G

) is

p

-integrableifthereis a Borelfundamental domain

Ω ⊂ G

for

G/Γ

su hthat, for ea h

g ∈ G

,we have:

Z

(4)

where

α : G × Ω → Γ

is the indu tion o y ledened by

α(g, h) = γ ⇔ ghγ ∈ Ω

. Mimi k-ing Y. Shalom's arguments in [Sha00, Ÿ2℄, the following statement will be established in an

appendix (withthe above notation forgenerating sets).

Theorem 1.3. Let

G

be a totally dis onne ted lo ally ompa t group and let

Γ < G

be a nitely generated latti e. Assume there is a Borel fundamental domain

Ω ⊂ G

for

G/Γ

su h that for some

p ∈ [1; ∞)

we have:

Z

khk

Σ

b



p

dh < ∞.

Then,if

Γ

isnon-distorted, it is

p

-integrable

For

S

-arithmeti groups, the existen eof fundamental domainssatisfying the ondition of Theorem 1.3is established in [Mar91, Proposition VIII.1.2℄bymeans of Siegeldomains. As we shall see, in the ase of twin building latti es the ondition is straightforward to he k

on eafundamentaldomainprovided bythespe i ombinatorial propertiesoftheselatti es

is used. In parti ular, ombining Theorem 1.1 withTheorem 1.3,we re over themain result of [Rém05℄. We nish by mentioning that square-integrability of latti es is also relevant for

lifting

Γ

-a tionsto

G

-a tionsingeometri situationswhi haremu hmoregeneralthanunitary a tions onHilbertspa es, see[Mon06℄and [GKM08℄.

In order to always start from the same situation, in the above introdu tion we stated

results ex lusively dealing with group in lusions. The proof of the non-distortion statement

is of geometri nature: we prove that a twin building latti e is non-distorted in theprodu t

ofthetwo buildings withwhi h itis asso iated.

Thisarti leiswritten asfollows. Se tion2 onsistsofpreliminaries. Se tion3 providesthe aforementioned geometri proofofnon-distortionanddeals withthevariousmetri notionsof

ranksthat anbebetterunderstoodthankstonon-distortion;weapplythistoquasi-isometry

lasses ofnitelygeneratedsimplegroups. AppendixAisindependent oftheprevioussetting of twin building latti es and establishes a relationship between non-distortion and

square-integrabilityof latti esingeneral totally dis onne ted lo ally ompa t groups.

2. Lifting galleries from the buildings to the latti e

Wereferto[AB08℄forbasi denitionsandfa tsonbuildingsandtwinnings,andto[CR09℄

for twin building latti es. In this preliminary se tion, we merely x the notation and re all

onebasi fa ton twinbuildings whi h playsa keyrole at dierent pla es inthis paper.

Let

X = (X

+

, X

)

beatwinbuildingwithWeylgroup

W

asso iatedtoagroup

Γ

admitting aroot groupdatum. Inparti ular

Γ

a ts stronglytransitively on

X

. Welet

d

X

+

(resp.

d

X

) denotethe ombinatorialdistan eonthesetof hambersof

X

+

(resp.

X

). Wefurtherdenote by

S

the anoni algeneratingsetof

W

andby

Opp(X)

thesetofpairsofopposite hambersof

X

. Throughoutthe paper,wexabasepair

(c

+

, c

) ∈ Opp(X)

and allitthefundamental opposite pair of hambers. Two opposite pairs

(x

+

, x

)

and

(y

+

, y

) ∈ Opp(X)

are alled adja ent ifthere issome

s ∈ S

su h that

x

+

is

s

-adja entto

y

+

and

x

is

s

-adja ent to

y

. Re all that an opposite pair

x ∈ Opp(X)

is ontained in unique twin apartment, whi h we shall denote by

A(x) = A(x

+

, x

)

. The positive (resp. negative) half of

A(x)

is denoted by

A(x)

+

(resp.

A(x)

).

(5)

Lemma 2.1. Let

ε ∈ {+, −}

. Given any gallery

(x

0

, x

1

, . . . , x

n

)

in

X

ε

and any hamber

y

0

∈ X

ε

opposite

x

0

,there existsa gallery

(y

0

, y

1

, . . . , y

n

)

in

X

ε

su hthat thefollowinghold for all

i = 1, . . . , n

:

(i)

(x

i

, y

i

) ∈ Opp(X)

;

(ii)

(x

i

, y

i

)

is adja ent to

(x

i−1

, y

i−1

)

;

(iii)

y

i

belongs to the twin apartment

A(x

0

, y

0

)

.

Proof. Thedesiredgallery is onstru ted indu tively asfollows. Let

i > 0

. If

y

i−1

is opposite

x

i

,thenset

y

i

= y

i−1

. Otherwise the odistan e

δ

(x

i

, y

i−1

)

is an element

s ∈ S

andthere is a unique hamber inthe twin apartment

A(x

0

, y

0

)

whi h is

s

-adja ent to

y

i−1

. Dene

y

i

to be that hamber. Itfollowsfrom the axiomsof atwinning that

y

i

isopposite

x

i

. Thegallery

(y

0

, y

1

, . . . , y

n

)

onstru ted inthisway satisesallthedesiredproperties.



3. Non-distortion of twinbuilding latti es

In this se tion, we show that a twin building latti e is non-distorted for its natural

diag-onal a tion on its two twinned building. The arguments are elementary and use the basi

ombinatorial geometry of buildings.

3.1. An adapted generating system. Let

Σ

denote the subset of

Γ

onsisting of those elements

γ

su h that

(γ.c

+

, γ.c

)

is adja ent to

(c

+

, c

)

, where

(c

+

, c

) ∈ Opp(X)

denotes the fundamental oppositepair. Noti ethat

max{d

X

+

(c

+

, γ.c

+

); d

X

−(c

, γ.c

)} 6 1

forall

γ ∈ S

.

The graphstru ture on

Opp(X)

indu ed by theaforementioned adja en y relation is iso-morphi to the Cayley graph asso iated to the pair

(Γ, Σ)

. Lemma 2.1 readily implies that this graphis onne ted. Thus

Σ

is agenerating setfor

Γ

.

Lemma 3.1. Let

z = (z

+

, z

)

be a pair of opposite hambers su h that

max{d

X

+(c

+

, z

+

); d

X

−(c

, z

)} 6 1.

Thenthere exists

σ ∈ Σ

su h that

σ.z = c

.

Proof. Itis enough to dealwiththe ase when

max{d

X

+

(c

+

, z

+

); d

X

−(c

, z

)} = 1

.

Ifboth

z

and

z

+

belong to the twin apartment

A = A

⊔ A

+

, we an write

z

+

= w

+

.c

+

and

z

= w

.c

for

w

±

∈ W

uniquely dened by

z

±

. Sin e

z

and

z

+

are assumed to be opposite, the odistan e

δ

(z

, z

+

)

is by denition equal to

1

W

. Sin e the diago-nal

Γ

-a tion on

X

× X

+

preserves odistan es, we dedu e that

w

+

= w

. At last sin e

max{d

X

+

(c

+

, z

+

); d

X

−(c

, z

)} = 1

,we dedu ethat thereexists a anoni al ree tion

s ∈ S

su h that

w

±

= s

and this ree tion is represented by anelement

n

s

∈ Stab

Γ

(A)

;we learly have

n

s

∈ Σ

.

We hen eforth deal withthe ase when at least one of the elements

z

±

does not lie in

A

. Up to swit hing signs, we may  and shall  assume that

z

6∈ A

. Let

s

be the anoni al ree tion su h that

z

is

s

-adja ent to

c

. By the Moufang property, the group

U

α

s

a ts simplytransitively on the hambers

6= c

whi h are

s

-adja ent to

c

. By onjugating by an element

n

s

as above and sin e

z

6= s.c

(be ause

z

6∈ A

), we on lude that there exists

(6)

If

u

+

.z

+

∈ A

+

,then sin e the

Γ

-a tion preservesthe odistan e, the hamber

u

+

.z

+

∈ A

+

is the unique hamber in

A

whi h is opposite

c

= u

+

.z

, namely

c

+

; we are thus done in this ase be ause we learly have

u

+

∈ Σ

.

We nish by onsidering the ase when

u

+

.z

+

6∈ A

+

. Then there exists some anoni al ree tion

t ∈ S

su h that

u

+

.z

+

is

t

-adja ent to

c

+

and we an nd similarly an element

u

∈ U

α

t

\ {1}

su h that

u

.(u

+

.z

+

) = c

+

. Setting

σ = u

u

+

, we obtain an element of

Γ

sending

z

±

to

c

±

. Sin ethe

Γ

-a tionpreservesea hadja en yrelation,hen ethe ombinatorial distan es,wehave

σ ∈ Σ

be ause

d

X

−(c

, σ.c

) = d

X

−(u

1

.c

, u

+

.c

) = d

X

−(c

, u

+

.c

) = 1

and

d

X

+

(c

+

, σ.c

+

) = d

X

+

(c

+

, u

.c

+

) = 1

.



3.2. Proof of non-distortion. We denethe ombinatorial distan e

d

X

of the hamberset of

X

by

d

X

(x

+

, x

), (y

+

, y

)



= d

X

+

(x

+

, y

+

) + d

X

−(x

, y

).

Sin e the

G

-a tion on

X

is o ompa t, it follows from the ’var Milnor lemma [BH99, Proposition I.8.19℄ that

G

is quasi-isometri to

X

. Hen e Theorem 1.1 is an immediate onsequen e of the following.

Proposition 3.2. Let

Γ < G = G

+

× G

be a twin building latti e asso iated withthe twin building

X = X

+

× X

and let

c = (c

+

, c

) ∈ X

be a pair of opposite hambers. Then for ea h

γ ∈ Γ

,we have:

1

2

d

X

(c, γ.c) 6 |γ|

Σ

6

2d

X

(c, γ.c).

Proof of Proposition 3.2. Writing

γ ∈ Γ

asa produ tof

|γ|

Σ

elements ofthegeneratingset

Σ

andusing triangleinequalities, weobtain

d

X

(c, γ.c) 6 2|γ|

Σ

bythedenitionof

d

X

and of

Σ

.

It remains to prove the other inequality, whi h says that

Γ

-orbits spread enough in

X

. We set

x = (x

+

, x

) = γ

1

.c

. Let us pi k a minimal gallery in

X

, from

x

to

c

. Using auxiliary positive hambers, one opposite for ea h hamber of the latter gallery, a repeated

use ofLemma 3.1shows thatthere exists

γ

∈ Γ

su hthat

γ

.x

= c

and

(∗)

|

Σ

6

d

X

−(c

, x

)

.

Moreoverasinthe rstparagraph, we have:

(∗∗)

d

X

+

(c

+

, γ

.c

+

) 6 |γ

|

Σ

,

bythedenitionof

Σ

. We dedu e:

d

X

+

(c

+

, γ

.x

+

) 6 d

X

+

(c

+

, γ

.c

+

) + d

X

+

.c

+

, γ

.x

+

)

6

|

Σ

+ d

X

+

(c

+

, x

+

)

6

d

X

−(c

, x

) + d

X

+

(c

+

, x

+

),

su essively by the triangle inequality, by

(∗∗)

and thefa t the

Γ

-a tion is isometri for the ombinatorial distan es on hambers, and by

(∗)

. Therefore,bydenition of

d

X

, we already have:

(∗ ∗ ∗)

d

X

+

(c

+

, γ

.x

+

) 6 d

X

(c, x)

.

We now onstru t a suitable element

γ

+

∈ Γ

su h that

γ

+

.x

+

= c

+

and

γ

+

.c

= c

. Let

(7)

be thetwin apartment dened by the opposite pair

c = (c

+

, c

)

. Let

c

0

= c

, c

1

, . . . , c

k

be the gallery ontained in

A

+

and asso iated to

z

0

, z

1

, . . . , z

k

= c

+

as in Lemma 2.1. Noti e that, sin e

c

k

is opposite

z

k

= c

+

and sin e

c

is theunique hamber of

A

opposite

c

+

,we have

c

k

= c

.

By Lemma 3.1, there exists

σ

1

∈ Σ

su h that

σ

1

.z

k−1

= z

k

and

σ

1

.c

k−1

= c

k

. Moreover a straightforward indu tive argument yields for ea h

i ∈ {1, . . . , k}

an element

σ

i

∈ Σ

su h that

σ

i

σ

i−1

. . . σ

1

.z

k−i

= z

k

and

σ

i

σ

i−1

. . . σ

1

.c

k−i

= c

k

. Let now

γ

+

= σ

k

. . . σ

1

, so that

+

|

Σ

6

k = d

X

+

(c

+

, γ

.x

+

)

. By onstru tion, we have

γ

+

.(γ

.x

+

) = c

+

and

γ

+

.c

= c

, that is

+

γ

).x = c

. Therefore

+

γ

γ

1

).c = c

and hen e there is

σ ∈ Σ

su h that

γ = σγ

+

γ

. In fa t, sin e

σ

xes

c

,it follows that

σσ

∈ Σ

for ea h

σ

∈ Σ

. Upon repla ing

σ

k

by

σσ

k

,wemay and shallassume that

γ = γ

+

γ

. Therefore we have:

|γ|

Σ

6

+

|

Σ

+ |γ

|

Σ

6

d

X

+

(c

+

, γ

.x

+

) + d

X

−(c

, x

),

the last inequality oming from

+

|

Σ

6

k = d

X

+

(c

+

, γ

.x

+

)

and

(∗)

above. By

(∗ ∗ ∗)

and the denitionof

d

X

,this nallyprovides

|γ|

Σ

6

2 · d

X

(c, γ.c)

,whi h nishestheproof.



3.3. A remark on distortion of latti es in rank one groups. Let

G = G

+

× G

be produ t of two totally dis onne ted lo ally ompa t groups, let

π

±

: G → G

±

denote the anoni al proje tions and let

Γ < G

be a nitely generated latti e. Assume that

π

(Γ)

is o ompa t in

G

(this is automati for example if

Γ

isirredu ible). Letalso

U

< G

be a ompa t open subgroup and set

Γ

= Γ ∩ (G

+

× U

)

. Then theproje tion of

Γ

to

G

+

is a latti e, and itis straightforward to verifythat, if

Γ

is nitely generated and undistorted in

G

, then

Γ

isundistorted in

G

.

Weemphasizehoweverthat,inthe aseoftwinbuildinglatti es,thelatti e

Γ

shouldnotbe expe tedtobeundistortedin

G

beyondtheane ase(whi h orrespondstothe lassi al ase of arithmeti latti esinsemi-simple groups overlo alfun tion elds). Indeed,a typi al

non-ane aseiswhen

G

+

and

G

areGromovhyperboli (equivalently,theWeylgroupisGromov hyperboli or, still equivalently, ea h of the buildings

X

+

and

X

are Gromov hyperboli ). Then anon-uniform latti e in

G

+

isalways distorted, asfollows fromthefollowing.

Lemma 3.3. Let

G

be a ompa tly generated Gromov hyperboli totally dis onne ted lo ally ompa t group and

Γ < G

be a nitely generated latti e. Then the following assertions are equivalent.

(i)

Γ

isa uniform latti e. (ii)

Γ

isundistorted in

G

.

(iii)

Γ

isa Gromov hyperboli group.

Proof. (i)

(ii)Follows fromthe ’var Milnor Lemma.

(ii)

(iii) Follows fromthewell-knownfa tthataquasi-isometri ally embedded subgroupof a Gromovhyperboli groupisquasi- onvex.

(iii)

(i) By Serre's ovolume formula (see [Ser71℄) a non-uniform latti e in a totally dis- onne ted lo ally ompa t grouppossessesnite subgroups of arbitrarylarge order, and an

(8)

3.4. Various notions of rank. Asa onsequen e of Theorem 1.1, we obtain the following estimate for one of the most basi quasi-isometri invariants atta hed to a nitely generated

group.

Corollary 3.4. Let

Γ < G = G

+

× G

be a twin building latti e with nite symmetri generating subset

Σ

. Let

r

denote the quasi-at rankof

(Γ, d

Σ

)

andlet

R

denotethe at rank of the building

X

±

. Thenwe have:

R 6 r 6 2R

.

Re all that by denition, the at rank (resp. quasi-at rank) of a metri spa e is

the maximal rank of a at (resp. quasi-at), i.e. an isometri ally embedded (resp.

quasi-isometri ally embedded) opy of

R

n

. By [CH09℄ the at rank of a building oin ides with

themaximal rankof afreeAbelian subgroupof itsWeylgroup

W

,and thisquantitymaybe omputed expli itlyintermsof theCoxeterdiagram of

W

,see[Kra09,Theorem 6.8.3℄. Proof of Corollary 3.4. Let us rst prove

r 6 2R

. Let

ϕ : (R

r

, d

eucl

) → (Γ, d

Σ

)

denote a quasi-isometri embedding ofa Eu lidean spa eintheCayley graphof

Γ

. Withthenotation of Proposition 3.2, we know that the orbit map

ω

c

: Γ → X

+

× X

dened by

γ 7→ γ.c

is a quasi-isometri embedding. Therefore the omposed map

ω

c

◦ ϕ : (R

r

, d

eucl

) → X

+

× X

isa quasi-isometri embedding. By[Kle99, Theorem C℄,this implies theexisten e ofats of

dimension

r

inthe produ toftwo spa es ofat rank

R

;hen e

r 6 2R

.

We now turn to the inequality

R 6 r

. Asmentioned above, itis shown in[CH09℄theat rank of a building oin ides with the at rank of any of its apartment. Sin e the standard

twinapartment is ontainedinthe imageof

Γ

undertheorbitmap

Γ → X

+

× X

,thedesired inequalityfollowsdire tly fromthenon-distortion of

Γ

establishedinProposition 3.2.



Note that another notion of rank, relevant to G. Willis' general theory of totally

dis on-ne ted lo ally ompa t groups, isdis ussed forthefullautomorphism groups

G

±

= Aut(X

±

)

in[BRW07℄,and turnsout to oin ide withtheabove notions ofrank.

Proof of Corollary 1.2. Sin e there exist twin buildings of arbitrary at rank ( hoose for in-stan e Dynkin diagrams su h that the asso iated Coxeter diagram ontains more and more

ommuting

A

e

2

-diagrams),wededu ethattwinbuildinglatti esfallintoinnitelymany quasi-isometry lasses. Thisobservationmaybe ombinedwiththesimpli itytheoremfrom[CR09℄

toyield thedesiredresult.



Appendix A. Integrability of undistorted latti es

Inthisse tion, wegiveupthespe i settingoftwinbuildinglatti esandprovide asimple

onditionensuringthatnon-distortednitelygeneratedlatti esintotallydis onne tedgroups

are square-integrable.

A.1. S hreiergraphs andlatti ea tions. Letusa onsideratotallydis onne ted,lo ally

ompa t group

G

. As before we assume that

G

ontains a nitely generated latti e, say

Γ

, whi h implies that

G

is ompa tly generated [CM08, Lemma 2.12℄. By [Bou07, III.4.6, Corollaire1℄,we knowthat

G

ontainsa ompa t open subgroup,say

U

. Let

C

bea ompa t generatingsubsetof

G

whi h,upon repla ing

C

by

C ∪ C

1

,we mayandshall assumeto

be symmetri :

C = C

1

. We set

Σ = U CU

b

,whi h isstill a symmetri generatingset for

G

. We nowintrodu e theS hreier graph

g

(9)

have

g

1

h ∈ b

Σ

[Mon01,Ÿ11.3℄. The natural

G

-a tionon

g

by left translation is proper, and itisisometri wheneverwe endow

g

with themetri

d

g

for whi hall edgeshave length 1. We view theidentity lass

1

G

U

asabasevertex ofthegraph

g

,whi h we denoteby

v

0

.

Denotingby

k · k

b

Σ

theword metri on

G

atta hed to

Σ

b

,wehave:

kgk

b

Σ

= d

Σ

b

(1

G

, g)

for any

g ∈ G

. Noti e that the generating set

Σ

b

of

G

onsistsbydenition of those elements

g ∈ G

su hthat

d

g

(v

0

, g.v

0

) 6 1

. Inparti ular, forall

g, h ∈ G

,we have:

d

g

(g.v

0

, h.v

0

) 6 d

Σ

b

(g, h) 6 d

g

(g.v

0

, h.v

0

) + 1.

Moreover

d

g

(g.v

0

, h.v

0

) = d

Σ

b

(g, h)

whenever

g.v

0

6= h.v

0

.

In thepresent setting, using again[Bou07,III.4.6,Corollaire 1℄andthedis reteness ofthe

Γ

-a tion, we may  and shall  work with a S hreier graph

g

dened by a ompa t open subgroup

U

small enough to satisfy

Γ ∩ U = {1

G

}

. Thus we have:

Stab

Γ

(v

0

) = Γ ∩ U = {1

G

}.

Let

V

= {v

0

, v

1

, . . . }

beasetofrepresentativesforthe

Γ

-orbitsofverti es. Theelement

v

0

isthepreviousone,andforea h

i > 0

,we hoose

v

i

insu hawaythat

d

g

(v

i

, v

0

) 6 d

g

(v

i

, γ.v

0

)

forall

γ ∈ Γ

;this ispossible be ause the distan e

d

g

takesintegral values. Weset

g

0

= 1

; for ea h

i > 0

,sin e the

G

-a tion onthe verti es of

g

is transitive,there exists

g

i

∈ G

su h that

g

i

.v

i

= v

0

. Thus for any

g ∈ G

there exists

j > 0

su h that

g.v

0

∈ Γ.v

i

,whi h provides the partition:

G =

G

j>

0

Γg

1

j

U.

Furthermore, for ea h

i > 0

, we hoose a Borel subset

V

i

⊂ U

whi h is a se tion of the right

U

-orbitmap

U → Γ \ (Γg

1

i

U )

dened by

u 7→ Γg

1

i

u

. Setting

F

i

= g

1

i

V

i

g

i

,we obtain a subset

F

i

of

Stab

G

(v

i

)

su h that

F

=

G

i>0

F

v

i

g

1

i

isa Borelfundamental domain for

Γ

in

G

. We normalize the Haarmeasure on

G

so that

F

hasvolume

1

.

A.2. Non-distortion implies square-integrability. We an nowturn to theproof ofthe

latterimpli ation,more pre isely Theorem1.3.

Proof of Theorem 1.3. Let

g ∈ G

and

h ∈ F

.

On the one hand, by denition of the indu tion o y le

α : G × F → Γ

, the element

α(g, h) = γ ∈ Γ

is dened by

γhg ∈ F

. Therefore, by onstru tion of the fundamental domain

F

, there exist

i > 0

and

u ∈ F

i

su h that

γhg = ug

1

i

. Let us apply the latter element to the origin

v

0

of

g

. We obtain

γhg.v

0

= ug

1

i

v

0

= u.v

i

, and sin e

u ∈ F

i

and

F

i

⊂ Stab

G

(v

i

)

, this nallyprovides

γhg.v

0

= v

i

. By this and the hoi e of

v

i

inits

Γ

-orbit, wehave:

(⋆)

d

g

(v

0

, v

i

) 6 d

g

(v

0

, γ

1

.v

i

) = d

g

(v

0

, hg.v

0

)

.

On the other hand, let

Σ

be a nite symmetri generating set for

Γ

and let

d

Σ

be the asso iated word metri ; we set

|γ|

Σ

= d

Σ

(1

G

, γ)

for

γ ∈ Γ

. Sin e the metri spa es

(G, d

b

Σ

)

and

(g, d

(10)

fa tthatthe

Γ

-orbitmap

Γ → g

of

v

0

dened by

γ 7→ γ.v

0

isaquasi-isometri embedding. In parti ular, there exist onstants

L > 1

and

M > 0

su hthat

|γ|

Σ

6

L · d

g

(v

0

, γ.v

0

) + C

for all

γ ∈ Γ

. Moreover

d

g

takes integer values and

Stab

Γ

(v

0

) = {1

G

}

, so for all non-trivial

γ ∈ Γ

we have:

L.d

g

(v

0

, γ.v

0

) + C 6 (L + C).d

g

(v

0

, γ.v

0

)

. Therefore, upon repla ing

L

by a larger onstant we may and shallassumethat

C = 0

.

Ouraimistoevaluate

|γ|

Σ

= |α(g, h)|

Σ

intermsof

kgk

b

Σ

and

khk

b

Σ

. Notethat

|γ|

Σ

= |γ

1

|

Σ

sin e

Σ

issymmetri .

First, we dedu e su essively from non-distortion, from the triangle inequality inserting

γ

1

.v

i

,and fromthe fa tthat the

Γ

-a tionon

g

isisometri ,that:

1

|

Σ

6

L · d

g

(v

0

, γ

1

.v

0

)

6

L · d

g

(v

0

, γ

1

.v

j

) + d

g

1

.v

0

, γ

1

.v

j

)



6

L · d

g

(v

0

, γ

1

.v

j

) + d

g

(v

0

, v

j

)



.

Then,wededu esu essivelyfrom

(⋆)

,fromthetriangleinequalityinserting

h.v

0

,andfrom the fa tthatthe

G

-a tionon

g

is isometri ,that:

1

|

Σ

6

2L · d

g

(v

0

, hg.v

0

)

6

2L · d

g

(v

0

, h.v

0

) + d

g

(h.v

0

, hg.v

0

)



6

2L · d

g

(v

0

, h.v

0

) + d

g

(v

0

, g.v

0

)



.

Finally, bydenition of the S hreier graph we dedu e that

1

|

Σ

6

2L · kgk

Σ

b

+ khk

Σ

b



.

Re allthat we want to prove that the fun tion

h 7→ |α(g, h)|

Σ

belongs to

L

p

(F , dh)

. Sin e

Vol(F , dh) = 1

, sodoes the onstant fun tion

h 7→ kgk

b

Σ

, therefore it remains to prove the

lemmabelow.



Lemma A.1. The fun tion

h 7→ khk

b

Σ

belongs to

L

p

(F , dh)

.

Proof. Let

h ∈ F

. By onstru tion ofthe fundamentaldomain

F

,thereexist

i > 0

and

u

i

in

F

i

,hen ein

Stab

G

(v

i

)

,su hthat

h = u

i

g

1

i

. Thisimplies

h.v

0

= u

i

.(g

1

i

.v

0

) = u

i

.v

i

= v

i

,and also

(γh).v

0

= γ.v

i

for ea h

γ ∈ Γ

. Now the expli it form of the quasi-isometry equivalen e (A.1) between

(g, d

g

)

and

(G, d

b

Σ

)

implies:

d

g

(v

0

, h.v

0

) 6 khk

Σ

b

6

d

g

(v

0

, h.v

0

) + 1

, and

d

g

(v

0

, (γh).v

0

) 6 kγhk

Σ

b

6

d

g

(v

0

, (γh).v

0

) + 1

.

Moreover by the hoi e of

v

i

in its

Γ

-orbit, we have

d

g

(v

0

, h.v

0

) 6 d

g

(v

0

, (γh).v

0

)

for any

γ ∈ Γ

. Thisallows us to put togethertheabove two doubleinequalities, and to obtain (after forgetting the extreme upperandlower bounds):

(†)

khk

Σ

b

6

kγhk

Σ

b

+ 1

.

forany

h ∈ F

and

γ ∈ Γ

.

(11)

Butinviewof

(†)

and oftheunimodularity of

G

(whi h ontains a latti e),wehave:

Z

F ∩γ

−1

khk

Σ

b



p

dh 6

Z

F ∩γ

−1

kγhk

Σ

b

+ 1



p

dh =

Z

γF ∩Ω

khk

Σ

b

+ 1



p

dh

,

whi h nallyprovides

Z

F

khk

Σ

b



p

dh 6

X

γ∈Γ

Z

γF ∩Ω

khk

Σ

b

+ 1



p

dh =

Z

khk

Σ

b

+ 1



p

dh

.

The on lusionfollows be ause

F

hasHaarvolume equal to 1and be ause byassumption

h 7→ khk

Σ

b

belongs to

L

p

(Ω, dh)

.



A.3.

p

-integrability of twin building latti es. Letus nish bymentioningthe following fa t whi h, using Theorem 1.3, allows us to prove the main result of [Rém05℄ in a more on eptualway.

Lemma A.2. Let

Γ

be a twin building latti e and let

G

be the produ t of the automorphism groupsof the asso iated buildings

X

±

. Let

W

be the Weyl group and

P

n>0

c

n

t

n

be the growth seriesof

W

withrespe ttoits anoni alsetofgenerators

S

,i.e.,

c

n

= #{w ∈ W : ℓ

S

(w) = n}

. Let

q

min

denote the minimal order of root groups and assume that

P

n>0

c

n

q

min

−n

< ∞

. Then

Γ

admits a fundamental domain

F

in

G

, with asso iated indu tion o y le

α

F

, su h that

h 7→ α

F

(g, h)

belongs to

L

p

(F , dh)

for any

g ∈ G

and any

p ∈ [1; +∞)

.

Proof. We freely use the notation of 3.1 and [Rém05℄. We denote by

B

±

the stabilizer of the standard hamber

c

±

in the losure

Γ

Aut(X

±

)

. By [lo . it.℄ there is a fundamental

domain

F

= D =

F

w∈W

D

w

su h that

Vol(D

w

, dh) 6 q

S

(w)

min

. If we hoose the ompa t generating set

Σ =

b

F

(s

,s

+

)∈S×S

B

s

B

× B

+

s

+

B

+

, we see that by denition of

D

w

, whi h his ontained in

B

× B

+

w

, we have

khk

b

Σ

6

S

(w)

for any

w ∈ W \ {1}

and any

h ∈ D

w

. Therefore for any

p ∈ [1; +∞)

we have:

Z

F

khk

Σ

b



p

dh 6

X

n>0

n

p

c

n

q

min

n

,from whi h

the on lusionfollows.



Referen es

[AB08℄ Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathemati s, vol. 248,

Springer,NewYork,2008,Theoryandappli ations. MRMR2439729(2009g:20055)3

[BCS01℄ J. Burillo, S. Cleary, and M. I. Stein, Metri s and embeddings of generalizations of Thompson's

group

F

, Trans. Amer. Math. So . 353 (2001), no. 4, 16771689 (ele troni ). MR MR1806724 (2001k:20087)2

[BH99℄ MartinR.Bridsonand AndréHaeiger, Metri spa esof non-positive urvature,Grundlehren der

Mathematis henWissens haften,vol.319, Springer,1999.1,5

[BM01℄ Mar Burgerand ShaharMozes,Latti esinprodu t oftrees,Inst.HautesÉtudesS i.Publ.Math.

92(2001),151194.2

[Bou07℄ Ni olas Bourbaki,Élémentsde mathématique.Topologiegénérale.Chapitres 1à4,Springer,2007.

(12)

[Bro92℄ KennethS.Brown, Thegeometryof nitelypresented innitesimple groups,Algorithms and

las-si ationin ombinatorialgrouptheory(Berkeley,CA, 1989),Math. S i.Res.Inst.Publ., vol.23,

Springer,NewYork,1992,pp.121136.2

[BRW07℄ U.Baumgartner,B. Rémy,andG.A.Willis,Flatrankof automorphismgroups ofbuildings,

Trans-formationGroups12(2007),413436.7

[CG99℄ Lisa Carbone and HowardGarland, Latti es in Ka -Moody groups, Math. Res.Letters 6 (1999),

439448.1

[CH09℄ Pierre-EmmanuelCapra eandFrédéri Haglund,Ongeometri alatsintheCAT

(0)

-realization of CoxetergroupsandTitsbuildings,Canad.J.Math.61(2009),740761.7

[CM08℄ Pierre-Emmanuel Capra e and Ni olas Monod, Isometry groups of non-positively urved spa es:

Dis retesubgroups,Preprint,2008.1,7

[CR09℄ Pierre-EmmanuelCapra eandBertrandRémy,Simpli ityandsuperrigidityoftwinbuildinglatti es,

Invent.Math.176(2009),no.1,169221. MRMR24858821,3,7

[DS07℄ Jan Dymara and Thomas S hi k, Buildings have nite asymptoti dimension, Preprint,

arXiv:math/0703199v1, 2007.2

[GKM08℄ Tsa hikGelander,AndersKarlsson, andGregoryA.Margulis, Superrigidity,generalizedharmoni

mapsanduniformly onvexspa es,Geom.Fun t.Anal.17(2008),15241550. 3

[GM℄ Ralf Gramli h and Bernhard Mühlherr, The entraliser of a ip is a latti e, Unpublished note,

http://www.mathematik.tu-darms tadt .de/

gr amli h/do s/la tti e_not e.pdf .2

[Hig74℄ Graham Higman,Finitely presented innitesimplegroups,Department ofPureMathemati s,

De-partment of Mathemati s, I.A.S.Australian National University, Canberra, 1974, Notes onPure

Mathemati s,No.8(1974).2

[Kle99℄ Bru e Kleiner, The lo al stru ture of length spa es with urvature bounded above, Math. Z. 231

(1999),409456.7

[Kra09℄ Daan Krammer,The onjuga y problem for Coxeter groups, GroupsGeom. Dyn.3(2009), no. 1,

71171. MRMR24660212,7

[LMR01℄ Alexander Lubotzky, Shahar Mozes, and MadabusiSantanam Raghunathan, The word and

Rie-mannianmetri sonlatti esof semisimplegroups,Inst.HautesÉtudesS i.Publ.Math.91(2001),

553.1

[Mar91℄ GregoryA.Margulis,Dis retesubgroupsofsemisimpleLiegroups,ErgebnissederMathematikund

ihrerGrenzgebiete(3),vol.17, Springer,1991.3

[Mon01℄ Ni olasMonod,Continuousbounded ohomologyoflo ally ompa tgroups,Le tureNotesin

Math-emati s,vol.1758,Springer,2001.8

[Mon06℄ ,Superrigidityforirredu iblelatti esandgeometri splitting,J.Amer.Math.So .19(2006),

781814.3

[Pap95℄ Panagiotis Papasoglu, Homogeneous trees are bi-Lips hitz equivalent, Geom. Dedi ata 54 (1995),

301306.2

[Rém99℄ BertrandRémy,Constru tionderéseauxenthéoriedeKa -Moody,C.R.A ad.S .Paris329(1999),

475478.1

[Rém05℄ ,Integrabilityofindu tion o y lesforKa -Moodygroups,Math.Ann.333(2005),2943.3,

10

[Röv99℄ Claas E. Röver, Constru ting nitely presented simple groups that ontain Grigor huk groups, J.

Algebra220(1999),no.1,284313.2

[S o92℄ Elizabeth A.S ott, A touraround nitelypresented innitesimple groups, Algorithmsand

lassi- ation in ombinatorial grouptheory(Berkeley, CA, 1989), Math. S i. Res.Inst. Publ., vol. 23,

Springer,New York,1992,pp.83119.2

[Ser71℄ Jean-Pierre Serre, Cohomologie des groupes dis rets, Prospe ts in mathemati s (Pro . Sympos.,

Prin etonUniv.,Prin eton,N.J.,1970),Prin etonUniv.Press,Prin eton, N.J.,1971, pp.77169.

Ann.ofMath.Studies,No.70. MRMR0385006(52#5876)6

[Sha00℄ YehudaShalom,Rigidityof ommensuratorsandirredu iblelatti es,Invent.Math.141(2000),154.

2,3

(13)

UniversitéCatholiquedeLouvain,Chemin duCy lotron2,1348Louvain-la-Neuve,Belgium

E-mail address: pierre-emmanuel. apra eu louv ain.b e

UniversitédeLyon,UniversitéLyon 1,InstitutCamilleJordan, UMR5208duCNRS,

Bâti-ment J.Bra onnier,43 blvddu11 novembre1918, F-69622VilleurbanneCedexFran e

Références

Documents relatifs

In other words, the joint distribution of the number of non-initial contacts (of the lower path) and the initial rise (of the upper path) is symmetric.. For any ring A, we denote

This stands in sharp contrast to the finite-dimensional situation: as follows from the classification achieved in [ Tit74 ] (see also [ TW02 ]), any group endowed with a twin root

Actually we do not limit our study to masures associated to Kac-Moody groups: for us a masure is a set satisfying the axioms of [Héb17] (which are equivalent to the axioms of

This stands in sharp contrast to the finite-dimensional situation: as follows from the classification achieved in [70] (see also [75]), any group endowed with a twin root datum

This article is written as follows. Section 2 consists of preliminaries. Section 3 provides the aforementioned geometric proof of non-distortion and deals with the various

It originates in the observation that the construction of the Boolean algebra of the proof of Theorem A does not rely on the Axiom of Choice (but it has size the continuum), while

(6) All finite subdirectly irreducible members of SUB( LO ) are projective within SUB( LO ) (Theorem 12.4), and every subquasivariety of SUB( LO ) is a variety (Theorem 12.5).. The

The Strong Independence Theorem for automorphism groups and congruence lattices of arbitrary lattices.. George Grätzer,