• Aucun résultat trouvé

Photochemical synthesis of a "cage" compound in a microreactor: Rigorous comparison with a batch photoreactor

N/A
N/A
Protected

Academic year: 2021

Partager "Photochemical synthesis of a "cage" compound in a microreactor: Rigorous comparison with a batch photoreactor"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-00881067

https://hal.archives-ouvertes.fr/hal-00881067

Submitted on 7 Nov 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Photochemical synthesis of a ”cage” compound in a

microreactor: Rigorous comparison with a batch

photoreactor

Tristan Aillet, Karine Loubiere, Odile Dechy-Cabaret, Laurent E. Prat

To cite this version:

Tristan Aillet, Karine Loubiere, Odile Dechy-Cabaret, Laurent E. Prat.

Photochemical

synthe-sis of a ”cage” compound in a microreactor: Rigorous comparison with a batch photoreactor.

Chemical Engineering and Processing: Process Intensification, Elsevier, 2013, Vol. 64, pp. 38-47.

�10.1016/j.cep.2012.10.017�. �hal-00881067�

(2)

To link to this article

: DOI:10.1016/j.cep.2012.10.017

http://dx.doi.org/10.1016/j.cep.2012.10.017

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 9908

To cite this version:

Aillet, Tristan and Loubiere, Karine and Dechy-Cabaret, Odile and Prat,

Laurent E. Photochemical synthesis of a “cage” compound in a

microreactor: Rigorous comparison with a batch photoreactor. (2013)

Chemical Engineering and Processing: Process Intensification, Vol. 64 .

pp. 38-47. ISSN 0255-2701

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Photochemical

synthesis

of

a

“cage”

compound

in

a

microreactor:

Rigorous

comparison

with

a

batch

photoreactor

Tristan

Aillet

a,b

,

Karine

Loubiere

a,b,∗

,

Odile

Dechy-Cabaret

a,c

,

Laurent

Prat

a,b

aUniversitédeToulouse,INPT,ENSIACET,4alléeEmileMonso,BP84234,F-31432Toulouse,France bCNRS,LaboratoiredeGénieChimique(LGCUMR5503),F-31432Toulouse,France

cCNRS,LaboratoiredeChimiedeCoordination(LCCUPR8241),205routedeNarbonne,F-31077Toulouse,France

Keywords: Flowphotochemistry Microreactor Batchphotoreactor Radiationfield Modeling

a

b

s

t

r

a

c

t

Anintramolecular[2+2]photocycloadditionisperformedinamicrophotoreactor(0.81mL)builtby windingFEPtubingaroundacommerciallyavailablePyreximmersionwellinwhichamediumpressure mercurylampisinserted.Arigorouscomparisonwithabatchphotoreactor(225mL)isproposedby meansofasimplemodelcouplingthereactionkineticswiththemass,momentumandradiativetransfer equations.Thisservesasabasistoexplainwhythechemicalconversionandtheirradiationtimeare respectivelyincreasedandreducedinthemicrophotoreactorrelativetothoseinthebatchphotoreactor. Throughthissimplemodelreaction,somecriteriafortransposingphotochemicalsynthesisfromabatch photoreactortoacontinuousmicrophotoreactoraredefined.

1. Introduction

Photochemistryconcernsthephysicalandchemicalprocesses triggeredbytheabsorptionofphotons.Photochemicalreactions are thusbased on theuseof light (ultra-violet, visible light or sunlight)toprovidetheactivationenergytoinducesynthesisof a targetedmolecule. Whenabsorbinglight, moleculesreachan electronically excited state, where their electronic and nuclear configurationsaredifferentfrom thosein ground state(from a fundamental point of view, these electronic transitions can be describedbymeansofground-stateandexcited-state potential-energyhypersurfacetopology[1]).Thisinducesmajorchangesin thechemicalpropertiesofthemolecules(inparticularreactivity), andoffersthenabroadenedspectrumofpossiblereactionschemes. Inmany cases,usingphotochemistry allowssynthesisroutesto beshortened,andpolycyclicor highlyfunctionalizedstructures tobeobtained,and/ormakesnewproductfamiliesavailablethat aredifficulttoachievewithusualroutes(e.g.byheatingorusing highactivityreagents)[2].Forthesereasons,syntheticorganic pho-tochemistryisanextremelypowerfulmethodfortheconversion of simple substratesinto complex products, openingnew per-spectives,inparticularforthepharmaceuticalindustry[3].Asthe

∗ Correspondingauthorat:CNRS,UniversityofToulouse,LaboratoiredeGénie Chimique(LGCUMR5503),F-31432Toulouse,France.Tel.:+330534323619.

E-mailaddress:Karine.Loubiere@ensiacet.fr(K.Loubiere).

photochemicalsubstrateactivationoftenoccurswithoutadditional reagents,theformation ofby-productsisalsominimized, mak-ingphotochemistryevenmoreattractiveinthemoderncontextof GreenChemistry.Someofthemainapplicationsofphotochemistry arephotopolymerization,photohalogenation, photosulfochlorina-tion, photonitrosation,photooxygenation or photocycloaddition

[2,3]. These photochemical reactions are commonly performed either in batch reactors irradiated from within or in systems includingexternalirradiationusingmultiplelamps(Rayonet-type apparatus)andfallingfilmreactors[1].Despitesomeimpressive large-scaleindustrialapplications(e.g.caprolactamsynthesisfor nylonproduction,vitaminDsynthesis),theindustrialuseof pho-tochemistryisstilllimitedbyconcernsaboutscalabilityoflight sources, efficiency (low selectivity, reactive intermediate com-pounds)andthesafetyofoperations(explosionscausedbyexcess heat).Themajorcauseofthatisconnectedwiththeintroduction andthecontrolofadequateillumination.

Inthelastdecade,microreactiontechnologyhasbeen success-fullydeveloped,usingthefeaturespropertothemicrospace(small amounts offluid, shortmoleculardiffusiondistance,intensified heat and masstransfers, safety)to improvereaction selectivity and yield, particularlywhere by-productsformdue toreaction hot-spots[4].Forphotochemistry,microreactorsofferadditional advantages,namelyhigherspatialilluminationhomogeneityand betterlightpenetrationthroughouttheentirereactordepththan in large-scalereactors. Surprisingly, photochemicalsynthesis in microreactors is rarely encountered in the literature, whereas

(4)

Nomenclature

B0 Napierianopticaldensity C concentration(molm−3) G sphericalirradiance(Wm−2) k kineticconstant(s−1)

L specificintensity(Wm−2sr−1)

LVREA localvolumetricrateofenergyabsorption(Wm−3) LVRPA local volumetric rate of photon absorption

(ein-steins−1m−3)

P photonic power received in the system (ein-steins−1)

q radiativeenergyfluxdensity(Wm−2) R productivity(mols−1)

RL radiusoftheexternalreactorwall(m) RW radiusoftheinternalreactorwall(m) r radialdistanceandlocalrateofreaction(m) STY spacetimeyield(molm−3s−1)

t time(s) Vr volume(m3) X conversion Greekletters

˛ Napierian molar extinction coefficient (Lmol−1cm−1)

1s definedinEq.(24)(m)

ε molarextinctioncoefficient(Lmol−1cm−1)  photonicefficiency(molesofproductpermoleof

photonsreceived)

 anglebetween Euand En(rad)  attenuationcoefficient(m−1)  wavelength(m)

 dynamicviscosity(Pas)  massdensity(kgm−3) ˚ quantumyield(–)

 ratioofthedifferentparametersP,,STY,t ˝ solidangle(sr)

microreactionsystemshavebeenexaminedsuccessfullyinawide rangeofapplicationsofanalyticalandorganicchemistry.Mostof theseworksdealwithorganicsynthesisphotoreactionswhere sup-portedcatalystsareinvolved(titaniacoatedchips)[5–7]and,asyet, littleresearchisconcernedwithphotochemicalreactionswithout supportedcatalysts [8–15]. The knownadvantages of microre-actors for photochemistry are mainly the enhancement of the chemicalconversionandselectivity,andthereductionofthe irra-diationtime[16,17].Atpresent,therearenoreportsofattempts tounderstandandmodelsuchresultsfroma classicalchemical engineeringapproachinwhichreactionkineticsandconservation equations(mass,momentum,thermalenergyandradiative trans-fer)arecoupled.Forexample,aninterestingcomparisonbetween abatchRayonetreactorandvariousmicroreactorshasbeen pro-posedrecentlybyShvydkivetal.[18].Thecriteriausedconcern conversionrates(spacetimeyield),reactorgeometry(illuminated areaandvolume)andlamppowerperilluminated area,butno modelingisproposed.

Inkeepingwiththisscientificcontext,thispaperpresentsan application of microreactors for photochemistry. The synthesis ofpentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dionebyan intra-molecular [2+2] photocycloaddition was chosen as the model reactionsincethispentacyclic‘cage’compoundcanbeof therapeu-ticinterest[19–21].Moreover,thisreactionofferstheadvantageof havingasimplekineticschemeasthephotochemicalexcitationof thereactantleadstoasinglenon-absorbingproduct.

Theobjectivesofthisworkwere,firstly,toquantifythe ben-efitsofmicroreactorsforperformingthisphotochemicalreaction (especiallywhencomparedtoaconventionalbatchphotoreactor) and, secondly, toidentifythe parameters required for compar-ingphotoreactorperformanceandfortransposingphotochemical reactions from batch to continuous reactors. For this purpose, experimentswereconductedinamicrophotoreactorandinabatch photoreactor.Foreachsystem,theconversionintothecage com-poundwasmeasuredasafunctionofirradiationtimesandreagent concentrations.Basedonradiationtransferandmassbalances,a modelisproposedandsomecriteriaforreactorcomparisonare defined.

2. Materialsandmethods

2.1. Photochemicalreactionandanalyticalmethods

Asdescribedin Fig.1,thephotochemicalreactionundertest was the synthesis of pentacyclo[5.4.0.02,6.03,10.05,9 ]undecane-8,11-dione 2 (the ‘cage’ compound) via the intramolecular [2+2]-photocycloaddition of 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione1.Reagent1waseitherprepared through a Diels–Alder reaction involving cyclopentadiene and 1,4-benzoquinone[22],orpurchaseddirectly(CAS:51175-59-8).

ThereagentsolutioncouldbeformulatedfromtheDiels–Alder compound(174.2gmol−1)dilutedinethylacetate.Themaximum absorptionof theresultingsolutionsoccurredbetween365and 372nm,asshowninFig.2a.At365nm,themolarabsorptivityof reagent1(ε1)wasdeterminedusingaspectrophotometer (Ultra-spec1000PharmaciaBiotech®),andfoundtobe

ε1=61.81Lmol−1cm−1 (1)

Thisparameterisingood agreementwiththemolar extinc-tioncoefficientsfoundintheliteratureforelectronictransitions S0→S1ofthen→*type[1].Inaddition,itisinterestingtonote thatnoabsorptionofthecagecompound2wasobservedat365nm (Fig.2b).

Duringthephotochemicalreaction(i.e.atdifferentirradiation times),samples(0.8mLinthemicroreactor,4mLinthebatch reac-tor)weretakenandstoredinthedarkinarefrigerator.Then,the solventwasremovedunderreducedpressureandconversionwas calculatedby1HNMRinCDCl

3.

2.2. Descriptionofthemicrophotoreactorandbatchphotoreactor AsillustratedinFig.3a,themicroreactorimplementedfor pho-tochemistry wasconstructedby winding tubing (508mm inner diameter,1587.5mmouterdiameter,4mlength)inasinglepass aroundacommerciallyavailableimmersionwellmadeofPyrex (50mm outer diameter, 200mm length). Fluorinated Ethylene Propylene(FEP)waschosenasthetubingmaterialbecauseitis veryversatile,solventresistantandhasexcellentUV-transmission properties [23]. Tubingwasfixedto thewellusing stickytape andwascoveredbyaluminumfoiltopreventtheescapeofUV radiation.

Aluminumfoilwasalsousedtoprotectthesupplysyringeand theinletandoutletsectionsofthetubingfromUVlight,thus ensur-ingthatthephotochemicalreactiontookplaceonlyinthetubing sectionwoundaroundthewell,andthattheirradiationtime(tirrad) couldbeassumedequaltotheresidencetime(tS)inthiswound section(4mlong).Thesolutiontobeirradiatedwasfedintothe reactor tubing by a syringe pump (PHD2000 Harvard). Atthe exitofthetubing,sampleswerecollectedafterasteadystatehad beenreached(threetimestheresidencetime).Theflowrate(Q)

(5)

Fig.1. Photochemicalreactionundertest(synthesisofacagecompoundviaanintramolecular[2+2]-photocycloaddition). 0 0.5 1 1.5 2 300 350 400 450 500 550 600 Wavelength (nm) Absorbance (-) Absorbance (-) 0 0,5 1 1,5 2 300 350 400 450 500 Wavelength (nm) (a) (b)

Fig.2. Absorptionspectrumwithanopticaldepthof10mmof(a)the1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dionecompound(1)inanethylacetate solution(CA0= 0.02 mol L

−1

),and(b)the‘cage’compound(2)inanethylacetatesolution(CA0= 0.02 mol L

−1

).

variedbetween0.8and98mLh−1,thuscoveringarangeof irradi-ationtimesfrom30sto1hdefinedaccordingto:

tirrad=tS=Vr

Q (2)

where Vr isthevolume inthewound tubing section(0.81mL). Considering ethyl acetate as the liquid phase (=894kgm−3, =0.552mPas),thecorrespondingReynoldsnumbersvariedfrom 1.8to116.

Thelampwasinsertedinside thewell,whichwasequipped withadoublejacketconnectedtoanexternalcoolingunitanda refrigeratingwatercirculator.Thetemperaturewasnotmeasured

directlyinsidethemicrophotoreactor:onlythestabilityofthe tem-perature(8◦C)ofthecoolingwatercirculatinginthedoublejacket waschecked,assumingthatsuchadevicethermallyisolatedthe reactionmixturefromtheheatinglamp.

Thelampwasamercuryvapordischargelamp(medium pres-sureHgBa/Srlamp,125W,HPKHeraeus®)havingthedominant emissionlineat366nm,correspondingtothewavelengthdomain where the absorption of the reactant solution was maximum (Fig.2a).

Forcomparison,thephotochemicalreactionundertestwasalso operatedinaconventionalbatchphotoreactor(Fig.3b)havingthe sameimmersionwellastheoneusedforthemicrophotoreactor.

(6)

Table1

Technicalcharacteristicsofthephotoreactors.

Parameters Batchreactor Microreactor Depthoflightpenetration(cm) 0.62 0.0508 Irradiatedareaa(cm2) 300 16

Irradiatedvolume(cm3) 225 0.81

Irradiatedarea/volumeratio(m2m−3) 1.33 19.75 aCalculatedconsideringareactorwithannulargeometry(seeFig.5):S

irrad=

Vr/1swhere1siscalculatedwithEq.(24).

Table2

Photochemicalreactionstepsandassociatedkineticrate.

Reactionsteps Kineticrate

Activationstep:A−→Ah ∗ r

= (LVRPA),A

Deactivationstep:A∗A r d= kd· CA∗

Reaction:A∗B r

B= kr· CA∗

Thevolumeoftheirradiatedsolution,Vr,was225mLhere(against 0.81mLforthemicroreactor).Thedepthoftheirradiated solu-tionwas6.2mmforthebatchreactor(annularspacebetweenthe immersionwellouterwallandtheinnerreactorwall)whereasit was508mminthemicroreactor(tubinginnerdiameter).Themain technicalcharacteristicsofthereactorsarelistedinTable1.

3. Theoreticalconsiderations 3.1. Reactionkineticsandmassbalance

Whendealingwithphotochemicalreactions,itisfirstnecessary toevaluatetherateoftheradiationactivationstep.

The mechanism of the present photochemical reaction was three-step kinetics in homogenous phase, as schematically describedinTable2.Arepresentsthenon-excitedreagent1,A* reagent1intheelectronicallyexcitedstateandBthesinglereaction product2,whichisanon-absorbingspecies(at365nm).

Intheactivationstep,theactivatedmoleculeA∗wasproduced byphotonabsorption;theassociatedratewasthusdirectly pro-portionaltotheradiantenergyabsorbed inthereactorperunit ofvolume.This“useful”energyhasbeencalledthelocal volumet-ricrateofradiant energyabsorption(LVREAinWm−3)[24],or, preferably,thelocalvolumetricrateofphotonabsorption(LVRPA inmol-photonm−3 orineinsteinm−3).Definedatagiven wave-lengthandforagivenspeciesA,thesetwoparametersarelinked accordingto: (LVRPA),A= 1 Na ·h·c  ·(LVREA),A (3)

Fig.4. Generalparametersusedtodefinetheradiationfield.

wherehisthePlanckconstant(6.6256×10−34Jsphoton−1),cthe speedoflight(2.9979×108ms−1)andN

atheAvogadronumber (6.023×1023mol−1).

Onceproduced,theactivatedspeciesA∗eithergavethe com-poundB(reactionstep)ordisappeared(deactivationstep).Forthe reactionundertest,thedeactivationstepcorrespondedonlytoa returnofthemoleculetothegroundstatebyradiative (phospho-rescence,fluorescence)ornon-radiativedeactivationmechanisms. Notethat,inamoregeneralcase,additionaldeactivation mech-anismsmayalsoexist, inparticulartheonesresultingfromthe transformationofradicalintermediates.Inthiscase,theequation fordeactivationreportedinTable2isthesumofdifferent pro-cesses.

The net balance for the intermediate molecule A* can be expressedas:

dCA∗

dt =r ∗

−rd−rB (4)

Asthelife-timeoftheexcitedstateisveryshortandthesource oflightenergyiscontinuousandmoderate,theassumptionofthe quasi-steadystatefortheintermediatemoleculeA*canbeapplied:

dCA∗

dt ≈0 (5)

Thus,therateofformationofBislinkedtotherateof consump-tionofA(rA=−r∗),suchthat:

rA,=−rB,=−kr·CA∗=−kr·

(LVRPA),A kd+kr

=·(LVRPA),A (6) isthequantumyieldofthereaction,definedastheratiobetween therateof molarproduction ofBandtherateofphotonmolar absorption: = rB r∗  = kr kd+kr (7) wherekrandkdarethekineticconstantsofthephotochemical reac-tionandofthedeactivationreactionrespectively.Eqs.(6)and(7)

showthatthequantumyieldandtheLVRPAdependonthe wave-lengthconsidered,implyingthattherateofrecoveryofAshould berigorouslydefinedforeachwavelength.

The complete modeling of a conventional chemical reactor requiresthemomentum,thermalenergyandmassconservation equationstobesolvedtogetherwiththekineticsequations.Inthe caseofaphotoreactor,theradiationequationmustbeadded[24]. Inthepresentstudy,somesimplificationscanbemadebased onthefollowingassumptions.Firstly,theenergybalancecanbe neglected.Variousexperimentsperformedatdifferent tempera-tures(from8◦Cto40C)havesuggestedthatthephotochemical reactionundertestisnot temperaturesensitive.Inaddition,all theexperimentswereperformedatafixed,controlledtemperature (closeto20◦C).

Secondly, themass balanceinthecase of photochemistryis directlycoupledwiththeradiationequationbymeansofthe reac-tionrateterm(Eq.(6)).Theconsequenceisthataheterogeneous fieldofconcentrationisinevitablygeneratedinsidethereactordue tophotonabsorptionbythespeciespresent.Nevertheless,this spa-tialnon-uniformityofconcentrationscanbeattenuatedinpresence ofgoodmixingconditions[24].WhenthereactantAisthe sin-gleabsorbingspecies,theimpactonthisnon-uniformityisalso reducedbecauseofthechangeoftheradiationfieldwiththe chem-icalconversion.Thefirstabsorbingzones(i.e.theonescloseto theopticalfaceofthereactor)becomeclearer(lessabsorbing)as theconversionincreases,allowinglighttopenetratefartherinto thedepthofthereactor.Inthisstudy,twomodel caseswillbe considered:

(7)

Fig.5.Specificparametersusedtodefinetheradiationfieldinthebatch photore-actorandinthemicrophotoreactor.

-Forthebatchphotoreactor,perfectlymixedbehaviorwitha con-stantvolume.

-Forthemicrophotoreactor,plugflowbehavior.

Undertheseassumptions,itcanbedemonstratedthatthe fol-lowingequationcanbeappliedforthecompoundAinthebatch reactor:

<rA,>= dCA

dt =−·<LVRPA,A> (8) wheretheconcentrationCAofcompoundAisafunctionoftimetin thebatchphotoreactor(asspatialhomogeneityinthewhole reac-torvolumeisassumed),and<LVRPA,A>isthelocalvolumetric rateofphotonabsorptionduetoreagentAaveragedoverthewhole volumeofthebatchphotoreactor.

Itisinteresting toobservethat,inthemicrophotoreactor,in whichplugflowbehaviorisconsidered,anequationidenticalto Eq.(8)canbeobtainedbyreplacingtheaxialpositionxbytime,t, accordingto:

dt=dx

U (9)

whereUisthemeanvelocityofthereactantsolutioninthe microre-actortube.

3.2. Radiationfieldinsidethephotoreactor 3.2.1. Definitions

Let us recall a few definitions. The basic quantity is the monochromaticradiantenergyfluxdensityvector[25,26]:

E q=

Z

4

L(Er, Eu)· Eu ·d˝ (10) where Eu istheunitvectorrelatedtothedirectionofradiation propa-gation, Er thepositionvector,andd˝thesolidangleelementaround thepropagationdirection Eu (Fig.4).L is thespecific intensity, whichrepresentstheradiativeenergyflowperunitoftime,unit

ofsolidangleandunitofsurfacenormaltothepropagation direc-tion.Intheliterature,itisalsocalledradianceorluminance,andis sometimesnotedIinsteadofL.

Hence,thedotproductof Eqand En(theunitvectornormalto receptorsurface)givesthenetradiativeenergyfluxdensitypassing throughthesurfaceofdirection En,whichisexpressedinwattsper unitofreceptorsurface:

q=

Z

4 L(Er, Eu)· Eu ·d˝· En =

Z

4 L(Er, Eu)· Eu · En ·d˝ =

Z

4

L(Er, Eu)·cos·d˝ (11) whereistheanglebetween Euandthenormal En tothesurface considered(Fig.4).

We also define the monochromatic spherical irradiance (or scalarirradiance)astheintegraloverallthedirectionsofthe spe-cificintensityL

G(Er)=

Z

4

L(Er, Eu)·d˝ (12)

Thisphysicalquantityplaysanimportantrolein photochem-istry as, in an element of reactor volume, the monochromatic radiantenergyabsorbedbyacomponentjisgivenby:

LVREA,j=,j·G(r) (13) where,jistheabsorptioncoefficientoftheradiationduetothe speciesj.

3.2.2. Radiationbalanceinafixedcontrolvolume

For a homogeneousand non-emitting mediumin which the radiationattenuationisdueonlytoabsorptionbythemedium(i.e. noornegligiblescatteringeffects),theradiativetransferequation (RTE)iswrittenas[24,27,28]:

E

u·−−→grad(L)=−·L (14) Notethat,inthisform,theRTEisequivalenttothewellknown Lambert’slaw.

Theintegrationof thesimplifiedRTE(Eq.(14))overallsolid angles˝leadstothefollowinggeneralformofthelocalradiation balanceforanon-emitting,homogeneouscontrolvolume[27,29]: div(Eq)=−·G=LVREA (15) 3.2.3. Expressionoftheaveragevolumetricrateofphoton

absorption<LVRPA>

Inthefollowing,wehavechosentoreducetheproblemtoa one-dimensionalannularcylindricalsystem(theangularandaxial symmetryconditionsareverifiedinbothreactors)withradiationin asingledirectionandnormaltothewallsurface(Fig.5).Withthis

(8)

convenientsimplification,amathematicalsolutionforexpressing LVRPAcanbedeveloped,asshownbelow.

Theaboveassumptionscanbewrittenmathematicallyas: L(Er, Eu)=L(r)·ı(Eu − Ei) (16) where Eiis the unit vector related to the single direction that coincideswiththeradialaxis.L(r),thespecificmonochromatic intensitydefinedatagivenpositionrandaveragedoverallthe directionsofradiationpropagation(¯L(r)isthusexpressedinwatts persurfaceunit)andıtheDiracfunction(insr−1)isdefinedas:

ı=

Z

˝ ı(Eu − Ei)d˝=1 if uE= Ei ı(Eu − Ei)=0 if u /E= Ei (17)

WhenthisexpressionforL(Eq.(16))isputintothe expres-sionsforthenetradiationfluxandthesphericalirradiance(Eqs.

(11)–(12)), Eq. (15)becomes (in thecase of a one-dimensional cylindricalcoordinatesystemwithsingle-directionalradiation): ∂(r· ¯G(r))

r·∂r =

∂(r·¯q(r))

r·∂r =−· ¯G(r) (18) where ¯q(r)= ¯G(r)(thedirectionoflightemissionisassumed nor-maltothereceptorsurfaceofthereactor).Thisequationisalso well-knownastheradialmodel[25,30].

istheabsorptioncoefficientofthereactingmixture (includ-ingreagentsandproducts)andisconsideredtobealinearfunction oftheconcentrationoftheabsorbingspecies.Thus[24,30]:

,j=˛,j·Cj (19)

where˛,j is themolarNapierian absorptivityofthe radiation-absorbingspeciesjatagivenwavelength,andCjisthemolar concentrationofthespeciesj.Notethatchemistsgenerallyusethe molarabsorptivityε,jdefinedas:

˛,j=2.303·ε,j (20)

Whenseveralspeciesabsorbradiationinthesystemandwhen moderateconcentrationsareinvolved,theassumptionof absorp-tionadditivitycanbeappliedaccordingto:

=

X

j ˛,j·Cj=

X

j ,j (21)

AstheconcentrationCjchangeswiththechemicalconversion, theLVREA,jwillalsobedependentonthechemicalconversion(Eq.

(15)).

TheintegrationofEq.(18)fromtheirradiatedwallsurfaceof thereactor,Rw(hereequalto25mmforbothreactors,seeFig.5) toaradialpositionrinsidethereactorleadsto:

G(r)=GW· Rw

r ·exp[(−·(r−Rw))] (22) whereGW

 isthemonochromaticsphericalirradiancereceivedat thewallsurfaceofthereactor.NotethatEq.(22)isvalidonlywhen theconcentrationCjisuniforminthecontrolvolume.

Theaveragevolumetricrateofenergyabsorption<LVREA,A> canbecalculatedas:

<LVREA,A>= 1 V

Z

Z

Z

V ,A·G(r)·r·dr·d·dz =G W  s · ,A  ·(1−exp[−·(RL−Rw)]) (23)

whereasshowninFig.5,RLcorrespondstotheouterradial posi-tionofthereactor(RW+0.62cm forthebatchphotoreactorand RW+508mmforthemicrophotoreactor)and1sisdefinedby: 1s=R 2 L−R2W 2RW (24) InEq.(23),GW

 isexpressedinwattsperunitofsurfaceareabut canalsobeconvertedintoeinsteinperunitoftimeandperunitof surfacearea(GW,photon )byusingEq.(3).

3.3. Couplingbetweenradiationfieldandmassbalance

Forthephotochemicalreactionundertest,compoundAisthe onlyabsorbingspeciesandthisleadsto:

,A==˛A·CA and ,A



=1 (25)

Rigorously speaking, a reaction rate equation (Eq. (6))may bewrittenforeachemittedwavelengthatwhichthecompound absorbs,andthustheknowledgeofGW

 and˛,jmayberequired foreachwavelengthconcerned.Theglobalratewouldthenbethe sumofalltherateequations.Withoutlossofaccuracy,wewill considerasinglewavelength,365nm,inthisstudyasthereactant mainlyabsorbsatthiswavelength(Fig.2a)whichcorrespondstoa significantemissionrayofthelamp.Consequently,inthefollowing, theindex“”willnolongerbeattachedtothevariables.

Theconcentration,CA,ofcompoundAcanbeexpressedasa functionofthechemicalconversionX:

CA=CA0·(1−X) (26)

where CA0 is the concentration of the compound A initially introducedintothereactor(att=0).Finally,thecouplingofthe massbalance(Eq.(8))withtheexpressionoftheaverage volumet-ricrateofphotonabsorption<LVRPA>(Eq.(23))canbeformulated as: CA0 dX dt =−· GW,photon 1s ·(1−exp[−B0·(1−X)]) (27) whereB0istheinitialNapierianopticaldensitydefinedby B0=CA0·˛A·(RL−Rw) (28)

WhenEq.(27)isintegratedovertime,thefollowingexpression isobtained: CA0·



X+ 1 B0 ·ln

h

1−exp(−B0) 1−exp(−B0·(1−X))

i

=·G W,photon 1s ·t (29) FromEq.(29),itcanbeshownthatcompletemodelingofthe reactorrequires theknowledge of thequantum yield  and of thesphericalirradiancereceivedatthewallsurfaceofthereactor (GW,photonGW,photon

365 ).Generally,thisisdeterminedeitherfrom thelampemissionmodelorfromexperiments(actinometry). 4. Resultsanddiscussion

4.1. Variationofconversionwithconcentrationandirradiation time

Firstly,theeffectoftheinitialconcentrationofthecompoundA (CA0)ontheconversionoftheDiels–Aldercompoundintothe‘cage’

compound (X)wasinvestigated asa functionof theirradiation timesinthemicrophotoreactor(Fig.6a).Asexpected,forafixed irradiationtime,conversiondecreasedwithincreasing concentra-tions.Thisisconsistentwiththeradiativetransfermodelpreviously established(Eq.(22)):foranyradialpositionRw<r<RL,anincrease ofCA0(i.e.oftheabsorptioncoefficientA)inducesadecreaseofthe exponentialfactorandthusadecreaseofthesphericalirradiance

(9)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 G / G w C = 0.318 mol/L C = 0.637 mol/L C = 0.955 mol/L r Rw RL− Rw

Fig.7.Initial(namely,att=0,X=0)lightattenuationprofilesalongthedepthofthe microphotoreactor(inthekey,CcorrespondstoCA0).

(G).Whenconsideringtheinitiallightattenuationalongthereactor depth(deducedfromEq.(22)andrepresentedinFig.7),weclearly observedthatthelightpenetrationwaslowerwhenconcentrated solutionswereinvolved,thusreducingthefractionofthevolume insidethereactorthatwasilluminated.

Fig.6aalsoshowsthat, whatevertheinitialconcentration,a fewminutesweresufficienttoachievehighphotochemical conver-sions.Itisparticularlyinterestingtonotethatthefullconversion (X=100%) was achieved at 1min for the lowest concentration (0.318molL−1)andat2minforC

A0 =0.637 mol L

−1

andCA0=

0.955 mol L−1.

Theseperformancelevelswerecomparedwiththoseobtained inthebatchphotoreactor,thelatterreactorbeingtheconventional deviceforphotochemistry.The criterionchosenfor comparison wastheconservationofthesameorderofmagnitudeoftheinitial opticalNapieriandensitiesB0(andthusofirradianceattenuation profilesinsidethesolution)inbothphotoreactors.Thelight pene-trationdepth(RL−RW)beingdependentonthereactor,theinitial concentrations CA0 thus neededto beadjusted (usingEq. (28))

forexperimentsinthebatchphotoreactor(Table3).Notethatit wasnotpossibletousemoreconcentratedsolutionsinthebatch photoreactorastheywouldhaveinducedtoohighareactant con-sumption.

The variation of theconversion withthe irradiation time is plotted in Fig. 6b for the batch photoreactor. Here too, for a given irradiation time, more concentrated solutions generated smaller conversions. Whatever the concentrations, a minimum of30minirradiationtimewasrequiredtoachieve thefull con-version,comparedwith1or2mininthemicrophotoreactor.For comparisonpurposes,it wasinterestingtoestimatethereactor efficiencyby introducingthe space-time yield(STY), a parame-tercommonly usedbychemists.Itrepresentsthetotalamount ofproduct (cagecompound)per reactorvolumeperirradiation time,as:

STY= CA0·X

tirrad

(30) It was calculated here for a conversion of 90% and an averageinitialconcentration CA0 in each reactor(0.637molL−1 in the microphotoreactor and 0.0324molL−1 in the batch Table3

InitialconcentrationofDiels–AlderandassociatedopticalNapieriandensityinthe microphotoreactorandinthebatchphotoreactor.

Microphotoreactor Batchphotoreactor

CA0(molL −1) B 0 CA0(molL −1) B 0 0.319 2.3 0.0162 1.4 0.637 4.6 0.0324 2.9 0.955 6.9 0.0485 4.3

photoreactor). In these conditions, STY was found to be equal to 573mmolL−1min−1 in the microphotoreactor and 2.3mmolL−1min−1 inthebatchphotoreactor.Fromthis,wecan concludethatusingamicrophotoreactorsignificantlyimprovedthe space-timeyieldsor,inotherwords,decreasedtheminimal irradi-ationtimerequiredtoachievecompleteconversionwhileworking withmoreconcentratedsolutions.Inagreementwiththeresults alreadyreportedintheliterature[4–18],this firstfindingoffers promisingperspectivesforimplementingphotochemicalsynthesis inmicroreactors.Nevertheless,someunderlyingquestionsmustbe addressed:Howcansuchresultsbeexplained?Whichcriteriashould bedefinedtorigorouslycompareperformanceindifferent photochem-ical reactorsand/or totransposeresults frombatch to continuous microphotoreactors?

4.2. Dataanalysisbasedonthemodelcouplingreactionkinetics, conservationandradiationtransferequations

4.2.1. Determinationoftheproduct·GW,photon

Inkeepingwiththequestionsposedabove,asimplifiedmodel (Eq.(29))haspreviouslybeenproposedtolinktheradiation trans-fer balance (1D annular cylindrical system, homogeneous and non-emittingmedium,negligiblescatteringeffect,single absorb-ing species,monochromatic and single-directionallight source) andmassbalances(three-stepkinetics,perfectlymixed,plugflow behavior).Theapplicationofthismodeltotheexperimentaldata supposesthatthequantumyieldofthereaction()andthe irra-dianceatthewallsurfaceofthereactor(GW,photon)areknown.As thiswasnotthecase,theproduct·GW,photonwasdirectly deter-minedbyfittingEq.(29)withexperimentalmeasurements.This ledto·GW,photon=0.029 einstein s−1

m−2forthebatch pho-toreactorandto·GW,photon=0.404 einstein s−1 m−2 forthe microphotoreactor.Theratioofthesetwoquantitieswascloseto 0.07,andwasmainlyexplainedbytheratiobetweentheirradiated surfacesinthemicroreactorandinthebatchreactor(Table1),as shownbelow:

Sirrad,microreactor Sirrad,batch

= 16

300≈0.053 (31)

The deviation could be attributed to some approximations (calculation of the irradiated surface in the microphotoreactor, reflectionsneglectedandassumptionofamonochromatic emis-sion)and/ortoapossiblechangeofthequantumyield(therange ofconcentrationsbeingsignificantlydifferentinthetwo photore-actors).

Lastly,itisinterestingtonotethatthismodelingdescribesthe variationofexperimentalconversionwithtimewell,whateverthe initialconcentrationandreactor(Fig.6).

4.2.2. Definitionofsomeconsistentratiosforreactorcomparison purposes

Toexplainthedifferencesobservedintermsofirradiationtime betweenthetworeactors,letusintroduceseveralsupplementary physicalparameters.

•ThefirstoneisthepowerP(expressedineinsteins−1)defined accordingto:

P=Vr··G W,photon

1s (32)

Itcorrespondstothemaximumpowerthancanbereceived inthephotoreactor,i.e.whenallthephotonsareabsorbedby thereactionmixture(notransmittance).AsdefinedbyEq.(32), this value alsointegrates the quantum yield of the reaction, which gives the ratio betweenthe rate of molar production ofBandtherateofthephotonmolarabsorption.Finally,this

(10)

powermakestheconnectionbetweenthelightemittedbythe lampand thedesign of thereactor or, in otherwords, is an expressionof themannerin which thereactoris exposed to thelamp.

•Thesecondparameterofgreatimportanceisthephotonic effi-ciency.Notedas,dependingXontheconversionX,itrepresents theefficiencyofthereactor,thatistosaytheratiobetweenthe numberofmolesofcompoundBproducedandthenumberof molesofphotonsreceived:

X= CA0·Vr·X P·tX

irrad

(33) ExpressingtirradwithEq.(29)andPwithEq.(32),weobtain:

X= X

(X+(1/B0)·ln[(1−exp(−B0))/(1−exp(−B0·(1−X)))]) (34) IfX1,allthephotonsreceivedinthesystemareusedto reachthedesiredconversion.Incontrast,ifX0,theefficiency ofthereactorislow,meaningthatmanyofthephotonsreceived inthe reactorarenot absorbed (i.e.are transmittedover the outersideofthereactor)becauseofalowopticaldensityinthe reactor.Consideringthisdefinition,itisclearthatthe photore-actorwilloperatebetterwhenhighopticaldensityisinvolved. Varyingbetween0and1,thisphotonicefficiencymustnotbe confusedwiththequantumyield,whichisaparameter intrin-sictothephotochemicalmechanismandrepresentstheamount ofabsorbed photonsnecessary toconverta given amount of reactantmolecules(Eq.(7)).Incontrast,thephotonicefficiency definedbyEquation34dealsonlywiththeradiationattenuation profileinthemedium.

•Thethirdparameteristheproductivity,which representsthe molarquantityproducedperunitof irradiationtime andalso dependsontheconversionX,as:

RX= CA0·Vr·X tX irrad =P·X =P· X (X+(1/B0)·ln[1−exp(−B0)/1−exp(−B0·(1−X))]) (35) •Itisalsointerestingtodescribethespace-timeyield(STY)

previ-ouslyintroduced(Eq.(30))asfollows:

STYX=CA0·X tX irrad = P Vr X = P Vr · X (X+(1/B0)·ln[(1−exp(−B0))/(1−exp(−B0·(1−X)))]) (36)

Tocomparetheperformance inthetworeactors,five crite-riaaredefined,correspondingtotheratiosbetweenthepower received,thephotonicefficiency,theproductivity,the irradia-tiontime,andthespace-timeyieldinthemicroreactorandin thebatchreactor.TheyarebroughttogetherinTable4.

FromTable4,wecanobservethat:

-theratios related tothe powerreceivedand to thephotonic efficiencyaretheonesgoverningtheothers,asX

R =f(P,X), X

t =g(P,X)andXSTY=h(P,X),

-thepowerratioP lets uscompare theexposuretothelight sourcein thetwo photoreactors and depends directlyonthe geometryofthephotoreactors.IfP→1,thephotoreactorsare exposedtothesametotalamountofradiantenergy,

-thephotonicefficiencyX

compares,foragivenconversion,the radiationfieldinthetwophotoreactors.IfX

→1,theirradiance attenuationalongthereactordepthisthesameinboth photore-actors.

4.2.3. Comparisonofthetworeactorsbasedonthecalculationsof thepreviousratios

AlltheparametersinvolvedinEq.(32)beingknown,thepower ratio,P,canbecalculated.Itisfoundtobe0.73,meaningthatthe microphotoreactorasdesignedinthepresentexperimentsreceives fewerphotonsthanthebatchreactor.Thisresultisnotsurprising becausethetubingconstitutingthemicrophotoreactorwaswound aroundthestraightsectionoftheimmersionwell,andonlyover afewcentimetersinheight(Fig.3a)whereas,forthebatch pho-toreactor,thesolutionvolumewasalsolocatedunderandontop ofthelamp(Fig.3b).Moreover,becauseofthetubingcurvature, someoftherayscouldbereflected.Theimportantideatonoteis thatthisratiocanbeeasilyimprovedbywindingthetubingaround theentireheightoftheimmersionwellasalreadydonebyHook etal.[13].

ConcerningthephotonicefficiencyratioX

,Fig.8presentsthe iso-curvesofthisratioforaconversionof90%,andtheirchange withtheinitialNapierianopticaldensities(B0)ineach photoreac-tor.Itisconvenienttodefinethreemainareasonthisgraph: - AreaA:thephotonicefficiencyinthebatchphotoreactorisbetter

here(0.90

 <1).Inotherwords,thefractionof“wasted”photons (i.e.transmittedoutsidethereactor)islowerinthebatch pho-toreactorthaninthemicrophotoreactor,duetoahigheroptical density.

-AreaC:thisistheoppositeofareaA.

-Area B: this area corresponds to the part of Fig. 8 between theiso-curves1.05 and 0.95,implying that theefficienciesin thereactorsareapproximatelythesame(|(microreactor−batch)/ Table4

Ratiodefinedtocomparethemicrophotoreactorandbatchphotoreactor.

Ratioof Definitions

PowerreceivedP P=Pmicroreactor

Pbatch PhotonicefficiencyX X = X microreactor X batch = F X batch FX microreactor ProductivityRX X R= RX microreactor RX batch = P· X IrradiationtimetX X t = tX microreactor tX batch = 1 X ·P· Vr,micro Vr,batch· CA0,micro CA0,batch

Space-timeyield(STY) X STY=P· X · Vr,batch Vr,micro WithFX microreactor= X+ 1 B0,microln



1−exp(−B0,micro) 1−exp(−B0,micro·(1−X))



FX batch= X+ 1 B0,batchln



1−exp(−B0,batch) 1−exp(−B0,batch·(1−X))



(11)

Fig.8. Iso-curvesofthephotonicefficiencyratiotoreachaconversionof90%(0,90 ).

Theblacksquaresymbolscorrespondtoexperimentalphotonicefficiencyratios.

batch|<0.05).Inthiscase,thefractionof“wasted”photonsis equivalentinbothphotoreactors(thelightattenuationprofiles remainidenticalwhatevertheconversion).

TheexperimentalefficiencyratiosarealsoreportedinFig.8

(blacksquares).Itcanbeobservedthat,dependingontheinitial opticaldensity,thedifferentareasarecoveredbytheexperimental conditions.

ConcerningtheproductivityratioX

R,theycanbeeither cal-culated using the product P·X (Table 4)or estimated from experimentaldataas:

0.9 R =

(CA0·Vr·0.9/tirrad0.9 )micro (CA0·Vr·0.9/t0.9irrad)batch

(37)

Table5reportsthecalculatedandexperimental(inbrackets) productivityratios.Itisclearthattheinitialopticaldensity(B0) hasadrastic impactontheproductivityratiovalue.Thislatter parameterB0isthusthekeyparametertomaintainconstantwhen transposingaphotochemicalsynthesisfromabatchreactortoa continuous(micro)reactor.

Itisimportanttokeep inmindthatthisfindingistrueonly becausethephotochemical reactionschemeunder testisA→B withasingleabsorbingspeciesA.Formorecomplexreactions(in particularwhenthereareseveralstronglyabsorbingspeciesinthe medium),itwillbenecessarytoaccountfortheroleof hydrody-namics(mixing)onthespatialandtimedistributionsoftheactive speciesinthedifferentlightlevelareasexistinginthereactor.For this,thepresentmodelmaybeextendedbyconsidering,inthe pre-viousequations,theabsorptioncoefficientofeachspecies,the two-(orthree-)dimensionalcharacteroftheflow,andthecomplete reactionalscheme.

Table5

Experimentalandcalculated(inbrackets)productivityratios.

B0batch 1.43 2.85 4.28 B0microreactor 2.29 0.9(1.0) 0.56(0.64) 0.45(0.54) 4.6 1.5(1.39) 0.83(0.90) 0.68(0.75) 6.90 1.73(1.99) 0.98(1.17) 0.82(0.91)

Regardingtheirradiationtimeratio0.9

t (ataconversionXof 90%),theexperimentalratios(deducedfromFig.6)arefoundto varybetween0.044and0.1.Suchafindingcanbedirectlyexplained bythemodelproposed,inwhich0.9

t dependsonP,0.9 ,reactor volumesandinitialconcentrations.LetusconsiderapowerratioP of0.73andarepresentativephotonicefficiency0.9

 of1(implying identicalinitialopticaldensity).Thetimeratioisthenexpressedas (Table4): X t = 1 1×0.73· Vr,micro Vr,batch ·CA0,micro CA0,batch = 1 1×0.73· Vr,micro Vr,batch ·˛A·(RL−RW)batch ˛A·(RL−RW)micro (38)

Consideringthegeometricalcharacteristicsofthetworeactors, 0.9

t is found to be equal to 0.06, which is in perfect agree-mentwiththeexperimentaltimeratios.Thisdemonstratesthat theimprovementinirradiationtimespreviouslyobservedinthe microphotoreactorwasmainlyduetothedifferenceinthenumber ofabsorbingmolecules(Vr×CA0).

ItisinterestingtoobservethatthevaluesoftheSTYratios,X STY, aremainlycontrolledbythereactorvolumeratios.Again,ifapower ratioPof0.73andarepresentativephotonicefficiency0.9 of1 areassumed,Eq.(36)leadstoX

STY≈200,whichagreesperfectly withtheexperimentalvaluesdiscussedinSection4.1.

4.3. Synthesisandfirstconclusions

Fromthesimplemodelproposed,twomaincriteriahavebeen identifiedfordesigningandcomparingphotoreactors:thepower receivedinthesystem(P)andthephotonicefficiency(X).These twoparametersshouldbeequalifequivalentproductivityistobe obtainedinbothphotoreactors,thephotonicefficiencybeingthe parameterofinterestfromanindustrialpointofview.

Finally,fromthesefindings,somesuggestionscanbemadefor improvingperformanceinthemicrophotoreactor:

-thetubelengthwoundaroundtheimmersionwellcaneasilybe increasedsoastoreceivemaximumradiationfromthesource. In thisway,thepowerreceivedin themicrophotoreactorcan belargerthaninaconventionalbatchimmersionphotoreactor (P>1);

-keepingthephotonicefficiencyidenticalinbothreactorsimplies workingwithhigher concentrations inthe microphotoreactor (smaller optical length). Asit caninduce somelimitations in termsofcompoundsolubilityinthesolvent,thenumberoftubing passesaroundtheimmersionwellcanbeincreasedoraslightly largerinnerdiameteroftubingused.

5. Conclusion

Inconclusion,thesimpleandeasy-to-construct microphotore-actorproposedcanensurethecontinuousphotochemicalsynthesis of a pentacyclic‘cage’ compound, and reach full conversionof highly concentratedsolutionin a shortirradiationtime. In this study,acomparisonhasbeenmadebetweenthe microphotore-actor and a conventional batch photoreactor by introducing a simplified model combiningreaction kinetics, conservationand radiativetransferequations.Thisstudypointsoutthattwomain criteriaareessentialfordesigningandcomparingphotoreactors: thepowerreceivedinthesystem(P)andthephotonicefficiency (X).Keepingthesetwocriteriaconstantinbothphotoreactorswill inevitablyleadtoequivalentproductivity.Theapproachpresented inthispaperisonlyvalidforthecaseofanA→Breactionscheme,

(12)

withasingleabsorbingspeciesA.Themixingeffectisthusreduced, enablingsomesimplificationstobeused.

Aspecificresearcheffortshouldbemadeinthefuturetopropose amorecomplexmodelabletotakeaccountoftheimpactofthe shortdiffusiondistancesinthemicrophotoreactorwhenseveral speciesareabsorbinginthemedium.Inthesecases,theeffectof mixingbecomesacriticalparametertoensureefficientspatialand timedistributionsoftheactivespeciesinthedifferentlightlevel areasexistinginthereactor.

References

[1] A.M.Braun,M.-T.Maurette,E.Oliveros,Technologiephotochimique,Presses PolytechniquesRomandes,1986.

[2] K.-H.Pfoertner,B.Swirtzerland,PhotochemistryUllmann’sEncyclopediaof IndustrialChemistry,Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim,2005. [3] N.Hoffmann,Photochemicalreactionsaskeystepsinorganicsynthesis,

Chem-icalReviews108(2008)1052.

[4]T.R.Dietrich,Microchemicalengineeringinpractice,in:Photoreactions,Wiley, 2009(Chapter17).

[5]Y.Matsushita,T.Ichimura,N.Ohba,S.Kumada,K.Sakeda,T.Suzuki,H. Tani-bata,T.Murata,Recentprogressonphotoreactionsinmicroreactors,Pureand AppliedChemistry79(11)(2007)1959–1968.

[6]Y.Matsushita,S.Kumada,K.Wakabayashi,K.Sakada,T.Ichimura, Photocat-alyticreductioninmicroreactors,ChemistryLetters35(410)(2006). [7] R.Gorges,S.Meyer,G.Kreisel,Photocatalysisinmicroreactors,Journalof

Pho-tochemistryandPhotobiologyA-Chemistry167(95)(2004).

[8]H.Lu,M.A.Schmidt,K.F.Jensen,Photochemicalreactionsandon-lineUV detec-tioninmicrofabricatedreactors,LabChip1(2001)22–28.

[9] K.Ueno,F.Kitagawa,N.Kitamura,Photocyanationofpyreneacrossanoil/water interfaceinapolymermicrochannelchip,LabChip2(2002)231–234. [10]H.Maeda,H.Mukae,K.Mizuno,Enhancedefficiencyandregioselectivityof

intramolecular(2p+2p)photocycloadditionof1-cyanonaphtalenederivative usingmicroreactors,ChemistryLetters34(66)(2005).

[11]T.Fukuyama,Y.Hino,N.Kamata,I.Ryu,Quickexecutionof[2+2]type photo-chemicalcycloadditionreactionbycontinuousflowsystemusingaglass-made microreactor,ChemistryLetters33(11)(2004)1430–1431.

[12] A.Vasudevan,C.Villamil,J.Trumbull,J.Olson,D.Sutherland,J.Pan,S.Djuric, LOPHTOR:aconvenientflow-basedphotochemicalreactor,Tetrahedron Let-ters51(31)(2010)4007–4009.

[13]B.D.A.Hook,W.Dohle,P.R.Hirst,M.Pickworth,M.B.Berry,K.I.Booker-Milburn, Practicalflowreactorforcontinuousorganicphotochemistry,TheJournalof OrganicChemistry70(19)(2005)7558–7564.

[14]F.Levesque,P.H.Seeberger,Highlyefficientcontinuousflowreactionsusing singletoxygenasagreenreagent,OrganicLetters13(19)(2011)5008–5011.

[15]R.C.R.Wootton,R.Fortt,A.J.deMello,Amicrofabricatednanoreactorforsafe, continuousgenerationanduseofsingletoxygen,OrganicProcessResearchand Development6(2002)187–189.

[16]E.E. Coyle, M. Oelgemöller, Micro-photochemistry: photochemistry in microstructuredreactors.Thenewphotochemistryofthefuture? Photochem-icalandPhotobiologicalSciences7(2008)1313–1322.

[17]M.Oelgemöller,Highligthsofphotochemicalreactionsinmicroflowreactors, ChemicalEngineeringTechnology35(2012)1–10.

[18]O.Shvydkiv,A.Yavorskyy,S.B.Tan,K.Nolan,N.Hoffmann,A.Youssef,M. Oelgemöller, Microphotochemistry:a reactorcomparison studyusingthe photosensitizedadditionofisopropanoltofuranonesasamodelreaction, Pho-tochemicalandPhotobiologicalSciences10(2011)1399.

[19]W.J.Geldenhuys,S.F.Malan,T.Murugesan,C.J.VanderSchyf,J.R.Bloomquist, Synthesisandbiologicalevaluationofpentacyclo[5.4.0.02,6.03,10.05,9]undecane

derivativesaspotentialtherapeuticagentsinParkinson’sdisease,Bioorganic andMedicinalChemistry12(2004)1799–1806.

[20]L.H.-A.Prins,J.L.duPreez,S.vanDyk,S.F.Malan,Polycycliccagestructuresas carriermoleculesforneuroprotectivenon-steroidalanti-inflammatorydrugs, EuropeanJournalofMedicalChemistry44(2009)2577–2582.

[21] O.K. Onajole, K. Govender, P. Govender, P.D. ven Helden, H.G. Kruger, G.E.M.Maguire,K.Muthusamy,M.Pillay,I.Wiid,T.Govender, Pentacyclo-undecane derivedcyclictetra-amines:synthesisandevaluationaspotent anti-tuberculosisagents,EuropeanJournalofMedicalChemistry44(2009) 4297–4305.

[22]A.P. Marchand, R.W. Allen, Improved synthesis of pentacyclo [5.4.0.02,6.03,10.05,9]undecane, JournalofOrganicChemistry39(11)(1974)

1596.

[23]R.H.Feehs,USPatent3(554),(1971)887.

[24]A.E.Cassano,C.A.Martin,R.J.Brandi,O.M.Alfano,Photoreactoranalysisand design:fundamentalsandapplications,IndustrialandEngineeringChemistry Research34(7)(1995)2155–2201.

[25] C.A.Martín,M.A.Baltanás,A.E.Cassano,Photocatalyticreactors.II.Quantum efficiencies allowing for scattering effects. An experimental approxima-tion,Journal ofPhotochemistryandPhotobiology A-Chemistry94(1996) 173–189.

[26] L.Tessé,J.M.Lamet,RadiativetransfermodelingdevelopedatOnerafor numer-icalsimulationsofreactiveflows,TheOneraJournalAerospaceLab2(2011). [27]H.A.Irazoqui,J.Cerdá,A.E.Cassano,Theradiationfieldforthepointandline

sourceapproximationandthethree-dimensionalsourcemodels:applications tophotoreactions,ChemicalEngineeringJournal11(1976)27–37.

[28]C.S.Zalazar,M.D.Labas,C.A.Martín,R.J.Brandi,O.M.Alfano,A.E.Cassano,The extendeduseofactinometryintheinterpretationofphotochemicalreaction engineeringdata,ChemicalEngineeringJournal109(2005)67.

[29] J.F.Cornet,C.G.Dussap,J.B.Gros,Simplifiedmonodimensionalapproachfor modelingcouplingbetweenradiantlighttransferandgrowthkineticsinphoto bioreactors,ChemicalEngineeringScience50(1995)1489–1500.

[30]A.E.Cassano,P.L.Silveston,J.M.Smith,Photochemicalreactionengineering, IndustrialandEngineeringChemistry59(1)(1967)18–38.

Figure

Fig. 3. (a) Lab-made microphotoreactor and (b) Batch immersion well photoreactor.
Fig. 4. General parameters used to define the radiation field.
Fig. 6. Conversion into the cage compound versus irradiation time (a) for the microphotoreactor and (b) for the batch photoreactor (in the key, C corresponds to C A 0 ).
Fig. 7. Initial (namely, at t = 0, X = 0) light attenuation profiles along the depth of the microphotoreactor (in the key, C corresponds to C A 0 ).
+2

Références

Documents relatifs

According to the literature, the actualization of an affordance may depend on the presence of appropriate enabling, stimulating, and releasing conditions (Volkoff and Strong

In a context where it is combined with verbal markers of epistemic indetermination (whatever), subjectivity (I mean) and uncertainty (I don’t know), this less conspic- uous

The mean photon flux density q out measured at the rear of the photoreactor is composed of transmitted blue photons generated by the LED panel (λ ϵ [400 nm; 490 nm]) and

Après avoir traversé la route, nous chemi- nons dans une forêt ag r émentée de nomb r eux châtaigniers, avant de monter dans les pelouses steppiques du

Corresponding to any class C of normal (&amp;+1)-tuple ts there exists the class obtained from C by omitting all the (/fe+l)-tuplets in which the first two members are different

— The time constant that is derived from the after-effect of the magnetic susceptibility corresponds to the migration process of vacancies to annihilation-centra combined with

Diehl, Nonlinear receding horizon control of an underactuated hovercraft with a multiple-shooting- based algorithm, 2006 IEEE Conference on Computer Aided Control System Design,

To account for all degrees of freedom in the unit cell, we must include for each of the three columns a helical sign Hk, helical phase CPk’ and vertical