• Aucun résultat trouvé

ON THE TIME-DEPENDENT SPECIFIC HEAT OF GLASSES AT LOW TEMPERATURES

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE TIME-DEPENDENT SPECIFIC HEAT OF GLASSES AT LOW TEMPERATURES"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00217903

https://hal.archives-ouvertes.fr/jpa-00217903

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE TIME-DEPENDENT SPECIFIC HEAT OF GLASSES AT LOW TEMPERATURES

R. Rammal, R. Maynard

To cite this version:

R. Rammal, R. Maynard. ON THE TIME-DEPENDENT SPECIFIC HEAT OF GLASSES AT LOW TEMPERATURES. Journal de Physique Colloques, 1978, 39 (C6), pp.C6-970-C6-972.

�10.1051/jphyscol:19786430�. �jpa-00217903�

(2)

JOURNAL DE PHYSIQUE Colloque C6, supplément au n° 8, Tome 39, août 1978, page C6-970

ON THE TIME-DEPENDENT SPECIFIC HEAT OF GLASSES AT LOW TEMPERATURES

R. Rammal and R. Maynard

Centre de Reohevahes sur les Tris Basses Temperatures, C.N.R.S., B.P. 166X - 38042 Grenoble Cedex, France

Résumé.- Le problème de la chaleur spécifique dépendant du temps a été traité dans le cadre du modèle des défauts "tunnel" couplés aux phonons. La densité spectrale effective des défauts à 2 niveaux a été calculée pour toute fréquence de mesure. Les profils de température ainsi que les constantes de diffusion thermique apparentes mesurés récemment aux très basses températures sont expliqués par ce calcul.

Abstract.- The problem of the time dependent specific heat has been treated in the framework of the model of tunneling defects coupled to the phonons. The effective density of two level defects has been obtained for any measuring frequency. Recent results on the temperature profile as well as apparent thermal diffusion constant at very low temperature have been fitted by this calculation.

The effect of the time dependent measure- ments of disordered systems is of great importance.

First, it gives an apparent character to the proper- ties which must be discriminated from the thermal equilibrium value. For instance, deviations from the linear specific heat observed experimentally in glasses /l/, can be understood in terms of a pro- gressive freezing of the defects contributing to the heat capacity on the time of measurements ins- tead of a true density of states. Secondly, the determination of the distribution of the relaxation times of the defects and its variation in tempera- ture is a reliable objective of this sort of ana- lysis.

The problem of the time dependence of the specific heat of glasses at low temperature was first recognised in the original paper of P.W. An- derson et al. Ill, then studied experimentally

/3/,/4/ and theoretically /5/,/6/. However one of the previous calculation /5/, neglecting the broad distribution of the relaxation times of the de- fects is incorrect.

Let us start from the standard model HI, 111 of two level defects in glasses representing the residual motion of atoms in a double well poten- tial. Since the defects are coupled to phonons, they have relaxation times T., where j labels the

fh

j defect. The coupled Boltzmann equations for phonons and defects have a simple solution within

the approximation of a local temperature :

where a is the time conjugated Laplace variable ("the frequency").

C, , (a) is therefore an "effective" spe- cific heat exhibiting a delay factor (1 + a t . )- 1

characteristic of a relaxation process at frequency 0 and appears as such /8/ in the diffusion equa- tion.

The standard expression for the defects relaxation rate :

T T1 = a T2 E. coth(E./2k^T) involves T. the tun- 3 3 3 J B J neling coupling energy (a is a numerical factor).

Now use the hypothesis fo the original mo- del HI, 111 which assumes an uniform distribution of the tunneling parameter X between 0 and XM A V t

. . / MAX let r „T V = r e MAX and A. = (E.2-r. 2) / z uni-

MIN o J J J form between 0 and Aw.„.

MAX

The effective density of states n(E,a) des- cribing the density of defects of energy E respon- ding at frequency a is obtained from (1) by inte- gration over the tunneling variable r. : ,

and n(E,o) = 0 otherwise,

where x = E/2 k T, x = V'OT*, X = T.J2KT arid

i B o m m m is

T = (2T)3 la is a characteristic relaxation time at temperature T.

The figure 1 shows three distinct regimes : - at E < r . , the density is zero, r appears

m m m therefore as a gap in the density of states.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19786430

(3)

-

a t x m

2

x 5 x a ' t h e e f f e c t i v e d e n s i t y of s t a t e s i s s t r o n g l y reduced from t h e e q u i l i b r i u m v a l u e o = 0, and v a r i e s a s ( X / X ~ ) ~

.

-

a t x

2

x n(E,o) v a r i e s a s kn(2x/xo).

0 '

This p l o t shows d i s t i n c t l y how the time s c a l e i n t r o d u c e s a t y p i c a l f r e e z i n g of t h e d e g r e e s of freedom ;

For x >> xo, t h e r e d u c t i o n of t h e e r f e c - t i v e d e n s i t y of s t a t e s between t h e frequency a and frequency o

-

= O i s independent of E o r x : n(E,O)

-

n(E,o) = Rn(l + ( X ~ / X ~ ) ~ ) .

The s p e c i f i c h e a t f o l l o w s now d i r e c t l y from ( I ) and (2) :

c ~ ~ ~ ( T , u ) + i g 2 ~ JxxW

A

n ( x , o ) dx (3)

m ch2x

An approximate e x p r e s s i o n of Cdef i n t h e interme- d i a t e regime x o > x and kgT m >

rm

i s :

s o l u t i o n of t h e d i f f u s i o n e q u a t i o n w i t h two c o n t r i - b u t i o n s C1 and C2 of t h e d e f e c t s s p e c i f i c h e a t : Cdef = C1 + C2 Rn(l +

-

1 ) . CI i s

a

independent

UT*

and d e s c r i b e e x t r a f a s t r e l a x i n g i m p u r i t i e s pre- s e n t i n t h e sample 131 : C1 = 1.4 ergs/g.K,

C 2 = 0.05 erg1g.k. The d o t s correspond t o measured v a l u e of AT on v i t r e o u s s i l i c a / 3 / . The d o t t e d curve r e p r e s e n t s t h e s o l u t i o n s of t h e d i f f u s i o n e q u a t i o n , b u t f o r C1 = 0.

B) Recent experiments done by Lewis and L a s j a u n i a s

141,

on a very pure s i l i c a and f o r a d i f f e r e n t ran- g e of temperature and time a r e r e p o r t e d i n t h i s i s s u e . On f i g u r e 1 of r e f e r e n c e 141, t h e d a t a s e x h i b i t d e p a r t u r e from t h e s t a n d a r d s o l u t i o n of t h e d i f f u s i o n s e q u a t i o n s (with a time independent s p e c i f i c h e a t l a t s h o r t time. This d e p a r t u r e h a s been f i t t e d by t h e s o l u t i o n of t h e d i f f u s i o n equa- t i o n w i t h t h e frequency dependent s p e c i f i c h e a t / 4 / . The c h a r a c t e r i s t i c r e l a x a t i o n time -rL of e x p r e s s i o n ( 4 ) h a s been found t o b e -cf = 1.3 x

~ o - ~ ~ T - ~ s . This v a l u e i s s m a l l e r t h a n t h e r e l a x a - t i o n time deduced from u l t i - a s o n i c experiment/&/ and corresponds t o t h e f a s t e s t time of t h e d i s t r i b u t i o n f o r d e f e c t s t h e energy s p l i t t i n g of which i s kgT.

Fig. 1 : The e f f e c t i v e energy d e n s i t y of two l e v e l d e f e c t s a t f i n i t e frequency o and f o r o = 0 v e r s u s energy s p l i t t i n g .

This e x ~ r e s s i o n shows f o r or*>> 1 (low temperature of h i g h frequency) t h e a p p a r e n t speci- f i c h e a t v a r i e s a s T ~ / U

,

w h i l e f o r o r X << 1 (high temperatures o r lower frequency) i t i s p r o p o r t i o - n a l t o T % ~ T ~ / ( J . For o going t o z e r o , t h e s p e c i f i c h e a t r e a c h e s a f i n i t e v a l u e Cdef(o = 0 ) correspon- d i n g t o t h e s t a t i c d e n s i t y of s t a t e s of F i g u r e 1 .

The problem of t h e Laplace transform of t h e d i f f u s i o n e q u a t i o n w i t h t h e s p e c i f i c h e a t Cdef (0) h a s been performed /8/ f o r any time and s p a c e v a r i s b l e f o r an i n i t i a l p u l s e a t one end of t h e

s l a b . S i n c e t h e d e t a i l s 181 cannot b e r e p o r t e d h e r e indeed we p r e s e n t two f i t s w i t h t h e experi- ments :

A ) On f i g u r e 2, t h e temperature p r o f i l e i s f i t t e d a s a f u n c t i o n of time a t x = L , i n a s l a b of t h i c - kness L, s u b j e c t e d t o a h e a t p u l s e a t x = 0 a t t = 0. The continuous c u r v e corresponds t o t h e

F i g . 2 : T r a n s i e n t temperature p r o f i l e a s a func- t i o n of time d e l a y .

The b a s i c time dependent e f f e c t i n g l a s s e s would b e b e t t e r i n v e s t i g a t e d by measuring t h e re- l a x a t i o n of t h e e n t h a l p y H ( t ) which canbe o b t a i n e d

from t h e h e a t flow Q = a H / a t needed, t o m a i n t a i n t h e temperature c o n s t a n t a f t e r quenching. S i n c e t h e time e v o l u t i o n of e n t h a l p y i s c o n t r o l e d by t h e d i s t r i b u t i o n of t h e r e l a x a t i o n time, one c a n ex- p e c t a v a r i a t i o n i n bt f o r l a r g e time o r r a t h e r

6

i n l / t . T h i s behaviour which h a s been observed r e c e n t l y i n s p i n g l a s s e s

191,

shows t h a t t h e d i s - t r i b u t i o n of t h e r e l a x a t i o n times i s probably si- m i l a r t o t h a t of g l a s s e s .

(4)

References

/l/Lasjaunias, J.C., Ravex, A., Thoulouze, D. and Vandorpe, M., Interna- tional Conference on Phonon Scattering in Solids, p. 138, University of Nottingham, Plenum Press (1975).

/2/ Anderson, P.W., Halperin, B.I. and Varma, C.M., Phil. Mag. 2

1

(1972).

/3/ Goubau, W.M. and Tait, R.A., Phys. Rev. Lett. 2 1220 (1975).

/ 4 /

Lewis, J.E., and Lasjaunias, J.C., "Short time scale transient tempera-

ture profiles in high purity vitreous silica

:

a time dependent specific heat", LT 15, this issue.

/ 5 /

Heinrichs, J. and Kumar, N., Phys. Rev. Lett. 36 1406 (1976).

161

Black, J.L., to be published.

/7/ Phillips,W.A., J. Low Temp. Phys. 7 351 (1972).

/8/

Rammal, R., thsse (1977), Universitd de Grenoble.

/9/ Nieuwenhuys, G. and Mydosh, J.A., I.C.M.'76 Amsterdam (1976).

Références

Documents relatifs

The frequency range was 2,4 mHz to 35 mHz, - the lower time limit set by the heat diffusion time in the sample and the upper time limit by the patience of the experimentalist

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The elasticity moduli and magnetomechanical cou- pling coefficient dependences on the magnetic bias field for the as quenched Fe79Si12Bg metallic glasses were presented in

Separately [5], we have considered the scaling p r o p erties of the field-dependent specific heat in some detail and argued that the increase in the peak amplitude in figure 3

In [4] we studied the dynamic specific l~eat of tl~e system undergoing tl~e transition to tl~e SG phase at T # 0 using Glauber dynamics and tl~e local mean field approximation.

THENL4L PROPERTIES.- The starting point of the investigation of the low temperature behaviour of amorphous materials was the discovery by Zeller and Pohl /I/, demonstrating that

V.. On en a déduit la valeur de la température de Debye 0 D et de la densité d'états au niveau de Fermi N F de ces trois composés. N F croît avec la concentration en lacunes

In the same confe- rence [5] the present authors suggested that this common basis is the result of anharmonic effects (i.e. the expansivity and the temperature decrease of the