• Aucun résultat trouvé

MONTE CARLO SIMULATION OF VARIABLE RANGE HOPPING AT THE FERMI LEVEL

N/A
N/A
Protected

Academic year: 2021

Partager "MONTE CARLO SIMULATION OF VARIABLE RANGE HOPPING AT THE FERMI LEVEL"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220827

https://hal.archives-ouvertes.fr/jpa-00220827

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MONTE CARLO SIMULATION OF VARIABLE RANGE HOPPING AT THE FERMI LEVEL

G. Schönherr, H. Bässler, M. Silver

To cite this version:

G. Schönherr, H. Bässler, M. Silver. MONTE CARLO SIMULATION OF VARIABLE RANGE

HOPPING AT THE FERMI LEVEL. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-111-C4-

114. �10.1051/jphyscol:1981420�. �jpa-00220827�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, supplement au n°10, Tome 42, ootobre 1981 page C4-111

MONTE CARLO SIMULATION OF VARIABLE RANGE HOPPING AT THE FERMI LEVEL

G. Schonherr, H. Bassler and M. Silver

Fachbeveich Physikalisehe Chemie, Philipp-Universitat, Hans-Meerwein-Stra&e, D-SSSO Marburg, F.R.G.

Department of Physios and Astronomy, University of North Carolina, Chapel Hill, N.C. 27514, U.S.A.

Abstract.- Employing the Monte Carlo technique hopping at the Fermi level in a cubic lattice has been simulated as a function of temperature, electric field, hopping parameter 2a, and time. It has been found that the predictions of the simple theories agree remarkably well with our computer experiments. In our work we find a true d.c. conductivity proportional to exp -(T /T)!/1* at low temperatures. The time dependence shows dispersion at short times due to energy relaxation and-later equilibrium to the average hopping distance.

Introduction.- Perhaps the most simple, yet elegant approach to hopping at the Fermi level was the optimization approach by Mott (1) where the fameous In a T 1'1+ law was found. This law has since been verified (see for examples G.G.Robert et al.(2))and now put on firm theoretical grounds by Movaghar and Schirmacher (3). While experiments (2) have shown the T~^-/^ law the experimental data gave a conductivity which was too large by a factor of more than 10 . Because of this discrepancy we have decided to perform a computer simulation to test these simple theoretical ideas and approxima- tions. We have found excellent agreement between our Monte Carlo simulations and theory regarding temperature, hopping parameter, and electric field. At high tempera- ture an activated conductivity is found and simple arguments are presented for the magnitude of the activation energy.

Computational Methods.- Because of its simplicity the Monte Carlo Method has- fre- quently been applied to treat transport properties of disordered solids (see e.g.

(4,5)). In the present computation a volume of 30x30x69 sites with cubic symmetry (lattice parameter a = 10"' cm) was used employing periodic boundary conditions along y and z rendering the effective sample dimensions in transverse directions practically infinite. To mimic hopping at the Fermi level the distribution of the energy of the hopping sites was approximately by a half-Gaussian, N(e) =

2 exp(-e2/2tr2) /(27r)*/2a3o- forS^O, the Fermi level being located at e = 0. We chose a = 0.3 eV which is » k T at all temperatures studied. Hopping between two sites j and k is governed by

13 -1

To simulate real systems we assumed v = 10 s . For details of the simulation method see refs.(5,6).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981420

(3)

I n o r d e r t o s t u d y t h e energy r e l a x a t i o n we i n i t i a l l y c r e a t e a hopping p a r t i c l e a t random on an a r b i t r a r y s i t e l o c a t e d w i t h i n t h e x = 1 p l a n e . This g i v e s us an i n i - t i a l e n e r g e t i c non e q u i l i b r i u m . However, s i n c e t h e p a r t i c l e t h e r m a l i z e i n only a few jumps, t h i s does n o t d i s t o r t our d . c . c o n d u c t i v i t y r e s u l t s . We s t u d y 20 p a r t i c l e s p e r l a t t i c e c o n f i g u r a t i o n and average over 50 d i f f e r e n t c o n f i g u r a t i o n s . We s t o r e n ( x , t , s ) where

n

is t h e number o f jumping p a r t i c l e s . We t h u s can c a l c u l a t e < x ( t ) >

and < & ( t ) > from which we o b t a i n t h e c o n d u c t i v i t y and t h e average energy. These ave- r a g e v a l u e s a r e s t u d i e s a s a f u n c t i o n of temperature and e l e c t r i c f i e l d f o r 2aa r a n g i n g from 3 t o 10.

R e s u l t s and Discussion.- F i g u r e 1 summarizes o u r r e s u l t s f o r l o g i m v s T - " ~ f o r v a r i o u s v a l u e s of 2aa i n t h e l o n g time l i m i t (thermodynamic e q u i l i b r i u m ) . A t high temperatures t h e c u r r e n t is a c t i v a t e d w h i l e a t low t e m p e r a t u r e l o g i m a ( ~ o / ~ ) 1 / 4 . Our To d a t a a r e b e s t f i t t e d by To

=

( 2 , 3 ) where NF is t h e d e n s i t y of s t a t e s a t t h e Fermi l e v e l , i n t h e p r e s e n t c a s e NF 2 / ( 2 ~ r ) ' / ~ o a ~

.

Using t h e simple r e l a t i o n - s h i p d e r i v e d by Mott ( 1 ) we a l s o can d e r l v e a value o f t h e most probable hopping d i s t a n c e <R>. Data f o r T = 25OK a r e l i s t e d i n t a b l e 1.

F i g . 1: l o g i- vs Tel/'. Open c i r c l e s

P

a r e f o r a f i e l d F

=

105 ~ c m - 1 , c l o s e d c i r c l e s a r e c o r r e c t e d f o r t h e high f i e l d e f f e c t shown i n f i g . 2 . The i n s e r t shows Ea d e r i v e d from t h e high temperature d a t a . The dashed li e i n d i c a t e s Ea = (NFaSP)-l.

Table 1: Simulation r e s u l t s f o r hopping a t t h e Fermi l e v e l . Data f o r

<R>/a r e f e r t o T = 25 K.

The f a c t t h a t <R> c o n s i d e r a b l y exceeds t h e l a t t i c e parameter a , e x p l a i n s why we can r e c o v e r t h e a n a l y t i c r e s u l t s , w h i c h have o r i g i n a l l y been worked o u t f o r a much more complicated s p a t i a l a r r a y of hopping s i t e s ( 3 ) , b y c o n f i n i n g t h e simu-

l a t i o n s t o a s i m p l e c u b i c l a t t i c e . Also shown i n t h e i n s e r t i n f i g u r e 1 i s t h e high temperature a c t i v a t i o n energy Ea vs t h e hopping parameter 2aa.

I t i s e a s i l y v e r i f i e d t h a t it should be given by Ea = ( ~ ~ awhere p is t h e ~ ~ ) - ~ number o f s i t e s which on average a par- t i c l e l o c a t e d a given s i t e can jump t o . S i n c e , & i m , i ( T ) a p exp(-2aa), p i s ob- t a i n e d by e x t r a p o l a t i n g t h e l o g i - = ~ - ' r e g i o n t o T + m . Notice t h a t our d a t a f o r Ea can very w e l l be f i t t e d by u s i n g t h e p v a l u e s from t a b l e 1.

Apsley and Hughes ( 7 ) have p r e d i c t e d t h e c o n d u c t i v i t y behavior a s a f u n c t i o n of e l e c t r i c f i e l d i n t h e low temperature regime. The r e s u l t s of o u r s i m u l a t i o n s shown i n f i g u r e 2 demonstrate e x c e l l e n t agreement w i t h t h e i r p r e d i c t i o n s . Concequent- l y , t h e e n t i r e s i m p l i f i e d a n a l y t i c model f o r hopping a t t h e Fermi l e v e l a g r e e s w i t h our computer experiment. Even t h e magnitude of t h e c u r r e n t i s i n accord with t h e o r y when we normalize it t o our e m p i r i c a l jump frequency.

(4)

loL as in6 id

Electrlc Field IVlcm)

-

Pig.2: F i e l d dependence of t h e c u r r e n t f o r a a = 3 and v a r i o u s T . S o l i d l i n e s a r e t h e o r e t i c a l ( 7 ) .

L o g i ( t ) , mean energy

<E ( t ) > and l o g NNS vs l o g t . The simula- t i o n parameters a r e T

=

25 K , F

=

2.105

~ c m - 1 , ya = 3 and a

=

10-7 cm.

One f i n a l p o i n t is of i n t e r e s t . The simula- t i o n s allow us t o examine t h e dynamics of r e l a x a - t i o n t o t h e q u a s i e q u i l i b r i u m hopping a t t h e Fermi l e v e l . I n f i g u r e 3 we show t h e l o g i vs l o g t , l o g < & > vs l o g t and f i n a l l y l o g NNS vs l o g t where

<E> i s t h e average energy of t h e hopping p a r t i -

c l e s , and NNS i s t h e number of new s i t e s a p a r t i c l e h a s v i s i t e d a f t e r a given time t . A s s t a t e d e a r - l i e r , we s t a r t o u r p a r t i c l e s o f f with a p o p u l a t i o n p r o p o r t i o n a l t o t h e d e n s i t y of s t a t e s . One s e e s t h a t t h e energy r e l a x a t i o n t o t h e e q u i l i b r i u m va- l u e i s very f a s t , o c c u r r i n g a f t e r approximately 10 jumps. Within t h i s time regime t h e c u r r e n t de- cays i n a power-law f a s h i o n y i e l d i n g a s t r a i g h t l i n e with s l o p e al-1 when p l o t t e d on a l o g t vs l o g t s c a l e i n d i c a t i n g t h a t t r a n s p o r t i s d i s p e r - s i v e ( 8 ) . However, even a f t e r < ~ ( t ) > h a s become c o n s t a n t , i ( t ) c o n t i n u e s t o d e c r e a s e a s i ( t ) %

ta2-' with a p a l . This s i g n a l s e x i s t e n c e of a s e - cond d i s p e r s i v e regime a t low temperature. I t i s a l s o seen t h e l o g NNS vs l o g t - p l o t which shows two l i n e a r segments with s l o p e s a1<a2<1. The mag- n i t u d e of a 2 d e c r e a s e s with d e c r e a s i n g T . The se- cond d i s p e r s i o n obviously i s n o t due t o t h e energy r e l a x a t i o n term b u t i s a r e s u l t o f t h e i n h e r e n t d i s o r d e r a r i s i n g from t h e i n c l u s i o n of a l l p o s s i b l e hops. A t low temperature more t h a n 100 new s i t e s v i s i t e d a r e needed even i n t h i s simple system be- f o r e t h e t r u e d . ~ . c o n d u c t i v i t y is achieved. For t h e parameters used t o c a l c u l a t e t h e d a t a of f i g . 3 t h i s f i g u r e even exceeds t h e t o t a l number of new s i t e s a p a r t i c l e v i s i t s b e f o r e being c o l l e c t e d a t t h e a b s o r b i n g boundary which t e r m i n a t e s t h e simu- l a t i o n volume. Only f o r T > 50 K t r u e thermodynamic e q u i l i b r i u m i s a t t a i n e d w i t h i n a time l e s s t h a n t h e c a r r i e r t r a n s i t time through t h e sample. This s u g g e s t s t h a t perhaps one should s t u d y t h e a . c . c o n d u c t i v i t y f o r Fermi l e v e l hopping a s w e l l a s t h e d . c . c o n d u c t i v i t y . Perhaps some of t h e d i s - c r e p e n c i e s between t h e e x p e r i m e n t a l r e s u l t s and simple t h e o r y may b e r e v e a l e d .

I n c o n c l u s i o n , we have s i m u l a t e d hopping a t t h e Fermi l e v e l i n a c u b i c l a t t i c e and show r e - markably good agreement with s i m p l e t h e o r i e s . We show t h e high temperature s a t u r a t i o n p r e d i c t e d by Movaghar and Schirmacher ( 3 ) i n c l u d i n g an a c t i - v a t i o n energy which has a p a r t i c u l a r l y s i m p l e i n t e r p r e t a t i o n .

Supported i n p a r t by t h e N a t i o n a l Science Foundation under g r a n t D M R 790023 and NATO g r a n t (SA-2-05B(1953)/870(80)AG).

(5)

C 4 - 1 1 4 JOURNAL DE PHYSIQUE References

1 MOTT N.F., Phil.Mag.

19

(1969) 835; and MOTT N.F. and DAVIS E.A., Electronic Processes in Non-crystalline Materials, 2nd ed. Clarendon Press, Oxford

(1978)

2 ROBERTS G.G., APSLEY N., MUNN R.W., Phys.Repts.

60

(1980) 59

3 M0VAGHAR.B. and SCHIRMACHER W., J.,Phys.C.

,

Solid State (1981) 859 4 MARSHALL J.M., Phi1.Mag.B

2

(1978) 335

5 SCHGNHERR G.,

BBSSLER

H. and SILVER M., Phil.Mag.B, in press

6 SCH~NHERR G., EIERMANN R., BXSSLER H. and SILVER M., Chem.Phys.

52

(1980) 287 7 APSLEY N. and HUGHES H.P., Phi1.Mag.B

2

(1975) 1327

8 SCHER H. and MONTROLL E.W., Phys.Rev.B.

12

(1975) 2455

Références

Documents relatifs

Simulate one game until a node (=position) L of T (thanks to bandit algorithms); put this simulation S in memory..

In this work, the heat transfer through Si/Ge interfaces was investigated by using Full Band Monte Carlo simulation for phonon using DMM for modeling the phonon

For a square lattice with nearest-neighbour exclusion the relevant correlation functions are studied by Monte Carlo simulation and analytically by an extended Bethe-Peierls cluster

Fujuki and Betts [14], and also Nishimori and Nakan- ishi [15] discussed the disappearance of long-range or- der in the study of quantum spin systems on the trian-

Mohamed El Merouani (Université Abdelmalek Essaâdi Faculté des Sciences de Tétouan Département de Mathématiques) Methodes de Monte-Carlo 2018/2019 1 /

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

If we consider that DNA is a conductor substance of electric charges [12], and if in addition we admit that variable range hopping is the main process that governs the

The key point is that a diagram has an irreducible skeleton topology if and only if no pair of lines (irrespective of the type of line: G, , or measuring line) can have exactly the