• Aucun résultat trouvé

RIVE GAUCHE TOWER-ACHRAFIEH

N/A
N/A
Protected

Academic year: 2022

Partager "RIVE GAUCHE TOWER-ACHRAFIEH"

Copied!
9
0
0

Texte intégral

(1)

RIVE GAUCHE TOWER-ACHRAFIEH

by

HAMMOUD Fayad KHEIREDDINE Mohamed

Submitted to the Faculty of Engineering

In partial fulfillment of the requirement For the degree of Bachelor of

Engineering - Civil Engineering

at the

Holy Spirit University of Kaslik (USEK)

Kaslik, Lebanon

(2)

vi

ABSTRACT

The main objective of this report is to present our study covering the structural analysis of a tower in addition to special topic. The “RIVE GAUCHE TOWER” located in ‘ACHRAFIEH’ is studied using different softwares meeting all requirements of building codes and the results are assessed by hand calculation. The structural design takes into account gravity, wind and seismic loadings.

All elements were designed and detailed.

The special topic covers the stability analysis of a slope located at Chekka, North of Lebanon, taking into consideration the effect of the vegetation on the landslide.

Keywords: Tower, seismic, wind, structural design, piles, slope stability.

(3)

vii

RÉSUMÉ

L'objectif principal de ce rapport est de présenter notre étude concernant l'analyse structurelle d'une tour en plus d'un sujet spécial. L’édifice “RIVE GAUCHE TOUR” située à “ACHRAFIEH” est modélisée à l'aide de différents logiciels respectant toutes les exigences des codes du bâtiment et les résultats sont évalués par calcul manuel. La conception prend en compte les charges permanentes, exploitation, vent et charges sismiques. Tous les éléments ont été dimensionnés avec les armatures appropriées.

Le sujet spécial concerne l'analyse de la stabilité d'une pente située à Chekka, au Nord du Liban, en tenant compte de l'effet de la végétation sur le glissement de terrain.

Mots-clés: Tour, étude sismique, vent, conception structurelle, pieux, stabilité des pentes.

(4)

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... v

ABSTRACT ... vi

RÉSUMÉ ... vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES ... xiii

LIST OF TABLES ... xvi

CHAPTER 1: ARCHITECTURAL STUDY ... 18

1.1 Project description ... 18

1.2 Architectural background ... 19

1.2.1- Five basements ... 19

1.2.2- Ground floor ... 19

1.2.3- Lower and upper podium parking ... 20

1.2.4- Podium floor... 20

1.2.5- First floor ... 21

1.2.6- Typical floors from 2-23 ... 21

1.2.7- Typical floors from 24-28 ... 22

1.2.8- Lower and upper roofs ... 22

1.2.9- Elevations ... 23

CHAPTER 2: DESIGN DATA ... 25

2.1 Codes ... 25

2.2 Softwares ... 25

2.3 Soil Properties ... 25

(5)

ix

2.4 Steel Reinforcement ... 25

2.5 Concrete Properties ... 26

2.6 Loads ... 26

2.6.1 Gravity Loads ... 26

2.6.2 Lateral loads ... 27

CHAPTER 3: SEISMIC STUDY... 28

3.1 Introduction ... 28

3.2 Static Analysis ... 28

3.3 Seismic Load Combinations... 32

3.4 Dynamic Analysis ... 33

3.4.1 Diaphragm ... 33

3.4.2 Mass Participating ratio ... 34

3.4.3 Scaling of results ... 36

3.4.4 Story drift ... 37

3.4.5 P- Effect ... 39

3.5 Expansion joint ... 42

3.5.1 Introduction ... 42

3.5.2 Joint thickness... 42

CHAPTER 4: WIND STUDY ... 44

4.1 Introduction ... 44

4.2 Analytical Calculation ... 44

4.3 Wind Load Combinations ... 48

4.4 Model Wind Analysis... 49

Chapter 5: Design of slabs ... 51

5.1 Introduction ... 51

(6)

x

5.2 Solid slab design... 51

5.2.1 Preliminary Thickness of slabs ... 51

5.2.2 Deflection check ... 52

5.2.3 Punching Shear ... 54

5.2.4 Design ... 56

5.3 Post tensioned slab ... 58

5.3.1 Thickness ... 58

5.3.2 Type of post-tension used ... 59

5.3.3 Input on safe ... 59

5.3.4 Results ... 62

CHAPTER 6: VERTICAL ELEMENTS DESIGN ... 66

6.1 Columns ... 66

6.1.1 Introduction ... 66

6.1.2 ACI code requirements ... 66

6.1.3 Pre-dimensioning ... 66

6.1.4 S-Concrete Design ... 67

6.2 Shear walls ... 67

6.3 Core walls ... 68

CHAPTER 7: SPECIAL ELEMENTS DESIGN ... 70

7.1 Basement wall ... 70

7.1.1 Introduction ... 70

7.1.2 Static calculation ... 70

7.1.3 Dynamic calculation ... 71

7.1.4 Shear and Moment calculation ... 72

7.1.5 Reinforcement ... 73

(7)

xi

7.2 Stairs ... 76

7.2.1 Staircase Design ... 76

7.2.2 Data and Properties of the Stairs ... 77

7.2.3 Loads on Stairs ... 78

7.2.4 Shear and Moment Calculation ... 79

7.2.5 Steel Reinforcement ... 80

7.3 Ramp ... 81

7.3.1 Ramp Data for Design ... 82

7.3.2 Loads ... 82

7.3.3 Flexure Design ... 83

7.3.4 Check for Shear Reinforcement ... 83

CHAPTER 8: DESIGN OF FOUNDATION SYSTEM ... 84

8.1 Raft Study ... 84

8.1.1 Introduction ... 84

8.1.2 Modeling ... 85

8.1.3 Results ... 85

8.2 Mat piles system ... 94

8.2.1 Description... 94

8.2.2 Piles design ... 94

8.2.3 Laterally loaded piles ... 99

8.3 Mat-pile system design... 101

8.3.1 Punching shear check ... 101

8.3.2 Raft Design ... 102

CHAPTER 9: SPECIAL TOPIC – EFFECT OF VEGETATION ON SLOPE STABILITY ... 104

(8)

xii

9.1 Introduction ... 104

9.2 Vegetation ... 104

9.3 Case Study ... 105

9.4 Materials and Methods ... 107

9.4.1 Model ... 107

9.4.2 Analysis ... 108

9.5 Results and Discussions ... 108

9.5.1 Dry conditions ... 108

9.5.2 Variation of water table level ... 109

9.5.3 Variation of shear strength parameters ... 110

9.5.4 Effect of vegetation ... 111

9.6 Conclusion ... 114

GENERAL CONCLUSION ... 115

REFERENCES ... 116

(9)

116

REFERENCES

Abe, K. A., & Ziemer, R. R. (1991). Effect of tree roots on shallow-seated landslides. Proceedings of the IUFRO technical session on geomorphic hazards in managed forests; 5-11 August 1990; Montreal, Canada; p. 11-20.

American Concrete Institute (ACI 318), Building Code Requirements for Structural Concrete.

American Concrete Institute (ACI 350), Code requirements for environmental engineering concrete structures-American Concrete Institute (ACI)

ASCE. (2005). Minimum Design Loads for Buildings and Other Structures. ASCE/SEI Standard 7-05.

ASCE. (2010). Minimum Design Loads for Buildings and Other Structures. ASCE/SEI Standard 7-10.

A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud and R. C. Sidle. (2009). Desirable plant root traits for protecting natural and engineered slopes against landslides, Plant Soil, vol. 324, issue 1-2, pp. 1-30.

C. Fan and J. Luo (2008). Numerical Study on the Optimum Layout of Soil-Nailed Slope, Computers and Geotechnics, vol. 35, pp. 585-599.

Das, B. M. (2015). Principles of foundation engineering. Cengage learning.

LIBNOR 2012. Lebanese Building Code.

M. Charlafti (2014). Slope stability and vegetation, J Archit Eng Tech, vol. 3, issue 4.

N. Ali, I. Farshchi, M. A. Mu'azu, and S. W. Rees (2012). Soil-Root Interaction and Effects on Slope Stability Analysis, Electronic Journal of Geotechnical Engineering, vol 17, pp. 319- 328.

R. Kourkoulis, F. Gelagoti, I. Anastasopoulos and G. Gazetas (2011). Slope Stabilizing Piles and Pile-Groups: Parametric Study and Design Insights, Journal of Geotechnical and Geoenvironmental Engineering, vol. 137, issue 7, pp. 663-677.

Sambasivarao, K. Venkata (2015). Quantifying The Role of Vegetation in Slope Stability. PhD diss.

S. He, C. Ouyang and Y. (2012) Luo Seismic Stability Analysis of Soil Nail Reinforced Slope using Kinematic Approach of Limit Analysis”, Environmental Earth Sciences, vol.66, issue 1, pp. 319-326.

Y. S. Song, W. P. Hong and K. S. Woo. (2012). Behavior and Analysis of Stabilizing Piles Installed in a Cut Slope during Rainfall, Engineering Geology, vol. 129, pp. 56-67.

Références

Documents relatifs

Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of sat- urated clay.. A note on nonlinear elasticity of

During the conceptual design phase, after clarification of the task, engineers must identify the essential problems of the product, establish function structures, search for

Il est en effet très important de déterminer avec précision la réponse d'un pieu sur sol horizontal, et en particulier les courbes P-Y correspondantes, puisque ces

The aim of this paper is to study the correlation between thermodynamic basicity, evaluated by the adsorption of pro- tic molecules, methanol and propyne, followed by

When monetary policy only depends on expected inflation, a sufficiently active policy can stabilize expectation-driven fluctuations occurring for large income effects, if the

This paper investigates the influence of combined fast external excitation and fast parametric damp- ing on the amplitude and the onset of galloping of a tower submitted to steady

In the recent years Fluid solid interaction has become an attractive area of research as it offers the potentials of simulating a physical phenomena as closely as

§1.3 we develop the basics of the theory of Minkowski units and show, using the Gras- Munnier Theorem 1.1, that the existence of a Minkowski unit in some number field F in the tower K