• Aucun résultat trouvé

Global exact controllability of 1D Schrödinger equations with a polarizability term

N/A
N/A
Protected

Academic year: 2021

Partager "Global exact controllability of 1D Schrödinger equations with a polarizability term"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-00866642

https://hal.archives-ouvertes.fr/hal-00866642

Submitted on 26 Sep 2013

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

Global exact controllability of 1D Schrödinger equations with a polarizability term

Morgan Morancey, Vahagn Nersesyan

To cite this version:

Morgan Morancey, Vahagn Nersesyan. Global exact controllability of 1D Schrödinger equations with a

polarizability term. Comptes rendus de l’Académie des sciences. Série I, Mathématique, Elsevier, 2014,

352 (5), http://dx.doi.org/10.1016/j.crma.2014.03.013. �10.1016/j.crma.2014.03.013�. �hal-00866642�

(2)

Global exact controllability of a 1d Schrödinger equations with a polarizability term

Morgan Morancey

, Vahagn Nersesyan

†‡

Abstract

We consider a quantum particle in a1dinterval submitted to a potential. The evo- lution of this particle is controlled using an external electric field. Taking into account the so-called polarizability term in the model (quadratic with respect to the control), we prove global exact controllability in a suitable space for arbitrary potential and arbitrary dipole moment. This term is relevant both from the mathematical and phys- ical points of view. The proof uses tools from the bilinear setting and a perturbation argument.

Résumé

On considère une particule quantique dans un intervalle 1d, soumise à un potentiel.

L’évolution de cette particule est contrôlée par un champ électrique extérieur. En pre- nant en compte dans le modèle le terme dit de polarisabilité (quadratique par rapport au contrôle), on prouve la contrôlabilité exacte globale dans un espace approprié pour des potentiels et des moments dipolaires arbitraires. Ce terme est intéressant à la fois d’un point de vue mathématique et physique. La preuve utilise des outils issus du cadre bilinéaire et un argument de perturbation.

Version française abrégée

On considère une particule quantique unidimensionnelle soumise à l’action d’un potentiel V. La particule est représentée par sa fonction d’onde ψdont l’évolution est contrôlée par un champ électrique extérieur d’amplitude réelleu. En notantµ1le moment dipolaire etµ2

le moment de polarisabilité, l’évolution de la fonction d’onde est donnée par le système de Schrödinger avec polarisabilité





i∂tψ= −∂xx2 +V(x)

ψ−u(t)µ1(x)ψ−u(t)2µ2(x)ψ, (t, x)∈(0, T)×(0,1), ψ(t,0) =ψ(t,1) = 0,

ψ(0, x) =ψ0(x).

(1)

Si la prise en compte du terme de polarisabilité est intéressante du point de vue physique (par exemple dans le cas de contrôles de fortes amplitudes [7]), du point de vue mathématique, ce terme a permis de montrer la contrôlabilité dans des cas où le moment dipolaire est insuffisant pour conclure (voir par exemple [6], [10], [3]).

Pour V ∈L2((0,1),R), on noteλk,V et ϕk,V les valeurs propres (en ordre croissant) et vecteurs propres de l’opérateurAV défini sur le domaineD(AV) :=H2∩H01((0,1),C)par

CMLS UMR 7640, Ecole Polytechnique, 91128 Palaiseau, France; CMLA ENS Cachan, 61 av du Prési- dent Wilson, 94235 Cachan; email: Morgan.Morancey@cmla.ens-cachan.fr

Laboratoire de Mathématiques, UMR CNRS 8100, Université de Versailles-Saint-Quentin-Yvelines, F- 78035 Versailles, France; e-mail: Vahagn.Nersesyan@math.uvsq.fr

The authors were partially supported by the ANR grants EMAQS and STOSYMAP No. ANR-2011- BS01-017-01 and ANR-2011-BS01015-01

(3)

AVψ := −∂xx2 +V(x)

ψ. On définit les états propres par Φk,V(t, x) :=ek,Vtϕk,V(x), (t, x)∈[0,+∞)×(0,1), k∈N.Pours >0, l’espaceH(Vs ):=D(As/2V )est muni de la norme kψkH(Vs ) :=P+∞

k=1|kshψ, ϕk,Vi|212

.On noteS la sphère unité de L2((0,1),C).

Dans le cadre bilinéaire (c’est-à-dire pour le sytème (1) avecµ2 = 0), en combinant les résultats de contrôle exact local, dansH(0)3 , autour deΦ1,0de Beauchard et Laurent [1] et la contrôlabilité approchée deϕ1,0 dansH3du second auteur [12], on obtient la contrôlabilité exacte globale dansS ∩H(0)3+ǫ pourV = 0sous des hypothèses favorables surµ1. Ces deux résultats sont principalement basés sur l’étude de linéarisés du système au voisinage de trajectoires associées au contrôle nul. En utilisant le fait que (au moins formellement) le système (1) avec µ2 ∈ L2((0,1),R) quelconque a le même linéarisé au voisinage de telles trajectoires que dans le cas bilinéaireµ2= 0, conjointement à un argument de perturbation utilisé par les auteurs dans [11] dans le cadre du contrôle simultanné de systèmes bilinéaires, on prouve le résultat suivant

Theorem 0.1. Pour tout V, µ1∈ H6((0,1),R) le système (1) est globalement exactement contrôlable dans H(V6 ), génériquement par rapport àµ2∈H6((0,1),R).

Par rapport au modèle bilinéaire, la prise en compte du terme de polarisabilité, permet de conclure à la contrôlabilité dans des cas où la contrôlabilité était fausse ou ouverte (par exempleV arbitraire etµ1= 0ouµ1∈ Q/ V comme défini dans [11]).

1 Introduction

We consider the evolution of a1dquantum particle given by (1). The real valued functions V, µ1,andµ2, respectively, the potential, the dipole moment, and the polarizability moment, are given. The controlu(t)is real valued. The following theorem is the main result of this paper.

Theorem 1.1. For any V, µ1 ∈ H6((0,1),R), system (1) is globally exactly controllable in H(V6 ) generically with respect to µ2 ∈H6((0,1),R). More precisely, there is a residual setQV,µ1 inH6((0,1),R)such that ifµ2∈ QV,µ1, then for anyψ0, ψf ∈ S ∩H(V6 ), there is T >0 andu∈H01((0, T),R)such that the solution of (1) satisfiesψ(T) =ψf.

Essentially with the same proof one can establish the same exact controllability prop- erty in the case where the term u(t)2µ2(x)ψ in (1) is replaced by a higher degree term Pm

j=2ujµjψ.We choosem= 2for the sake of simplicity of presentation.

Review of previous results. The controllability properties of quantum particles were first studied for the bilinear model (i.e., for (1) with µ2 = 0). In [1], Beauchard and Laurent proved local exact controllability inH(0)3 aroundΦ1,0 by studying the controllability of the linearized system around the trajectory (u≡0,Φ1,0). The simultaneous global exact con- trollability of an arbitrary (finite) number of such bilinear equations was studied by the authors in [11] for arbitrary potentials. For multidimensional domains, we mention the simultaneous approximate controllability property obtained by Boscain, Caponigro, Cham- brion, Mason, Sigalotti [5], [4] through geometric techniques based on the exact controlla- bility of the Galerkin approximations. The approximate controllability in Sobolev spaces towards the state ϕ1,V is obtained by the second author using Lyapunov techniques [12].

The first controllability results for systems having a polarizability term are established for finite-dimensional models and are due to Coron, Grigoriu, Lefter, and Turinici [14], [9], [6], [8]. They proved exact controllability under the same assumptions as for the bilinear model.

They also proved stabilization of the first eigenstate using either discontinuous feedback laws or time oscillating periodic feedback laws in a setting where the dipole moment was not sufficient to conclude. The strategy based on time oscillating feedback laws has been

(4)

extended to the infinite dimensional model (1) by the first author [10]. Finally, geometric technics were applied to the polarizability system by Boussaid, Caponigro, Chambrion in [3]

leading to global approximate controllability.

Structure of the article. First, we prove in Section 2 approximate controllability towards the ground state, adapting Lyapunov arguments from the bilinear setting. Still using tools from the bilinear setting, we prove in Section 3 local exact controllability around the ground state, inH(V5 ), with controls inH01((0, T),R). Gathering these results, we get global exact controllability under favourable hypotheses on V and µ1 in Section 4. Then, we conclude the proof using a perturbation argument.

2 Approximate controllability towards the ground state

From the arguments of the proofs of [13, Proposition 3.1] and [1, Proposition 5] it easily follows that for any V, µ1, µ2 ∈ H5((0,1),R), T > 0, ψ0 ∈ H(V5 ), and u ∈ H01((0, T),R), system (1) has a unique weak solution ψ∈ C([0, T], H5)∩C1([0, T], H(V3 )). Furthermore, the mapping which sends (ψ0, u) to the solution ψ is C1. As u(T) = 0, it comes that ψ(T)∈H(V5 ). Whenψ0∈H(V6 u(0)µ1u(0)2µ2),u∈C2([0, T],R), andu(0) = 0, the solution˙ ψbelongs toC([0, T], H6). Moreover, ifu(T˙ ) = 0, then ψ(T, ψ0, u)∈H(V6 u(T)µ1u(T)2µ2).

Let us introduce the following Lyapunov function L(z) :=γk −∂xx2 +V3

Pzk2L2+ 1− |hz, ϕ1,Vi|2, z∈ S ∩H(V6 ), (2) where P is the orthogonal projection in L2 onto the closure of the vector space spanned by{ϕk,V ; k≥2} andγ >0 is a constant which will be precised later on. This Lyapunov function has already been used in the bilinear setting by the second author and Beauchard in [12], [2] and adapted to study simultaneous controllability in [11] by the authors. We assume that the functionsV, µ1∈H6((0,1),R)are such that

(C1) hµ1ϕ1,V, ϕk,Vi 6= 0, for allk∈N,

(C2) λ1,V −λj,V 6=λp,V −λq,V, for allj, p, q≥1 andj6= 1.

Theorem 2.1. Let V, µ1, µ2 ∈ H6((0,1),R) be such that Conditions (C1) and (C2) are satisfied. For any ψ0 ∈ S ∩H(V6 ) satisfying hψ0, ϕ1,Vi 6= 0 and for any ε > 0, there are T >0 andu∈C02((0, T),R)such thatkψ(T, ψ0, u)−ϕ1,VkH5 < ε.

Proof. For µ2 = 0, the proof is given in [12, Theorem 2.3]. The adaptation to µ2 ∈ H6((0,1),R) is straightforward, we only recall the scheme of the proof. Since for every ψ0∈H(V6 ), the linearization of (1) around the trajectory ψ(·, ψ0,0)is the same for µ2= 0 or any otherµ2∈H6((0,1),R), we deduce from [12, Proposition 2.6] the following lemma.

Lemma 2.2. Let V, µ1, µ2 ∈ H6((0,1),R) be such that Conditions (C1) and (C2) are satisfied. For anyψ0∈ S ∩H(V6 )satisfyinghψ0, ϕ1,Vi 6= 0andL(ψ0)>0, there exist a time T >0 and a controlu∈C02((0, T),R)such that L(ψ(T, ψ0, u))<L(ψ0).

Let us take any ψ0∈ S ∩H(V6 ) satisfyinghψ0, ϕ1,Vi 6= 0and let us choose the constant γ >0 in (2) such thatL(ψ0)<1. IfL(ψ0)>0, we define

K:=n

ψf ∈H(V6 );ψ(Tn, ψ0, un)n−→→∞ψf, in H5whereTn>0, un∈C02((0, Tn),R)o . The infimum of L on K is attained, i.e., there is e ∈ K such that L(e) = infψ∈KL(ψ).

This gives thatL(e)≤ L(ψ0)<1, hence he, ϕ1,Vi 6= 0. Using Lemma 2.2, it comes that if L(e)> 0 then there are T >0 and u∈C02((0, T),R)such that L(ψ(T, e, u))< L(e). As ψ(T, e, u)∈ K, this contradicts the definition ofe. Then, L(e) = 0. This leads toϕ1,V ∈ K and concludes the proof of Theorem 2.1.

(5)

3 Local exact controllability around the ground state

In this section, we prove local exact controllability around the ground state ϕ1,V in H(V5 ) with controls inH01((0, T),R). We assume that the functionsV, µ1∈H5((0,1),R)satisfy (C3) there exists C >0such that|hµ1ϕ1,V, ϕk,Vi| ≥ kC3, for allk∈N.

Theorem 3.1. Let V, µ1, µ2 ∈ H5((0,1),R) be such that Condition (C3) is satisfied.

Let T > 0. There exist δ > 0 and a C1 map Γ : OT −→ H01((0, T),R), where OT :=n

ψf ∈ S ∩H(V5 );kψf−Φ1,V(T)kH5< δo

, such that Γ(Φ1,V(T)) = 0, and for any ψf ∈ OT, the solution of (1) with initial conditionψ01,V and controlu= Γ(ψf)satisfies ψ(T) =ψf.

Proof. In the case where µ2 = 0 and V = 0, the proof is exactly the one of [1, Theorem 2]. Let H := n

ψ∈H(V5 );ℜ(hψ, ϕ1,Vi) = 0o

, and let PH be the orthogonal projection in L2((0,1),C) onto H. Then the end-point map ΘT :u∈H01((0, T),R)7→ PH ψ(T, ϕ1,V, u)

∈ H, is C1 and its differential at0 is given by dΘT(0).v = Ψ(T), where Ψis the solution of

i∂tΨ = −∂xx2 +V(x)

Ψ−v(t)µ1(x)Φ1,V, (t, x)∈(0, T)×(0,1) (3) with homogeneous Dirichlet boundary conditions and Ψ(0, x) = 0. Rewriting this in the Duhamel form, we get

Ψ(T) =i X+∞

k=1

1ϕ1,V, ϕk,Vi Z T

0

v(t)ei(λk,Vλ1,V)tdtΦk,V(T).

Using Condition(C3), the asymptotics of eigenvaluesλk,V, and [1, Corollary 2], we get the existence of a continuous linear mapM:H 7→L2((0, T),R)such that for anyΨf ∈ H, the functionw:=M(Ψf)solves the following moment problem







 Z T

0

w(t)dt= 0, Z T

0

w(t)(T−t)dt= 1

1ϕ1,V, ϕ1,VihΨf1,V(T)i, Z T

0

w(t)ei(λk,Vλ1,V)tdt= λ1,V −λk,V

1ϕ1,V, ϕk,VihΨfk,V(T)i, ∀k≥2.

Then the mapping Ψf ∈ H 7→Rt

0w(τ)dτ ∈H01((0, T),R), is a continuous right inverse for the differential dΘT(0). Finally, applying the inverse mapping theorem to ΘT at u = 0, using the conservation of the L2 norm and the hypothesis thatψf ∈ S, we complete the proof of Theorem 3.1.

Remark 1. Let us notice that the linearized system (3) is controllable in H(V3 )with controls in L2((0, T),R), but we cannot conclude to controllability for (1), since we do not know if the latter is well posed in H(V3 ) for u ∈ L2((0, T),R). Indeed, in that case u2 will be in L1((0, T),R), which does not allow to apply the results of [1].

4 Global exact controllability

Combining the properties of global approximate controllability obtained in Theorem 2.1 and local exact controllability obtained in Theorem 3.1, we obtain global exact controllability of (1) inH(V6 ) under favourable hypotheses onV andµ1.

(6)

Theorem 4.1. Let V, µ1, µ2 ∈ H6((0,1),R) be such that Conditions (C2) and (C3) are satisfied. For anyψ0, ψf ∈ S ∩H(V6 ), there is a timeT >0 and a controlu∈H01((0, T),R) such that the associated solution of (1) satisfies ψ(T) =ψf.

Proof. First step. Letψ0, ψf ∈ S ∩H(V6 ) be such thathψ0, ϕ1,Vi 6= 0 and hψf, ϕ1,Vi 6= 0.

Let T > 0 be such that Φ1,V(T) = ϕ1,V and let δ > 0 be the radius of local exact controllability inH(V5 )in timeT given by Theorem 3.1. Theorem 2.1 implies the existence of timesT0, Tf >0 and controlsu0∈C02((0, T0),R),uf ∈C02((0, Tf),R)such that

kψ(T0, ψ0, u0)−ϕ1,VkH5+kψ(Tf, ψf, uf)−ϕ1,VkH5 < δ.

By Theorem 3.1, there existsu∈H01((0, T),R)such thatψ(T, ϕ1,V, u) =ψ(T0, ψ0, u0).

Time reversibility property of (1) implies that, if we defineu(t) =u0(t)fort ∈[0, T0] and u(t+T0) =u(T−t)fort∈[0, T], thenu∈H01((0, T0+T),R)andψ(T0+T, ψ0, u) =ϕ1,V. The same arguments lead to the existence of u˜ ∈ H01((0, Tf +T),R) such that ψ(Tf + T, ψf,u) =˜ ϕ1,V.TakingT :=T0+Tf+ 2T and again applying the time reversibility, we findu∈H01((0, T),R)satisfyingψ(T, ψ0, u) =ψf.

Second step. It remains to remove the hypotheses hψ0, ϕ1,Vi 6= 0and hψf, ϕ1,Vi 6= 0.

Using time reversibility, it is sufficient to prove that for any ψ0 ∈ S, there are T > 0 and u ∈ C02((0, T)R) such that hψ(T, ψ0, u), ϕ1,Vi 6= 0. Let ψb0 ∈ S ∩H(V6 ) be such that hψb0, ϕ1,Vi 6= 0 and kψ0−ψb0kL2 <√

2. From the first step, we get the existence ofT > 0 anduˆ∈H01((0, T),R)such thatψ(T,ψb0,u) =ˆ ϕ1,V. Then, the conservation of theL2norm implies

kψ(T, ψ0,u)ˆ −ϕ1,VkL2 =kψ0−ψb0kL2<√ 2.

Choosingu∈C02((0, T),R)sufficiently close touˆin L2((0, T),R), we complete the proof of Theorem 4.1.

Finally, adapting a perturbation argument from [11] and applying Theorem 4.1, we prove Theorem 1.1.

Proof of Theorem 1.1. Let V, µ1 ∈ H6((0,1),R) and let QV,µ1 be the set of func- tions µ2 ∈ H6((0,1),R) such that Conditions (C2) and (C3) are satisfied with the functions V and µ1 replaced, respectively, by V − 2µ1 − 4µ2 and µ1 + 4µ2, i.e., QV,µ1:=

µ2∈H6((0,1),R) ;Conditions(C2)and(C3)hold , where

(C2) λ1,V12−λj,V126=λp,V12−λq,V12, forj, p, q≥1andj 6= 1.

(C3) there exists C > 0 such that

|h(µ1+ 4µ21,V−2µ1−4µ2, ϕk,V−2µ1−4µ2i| ≥ kC3, for everyk∈N.

First step : global exact controllability when µ2∈ QV,µ1. Let us consider the equation i∂tψ= −∂xx2 +V(x)−2µ1(x)−4µ2(x)

ψ−u(t)(µ˜ 1+ 4µ2)(x)ψ−u(t)˜ 2µ2(x)ψ (4) for (t, x)∈(0, T)×(0,1) and homogeneous Dirichlet boundary conditions. We denote by ψ(T, ψe 0, u)its solution at timeT. Then

ψ(t, ψe 0, u) =ψ(t, ψ0, u+ 2) fort∈[0, T]. (5) Let ψ0, ψf ∈ S ∩H(V6 ) and let u1 ∈C2([0,1],R) be such that u1(0) = ˙u1(0) = ˙u1(1) = 0 and u1(1) = 2. Then ψe0 := ψ(1, ψ0, u1) ∈ S ∩H(V6 12) and ψef := ψ(1, ψf, u1) ∈ S ∩H(V6 −2µ1−4µ2). As µ2 ∈ QV,µ1, Theorem 4.1 implies the existence of T >˜ 0 and u˜ ∈

(7)

H01((0,T˜),R) such that ψ( ˜e T ,ψe0,u) =˜ ψef. Let T = 2 + ˜T and u(t) = u1(t) for t ∈ [0,1], u(t) = ˜u(t−1) + 2fort∈[1,T˜+ 1], andu(t) =u1(1−(t−1−T˜))fort∈[ ˜T+ 1, T]. Then time reversibility of (1) and (5) impliesψ(T, ψ0, u) =ψf withu∈H01((0, T),R).

Second step : genericity. We conclude the proof of Theorem 1.1 by showing thatQV,µ1

is residual in H6((0,1),R). For any W ∈ H6((0,1),R), let QW be the set of functions µ∈H6((0,1),R)such that there isC >0satisfying|hµϕ1,W+µ, ϕk,Wi| ≥ kC3, ∀k∈N. By [11, Lemma 5.3] withs= 6, the setQW is residual inH6((0,1),R). LetW :=V −µ1∈ H6((0,1),R). For anyµ∈ QW, if we setµ2:=−141+µ), thenµ2∈ QV,µ1. This ends the proof of Theorem 1.1.

Acknowledgements : The authors thank K. Beauchard for fruitful discussions.

References

[1] K. Beauchard and C. Laurent. Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl. (9), 94(5):520–554, 2010.

[2] K. Beauchard and V. Nersesyan. Semi-global weak stabilization of bilinear Schrödinger equations. C. R. Math. Acad. Sci. Paris, 348(19-20):1073–1078, 2010.

[3] N. Boussaid, M. Caponigro, and T. Chambrion. Approximate controllability of the Schrödinger equation with a polarizability term. In Decision and Controls - CDC 2012, 3024–3029, Maui, Hawaii, USA, December 2012.

[4] M. Caponigro, U. Boscain, T. Chambrion, and M. Sigalotti. Control of the bilinear Schrödinger equation for fully coupling potentials. In Proceedings of the 18th IFAC World Congress, page to appear, Milan, Italie, 2011.

[5] T. Chambrion, P. Mason, M. Sigalotti, and U. Boscain. Controllability of the discrete- spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(1):329–349, 2009.

[6] J.-M. Coron, A. Grigoriu, C. Lefter, and G. Turinici. Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling. New. J. Phys., 11(10), 2009.

[7] C.M. Dion, A. Keller, O. Atabek, and A.D. Bandrauk. Laser-induced alignment dy- namics of HCN : Roles of the permanent dipole moment and the polarizability. Phys.

Rev., (59):1382, 1999.

[8] A. Grigoriu. Stability analysis of discontinuous quantum control systems with dipole and polarizability coupling. Automatica J. IFAC, 48(9):2229–2234, 2012.

[9] A. Grigoriu, C. Lefter, and G. Turinici. Lyapunov control of Schrödinger equation : beyond the dipole approximations. InProc of the 28th IASTED Int. Conf. on Modelling, Identification and Control, 119–123, Innsbruck, Austria, 2009.

[10] M. Morancey. Explicit approximate controllability of the Schrödinger equation with a polarizability term. Math. Control Signals Systems, 25(3):407–432, 2013.

[11] M. Morancey and V. Nersesyan. Simultaneous global exact controllability of an arbi- trary number of 1D bilinear Schrödinger equations. preprint, arXiv:1306.5851, 2013.

(8)

[12] V. Nersesyan. Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications.Ann. Inst. H. Poincaré Anal. Non Linéaire, 27(3):901–

915, 2010.

[13] V. Nersesyan and H. Nersisyan. Global exact controllability in infinite time of Schrödinger equation. J. Math. Pures Appl., 97(4):295–317, 2012.

[14] G. Turinici. Beyond bilinear controllability: applications to quantum control. InControl of coupled partial differential equations, volume 155 of Internat. Ser. Numer. Math., 293–309. Birkhäuser, Basel, 2007.

Références

Documents relatifs

Note that this global approximate control result may be coupled to the previous local exact controllability results to provide global exact controllability, see [30] for equation

There, we prove that the controllability in projection of infinite bilinear Schr¨ odinger equations is equivalent to the controllability (without projecting) of a finite number

In this article, we have proved that the local exact controllability result of Beauchard and Laurent for a single bilin- ear Schrödinger equation cannot be adapted to a system of

ment of the fixed point method: Theorem 1 is reduced to the obtention of suitable observability estimates for the wave equation with potential.. This estimates are

Using estimates for the linear and nonlinear term, given in Lemmas 2.9 and 2.11 respectively, the proof relies on a procedure similar to the one displayed in Lemma 2.9 and will

Observing that the linearized system is controllable in infi- nite time at almost any point, we conclude the controllability of the nonlinear system (in the case d = 1), using

We prove that the multidimensional Schr¨ odinger equation is exactly controllable in infinite time near any point which is a finite linear combination of eigenfunctions of the

The necessary and sufficient condition for the exact controllability of frac- tional free Schr¨ odinger equations is derived from the Logvinenko-Sereda theorem and its