• Aucun résultat trouvé

MICROSTRUCTURAL CHARACTERIZATION OF PRIMARY COOLANT PIPE STEEL

N/A
N/A
Protected

Academic year: 2021

Partager "MICROSTRUCTURAL CHARACTERIZATION OF PRIMARY COOLANT PIPE STEEL"

Copied!
6
0
0

Texte intégral

(1)

C o l l o q u e C 7 , s u p p l k m e n t au n o 11, Tome 47, N o v e m b r e 1986

MICROSTRUCTURAL CHARACTERIZATION OF PRIMARY COOLANT PIPE STEEL

M.K. MILLER and J . BENTLEY

Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.

A b s t r a c t

-

Atom probe f i e l d - i o n microscopy, a n a l y t i c a l e l e c t r o n microscopy, and o p t i c a l microscopy have been used t o i n v e s t i g a t e t h e changes t h a t o c c u r i n t h e m i c r o s t r u c t u r e o f c a s t CF 8 primary c o o l a n t p i p e s t a i n l e s s s t e e l a f t e r l o n g term t h e r m a l a g i n g . The c a s t duplex m i c r o s t r u c t u r e c o n s i s t e d o f a u s t e n i t e w i t h 15%

& - f e r r i t e . I n v e s t i g a t i o n o f t h e aged mater i a l r e v e a l e d t h a t t h e f e r r i t e s p i n o d a l l y decomposed i n t o a f i n e s c a l e d network o f a and a'. A f i n e G-phase p r e c i p i t a t e was a l s o observed i n t h e f e r r i t e . The observed d e g r a d a t i o n i n mechanical p r o p e r t i e s is probably a consequence o f t h e s p i n o d a l decomposition i n t h e f e r r i t e .

INTRODUCTION

The mechanical p r o p e r t i e s o f t h e c a s t s t a i n l e s s s t e e l p i p e s t h a t a r e used t o c a r r y t h e primary c o o l a n t water i n p r e s s u r i z e d w a t e r n u c l e a r r e a c t o r s a r e known t o be degraded by exposure t o e l e v a t e d t e m p e r a t u r e s i n t h e r a n g e 300 t o 400°C. The c a s t s t a i n l e s s s t e e l used f o r t h e s e p i p e s forms a duplex m i c r o s t r u c t u r e o f a u s t e n i t e and f e r r i t e . The f e r r i t e i n c r e a s e s t h e y i e l d s t r e n g t h o f t h e c a s t m a t e r i a l and a l s o r e d u c e s t h e s u s c e p t i b i l i t y t o h o t c r a c k i n g d u r i n g s o l i d i f i c a t i o n . However, l o n g t e r m t h e r m a l a g i n g produces a n i n c r e a s e i n , h a r d n e s s and t e n s i l e p r o p e r t i e s , t o g e t h e r w i t h a d e c r e a s e i n t h e impact p r o p e r t i e s , d u c t i l i t y , and toughness.

A p r e v i o u s combined atom probe f i e l d - i o n microscopy (APFIM) and a n a l y t i c a l e l e c t r o n microscopy (AEM) i n v e s t i g a t i o n o f a d u p l e x CF 8M a l l o y i n d i c a t e d t h a t two phase t r a n s f o r m a t i o n s had occured d u r i n g a g i n g which could c o n t r i b u t e t o t h e changes i n mechanical p r o p e r t i e s El]. The f e r r i t e , a f t e r a g i n g f o r 7500 h a t 400°C, had s p i n o d a l l y decomposed t o form a n i n t e r c o n n e c t e d network o f i r o n - r i c h a phase and chromium-enriched a' phase. The p r e c i p i t a t i o n o f a Glphase n i c k e l s i l i c i d e was a l s o observed i n t h e f e r r i t e . I t was s u g g e s t e d t h a t s m a l l changes i n t h e composition o f t h e a l l o y could a f f e c t t h e q u a n t i t i e s o f t h e phases p r e s e n t by a l t e r i n g t h e p o s i t i o n o f t h e m i s c i b i l t y gap o r by s u p p r e s s i n g t h e f o r m a t i o n o f G-phase [ I ] .

I n t h i s p a p e r , t h e m i c r o s t r u c t u r e p r e s e n t a f t e r extended t h e r m a l a g i n g o f a c a s t CF 8 s t a i n l e s s s t e e l , a v a r i a n t o f t h e p r e v i o u s s t e e l w i t h a lower molybdenum c o n t e n t , w i l l be p r e s e n t e d and compared t o t h e p r e v i o u s l y r e p o r t e d r e s u l t s . The t e c h n i q u e s of atom probe f i e l d - i o n microscopy, a n a l y t i c a l e l e c t r o n microscopy, and o p t i c a l microscopy were used t o c h a r a c t e r i z e t h e m i c r o s t r u c t u r e .

Chopra and Chung showed t h a t a CF 8 s t a i n l e s s steel, ( h e a t 278), s u f f e r e d a d r a m a t i c l o s s i n impact p r o p e r t i e s , d r o p p i n g t o a l m o s t 15% o f t h e i n i t i a l v a l u e a f t e r prolonged a g i n g [2]. Some m i c r o s t r u c t u r a l c h a r a c t e r i z a t i o n o f s e v e r a l h e a t s o f CF 8 and o t h e r s i m i l a r s t a i n l e s s s t e e l s was a l s o p r e s e n t e d by t h e s e a u t h o r s [2,31.

EXPERIMENTAL

The s t a i n l e s s s t e e l used i n t h i s i n v e s t i g a t i o n was a c a s t CF 8 a l l o y ( h e a t 278) from

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986741

(2)

C7-240 JOURNAL DE PHYSIQUE

Georg F i s c h e r Co. of S w i t z e r l a n d . The nominal compositions of t h i s a l l o y [2] and t h e p r e v i o u s l y examined CF 8M a l l o y [ l ] a r e given i n Table 1. The CF 8 s t e e l was examined a f t e r l a b o r a t o r y a g i n g f o r 70,000 h a t 300, 350 o r 400°C. The APFIM a n a l y s e s were conducted on t h e ORNL atom probe [4]. The AEM a n a l y s e s were performed on P h i l i p s EMQOOT/FEG and EM430T a n a l y t i c a l e l e c t r o n microscopes both equipped with EDAX 9100/70 energy d i s p e r s i v e X-ray spectrometer (EDS) and Gatan 607 e l e c t r o n energy l o s s s p e c t r o m e t e r (EELS) systems.

Table 1. Nominal composition of t h e CF 8 and CF 8M s t e e l s ( w t % ) .

RESULTS Alloy CF 8 CF 8M

O p t i c a l microscopy i n d i c a t e d t h a t t h e c a s t and aged m a t e r i a l s c o n s i s t e d of a duplex m i c r o s t r u c t u r e of a u s t e n i t e w i t h approximately 15% f e r r i t e , i n agreement w i t h t h e c a l c u l a t e d value of 19% 121. ', comparison of t h e duplex m i c r o s t r u c t u r e of t h e m a t e r i a l s aged a t 300 and 400°C is shown i n t h e t h e e l e c t r o n m i c r o g r a p h s i n f i g u r e 1. I n t h e m a t e r i a l aged a t 400°C t h e f e r r i t e had undergone a s m a l l amount o f r e v e r s i o n t o a u s t e n i t e a t t h e f e r r i t e - a u s t e n i t e i n t e r f a c e , t o a d e p t h of approximately 4 urn, w i t h t h e p r e c i p i t a t i o n of some c a r b i d e s , f i g u r e l b . Most of t h e s e p r e c i p i t a t e s were p r e f e r e n t i a l l y l o c a t e d a t t h e o r i g i n a l f e r r i t e - a u s t e n i t e i n t e r f a c e . Analysis of t h e s e p r e c i p i t a t e s by AEM and APFIM r e v e a l e d t h a t they were chromium-rich M23C6 c a r b i d e s . No c a r b i d e s o r r e v e r s i o n o f t h e f e r r i t e were observed i n t h e m a t e r i a l s aged a t 300nC, f i g u r e 1 a . The f e r r i t e had s l i g h t l y r e v e r t e d i n t h e m a t e r i a l aged a t 350°C, but no c a r b i d e s were observed.

The microhardness of t h e f e r r i t e was found t o i n c r e a s e on a g i n g , w h e r e a s t h e m i c r o h a r d n e s s o f t h e a u s t e n i t e d i d not change s i g n i f i c a n t l y . Analyses of t h e composit i o n s of t h e f e r r i t e and a u s t e n i t e by energy d i s p e r s i v e X-ray spectroscopy r e v e a l e d t h a t t h e f e r r i t e was e n r i c h e d i n chromium, s i l i c o n , and molybdenum and d e p l e t e d i n n i c k e l and manganese a s shown i n Table 2.

C r 20.2 20.8

rlg.1. A u s t e n i t e ( Y )

-

f e r r i t e (6) i n t e r f a c e s i n c a s t CF 8 - s t a i n l e s s s t e e l aged a t ( a ) 300° and ( b ) 400aC. The f e r r i t e r e v e r t s t o a u s t e n i t e and M23Cg a t 400°C but n o t a t 300°C. I n (b) t h e o r i g i n a l and f i n a l f e r r i t e - a u s t e n i t e i n t e r f a c e s a r e noted a t p o s i t i o n s 1 and 2 , r e s p e c t i v e l y .

N i 8.3 10.6

S i 1.0 0.81

Mn 0.28 0.79

Mo 0.13 2.5

C 0.038 0.04

N 0.027 0.042

S 0.019 0.021

P 0.008 0.016

Fe balance balance

(3)

f o r 70000 h a t 400°C (wt%).

1

A u s t e n i t e l ~ e r r i t e

Chromium I 20.2 1 28.6

8.4

1 ::i6

Nickel

Manganese 0.22 0.08

Molybdenum 0.26

S i l i c o n 0.99 1.42

I r o n Balance Balance

More d e t a i l e d a n a l y s e s of t h e f e r r i t e by AEM and APFIM r e v e a l e d t h a t i t had decomposed during aging. E l e c t r o n micrographs of t h e s t r u c t u r e i n m a t e r i a l aged a t 300 and 400°C a r e shown i n f i g u r e 2. The s c a l e of t h i s two p h a s e m o d u l a t e d m i c r o s t r u c t u r e was measured from t h e s e e l e c t r o n micrographs a s 4 and 9 nm i n t h e 300 and 400°C aged m a t e r i a l s , r e s p e c t i v e l y . A f i e l d - i o n micrograph of t h e same two phase m i c r o s t r u c t u r e i n t h e 400°C aged m a t e r i a l is shown i n f i g u r e 3, where t h e d a r k l y imaging a' and t h e b r i g h t l y imaging a phases a r e e v i d e n t . The p e r i o d i c i t y of t h e modulations o f t h e two phases was measured from FIM micrographs t o be 7 nm.

F i e l d e v a p o r a t i o n sequences a l s o r e v e a l e d t h a t t h e modulated m i c r o s t r u c t u r e was i n t e r c o n n e c t e d i n t h r e e dimensions, i n d i c a t i v e of phase s e p a r a t i o n by i s o t r o p i c s p i n o d a l decomposition. An atom probe composition p r o f i l e through t h e f e r r i t e , f i g u r e 4 , a l s o i n d i c a t e s t h a t t h e f e r r i t e had decomposed i n t o a chromium-enriched a' phase and an i r o n - r i c h a phase.

AEM a l s o i n d i c a t e d t h e presence of some very f i n e p r e c i p i t a t e s i n t h e f e r r i t e a s shown i n f i g u r e 5. These p r e c i p i t a t e s were i d e n t i f i e d a s G-phase from t h e i r cube- on-cube o r i e n t a t i o n r e l a t i o n s h i p with t h e f e r r i t e , t h e f a c e c e n t e r e d cubic s t r u c t u r e

(Fm3m space g r o u p ) , t h e l a t t i c e parameter of 1 . l l nm, and t h e absence of t h e 400 r e f l e c t i o n [ l ,5].

I n both 300 and 400°C aged m a t e r i a l s , d i s t i n c t bimodal s i z e d i s t r i b u t i o n s of t h e G- p h a s e p r e c i p i t a t e s were o b s e r v e d . The s m a l l e r p r e c i p i t a t e s were randomly d i s t r i b u t e d i n t h e f e r r i t e m a t r i x , whereas t h e l a r g e r p r e c i p i t a t e s were a s s o c i a t e d with d i s l o c a t i o n s . T h i s is i l l u s t r a t e d i n f i g u r e 6 which shows C-phase p r e c i p i t a t e s imaged i n dark f i e l d with a p r e c i p i t a t e r e f l e c t i o n , d i s l o c a t i o n s imaged under weak beam dark f i e l d c o n d i t i o n s , and a s u p e r p o s i t i o n of t h e s e images.

Fig. 2. Phase c o n t r a s t e l e c t r o n micrographs o f t h e f e r r i t e i n CF 8 s t a i n l e s s s t e e l showing i s o t r o p i c s p i n o d a l decomposition i n t h e m a t e r i a l s aged f o r 70000 h a t ( a ) 300 and ( b ) 400°C.

(4)

C7-242 JOURNAL DE PHYSIQUE

Distance

Fig. 3. Field-ion micrograph o f t h e Fig. 4. Atom probe composition p r o f i l e f e r r i t e i n t h e 400°C aged through t h e f e r r i t e i n t h e 400°C a l l o y showing d a r k l y imaging aged s t e e l i n d i c a t e s chromium- a' and b r i g h t l y imaging a. e n r i c h e d a' and i r o n - r i c h a phases.

Fig. 5. Dark f i + l d e l e c t r o n micrographs o f t h e CF 8 steel showing G-phase p r e c i p i t a t e s , ( a ) i n m a t e r i a l aged a t 300°C, (b) on d i s l o c a t i o n s i n m a t e r i a l aged a t 400°C, and ( c ) i n t h e m a t r i x i n m a t e r i a l aged a t 400°C.

I n s e t i n ( b ) shows f i n e f r i n g e s p r e s e n t on t h e p e r c i p i t a t e s and t h e i n s e t i n ( c ) shows a 110 o r i e n t e d d i f f r a c t i o n p a t t e r n from t h e s e p r e c i p i t a t e s . The l a r g e r p r e c i p i t a t e s were a s s o c i a t e d w i t h d i s l o c a t i o n s i n m a t e r i a l s aged a t both 300 and 400°C.

(5)

f i e l d . ( b ) weak beam d a r k f i e l d , and ( c ) s u p e r p o s i t i o n o f ( a ) and ( b ) .

The f i n e r p r e c i p i t a t e s were a p p r o x i m a t e l y 1.5 and 2 nm i n d i a m e t e r i n t h e m a t e r i a l s aged a t 300 and 400°C, r e s p e c t i v e l y . I n both aged m a t e r i a l s , t h e p a r t i c l e s were 4 t o 5 t i m e s l a r g e r on t h e d i s l o c a t i o n s t h a n i n t h e m a t r i x , presumably due t o enhanced n u c l e a t i o n a n d growth because o f t h e a s s i s t a n c e from p i p e d i f f u s i o n a 1 0 3 t h e d i s l o c a t i o n c o r e e number d e n s i t y o f t h e s e G-phase p r e c i p i t a t e s was >10 and a p p r o x i m a t e l y

lo2'

m-' i n t h e 300 and 400°C aged m a t e r i a l s , r e s p e c t i v e l y . It should b e emphasized t h a t t h e C-phase would have been overlooked due t o its s m a l l s i z e and l i m i t e d c o n t r i b u t i o n t o t h e e l e c t r o n d i f f r a c t i o n p a t t e r n s w i t h o u t t h e p r e v i o u s c h a r a c t e r i z a t i o n o f t h e CF 8M s t e e l .

DISCUSSION

The r e s u l t s o f t h i s i n v e s t i g a t i o n o f t h e CF 8 s t e e l were s i m i l a r t o t h o s e r e p o r t e d p r e v i o u s l y f o r t h e CF 8M a l l o y . I n b o t h t y p e s o f s t e e l t h e f e r r i t e s p i n o d a l l y decomposed i n t o a n i s o t r o p i c network o f ci and ci' p h a s e s and G-phase p r e c i p i t a t e d . The major d i f f e r e n c e between t h e two t y p e s o f s t e e l s was t h e s i z e and number d e n s i t y o f t h e G-phase p r e c i p i t a t e s . I n t h e CF 8M m a t e r i a l aged 7500 h a t 400°C t h e G-phase p r e c i p i t a t e s were m 3 - l f r g e r . -10 nm i n d i a m e t e r , and were p r e s e n t a t a much l a r g e r number d e n s i t y , -10 m

,

compared t o t h e CF 8 t h a t was a l s o aged a t 400°C b u t f o r a l m o s t 10 times l o n g e r . T h i s l a r g e r volume of G-phase is r e l a t e d t o t h e d i f f e r e n c e s i n i n i t i a l composition between t h e two a l l o y s . The G-phase s i l i c i d e is r i c h i n n i c k e l and molybdenum [I ,5,6] which a r e p r e s e n t a t h i g h e r l e v e l s i n t h e CF 8M s t e e l t h a n i n t h e CF 8 s t e e l , Table 1.

W h i l e a s m a l l f r a c t i o n o f t h e G-phase p r e c i p i t a t e s were observed p i n n i n g t h e d i s l o c a t i o n s , i t s h o u l d b e n o t e d t h a t t h e s e r e s i d u a l d i s l o c a t i o n s w i l l n o t n e c e s s a r i l y be o f t h e same t y p e , o r behave i n t h e same manner, a s t h o s e g e n e r a t e d d u r i n g shock l o a d i n g . G-Phase p r e c i p i t a t e s o n d i s l o c a t i o n s i n f e r r i t e have been p r e v i o u s l y observed by V i t e k i n s i m i l a r s t e e l s C73.

The f i n e s c a l e s p i n o d a l decomposi t i o n and t h e G-phase p r e c i p i t a t i o n i n t h e f e r r i t e b o t h c o n t r i b u t e t o t h e changes i n mechanical p r o p e r t i e s t h a t o c c u r d u r i n g aging.

However, s i n c e t h e volume o f t h e G-phase was lower t h a n t h a t observed i n t h e CF 8M

(6)

C7-244 J O U R N A L DE PHYSIQUE

s t e e l t h e degradation i n mechanical p r o p e r t i e s is p r i m a r i l y due t o t h e spinodal decomposition t h a t occurs i n t h e f e r r i t e during aging. I n a d d i t ion, t h e observation t h a t t h e i n c r e a s e i n hardness i n t h e CF 8 and CF 8M s t e e l s is s i m i l a r t o t h a t previously observed i n a s p i n o d a l l y decomposed i r o n

-

30% chromium a l l o y which d i d n o t c o n t a i n any G-phase C81, a l s o suggests t h a t spinodal decomposition is t h e primary f a c t o r i n f l u e n c i n g mechanical p r o p e r t i e s .

F i n a l l y , i t s h o u l d a l s o be n o t e d t h a t conclusions drawn from t h e r e s u l t s of a c c e l e r a t e d t e s t s t h a t a r e u s u a l l y performed a t 400°C C91 s h o u l d be c a r e f u l l y examined s i n c e t h e m i c r o s t r u c t u r e s t h a t develop a r e not i d e n t i c a l t o those a t 300°C.

This d i f f e r e n c e i n t h e m i c r o s t r u c t u r e was i n d i c a t e d by t h e r e v e r s i o n of t h e f e r r i t e i n t o a u s t e n i t e and t h e p r e c i p i t a t i o n of M23C6 t h a t occurred a t 400°C but not a t t h e lower temperatures o f 350 o r 300°C. The presence of these c a r b i d e s could then be a f a c t o r i n t h e f r a c t u r e process and thereby a l t e r t h e mechanical p r o p e r t i e s .

SUMMARY

Both APFIM and AEM r e s u l t s i n d i c a t e t h a t t h e chromium-enr iched f e r r i t e had decomposed i n t o a very f i n e network of chromium-enriched a ' and i r o n - r i c h a phases a s a r e s u l t of i s o t r o p i c s p i n o d a l decomposition. A c o a r s e M23C6 p r e c i p i t a t e was observed a t the f e r r i t e - a u s t e n i t e i n t e r f a c e i n t h e m a t e r i a l t h a t was aged a t 400°C.

Very f i n e G-phase s i l i c i d e p r e c i p i t a t e s were observed i n t h e f e r r i t e . A comparison between t h e r e s u l t s from t h i s CF 8 a l l o y and t h e previously reported r e s u l t s of a CF 8M a l l o y i n d i c a t e s t h a t r e l a t i v e l y small d i f f e r e n c e s i n t h e a l l o y compositions s i g n i f i c a n t l y a l t e r t h e q u a n t i t y of phases p r e s e n t i n t h e m i c r o s t r u c t u r e , The d e g r a d a t i o n i n mechanical p r o p e r t i e s is probably a consequence o f t h e spinodal decomposition of t h e f e r r i t e t h a t occurs during aging.

Acknowledgment

This r e s e a r c h was sponsored by t h e Division of M a t e r i a l s Sciences. U.S. Department of Energy, under c o n t r a c t DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. The a u t h o r s would l i k e t o thank D r . H.M. Chung o f Argonne National Laboratory f o r supplying the laboratory-aged CF 8 a l l o y and K.F. Russell f o r her a s s i s t a n c e i n specimen preparation.

REFERENCES

[ I ] M.K. M i l l e r , J . Bentley, S.S. Brenner and J.A. S p i t z n a g e l , J . de Physique,

2,

385 (1984).

C21 O . K . Chopra and H.M. Chung, P r o c . 1 3 t h Water Reactor S a f e t y Research Information Meeting, National Bureau a f Standards, Gaithersburg, (1985)

C31 H.M. Chung and O.K. Chopra, Proc. 2nd I n t . Symposium on Environmental

Degradation of M a t e r i a l s i n Nuclear Power Systems

-

Water Reactors, Monterey, e d s . J .T. Roberts, J .R. Weeks and G.J. Theus, American Nuclear Society, p.289 (1985)

C4l M.K. M i l l e r , J . d e p h y s i q u e ,

z,

493 (1986);

z,

499 (1986)

C53 J . B e n t l e y . M . K . M i l l e r , S.S. Brenner and J . A . S p i t z n a g e l , Proc. 43rd.

Electron Microscopy Society of America, ed. C.W. Bailey, San Francisco Press, San Francisco, p.328 (1985)

C61 F.X. S p i e g e l , D. Bardos, and P .A. Beck, Trans. AIME.,

3 ,

575 (1 963) C71 J.M. Vitek. Met. Trans, i n p r e s s .

C81 S.S. Brenner, M.K. Miller and W.A. S o f f a , S c r i p t a Met., 16, 831 (1982) C91 C. Slama, P. Petrequin, S.H. Masson, and T. Mager,

SMET

Conf. Seminar 6 ,

" A s s u r i n g S t r u c t u r a l I n t e g r i t y o f S t e e l R e a c t o r P r e s s u r e B o u n d a r y Componentsm, Monterey, August 1983.

Références

Documents relatifs

So, it is identified that oxygen transfer through stave gaps is largely impacted by applied pressure and by contact conditions on the surfaces of adjacent staves.. This research

Recent crystal structure determinations by neutron diffraction at Oak Ridge..

The Oak Ridge automatic three-circle neutron diffractometer is a punched paper tape controlled.. device with paper tape output which has

270 Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, 271 University of California, Santa Cruz, Santa Cruz, CA, USA, 272 Plant Conservation and

270 Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, 271 University of California, Santa Cruz, Santa Cruz, CA, USA, 272 Plant Conservation and

Cheio de autenticidade, Noble replica todos os nós, veios e tons do carvalho natural com uma Cheio de autenticidade, Noble replica todos os nós, veios e tons do carvalho natural

MEMORY WRITE COMMAND: active low signal to instruct the memory subsystem to read the data present on the data bus.. MEMORY REFRESH REQUEST:

The machine will proceed if no overflow is in- dicated, Or take remedial steps (or stop) if an overflow exists. Multiplication is a sequence of additions and shifts. The