• Aucun résultat trouvé

Hyperfine magnetic field of Zn in iron

N/A
N/A
Protected

Academic year: 2021

Partager "Hyperfine magnetic field of Zn in iron"

Copied!
8
0
0

Texte intégral

(1)

HYPERFINE FIELDS

(2)
(3)

Hyperfine Interactions 75( 1992)301 - 306 301

H Y P E R F I N E M A G N E T I C FIELD OF Zn IN IRON

I. BERKES, M. DE JESUS, B. HLIMI*, M. MASSAQ and E.H. SAYOUTY**

lnstitut de Physique Nucl&ire de Lyon, IN2P3-CNRS et Universit~ Claude Bernard, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

and the NICOLE Collaboration, CERN

Precise h y p e r f i n e f i e l d value of zinc Ln iron has been d e t e r m i n e d by nuclear m a g n e t i c resonance on o r i e n t e d nuclei ( N M R / O N ) : Bhf (ZnFe) = - 18.785 (35) T at

" - h - -

7 mK. The r e l a x a t i o n constant of Zn in tron ts establls ed CK 14(3) Ks. The new h y p e r f i n e f i e l d value of zinc in iron allows a m o r e precise reevaluaLLon of the m a g n e t i c m o m e n t s of 6 9 m z n and 7 1 m z n measured w i t h N M R / O N .

1. I N T R O D U C T I O N

The h y p e r f i n e m a g n e t i c field of Zn in iron has been d e t e r m i n e d by several m e t h o d s . W h i l e i n t e g r a l t y p e m e a s u r e m e n t s as n u c t e a r o r i e n t a t i o n (NO) on Zn and i n t e g r a l p e r t u r b e d a n g u l a r c o r r e t a t i o n ( I P A C ) y i e l d e d v a l u e s a r o u n d -10 T / 1 , 2 / , d i f f e r e n t i a l p e r t u r b e d a n g u l a r d i s t r i b u t i o n ( D P A 9 g a v e -18./4(3)T at r o o m t e m p e r a t u r e / 3 / .

In i m p e r f e c t , a l l o y s e v e r y i m p u r i t y n u c l e u s does n o t o c c u p y s u b s t i t u t i o n a l l a t t i c e s i t e s in t h e h o s t and t h e a v e r a g e h y p e r f i n e f i e l d d e r i v e d f r o m i n t e g r a l t y p e m e a s u r e m e n t s as N'O and I P A C d e p e n d s on t h e f i e l d d i s t r i b u t i o n . A n o t h e r d i f f i c u l t y is t h e e x t r a c t i o n of t h e h y p e r f i n e f i e l d f r o m t e m p e r a t u r e d e p e n d e n t NO m e a s u r e m e n t when the t h e r m a l r e l a x a t i o n t i m e is not short enough as compare d to the m e a s u r i n g t i m e . This m a y be t h e ease f o r Zn in i r o n : t h e r e l a x a t i o n t i m e s for 6 5 ' 6 9 m ' 7 1 m z n in iron are of the order of Q.5 - 1 hour in the range of 4-9 m K / 4 / .

As the h y p e r f i n e f i e l d enters d i r e c t l y into the N M R / O N d e t e r m i n a t i o n of m a g n e t i c m o m e n t s i t is n e c e s s a r y to m e a s u r e t h i s f i e l d d i r e c t l y at l o w t e m p e r a t u r e . N M R / O N on 65Zn in iron is well adapted for this m e a s u r e m e n t , as the m a g n e t i c m o m e n t of 65Zn is well known # = + 0.7690 (2) #N / 5 / .

2. E X P E R I M E N T A L P R O C E D U R E A N D RESULT

65Zn a c t i v i t y has been prepared by b o m b a r d i n g a copper foil w i t h - 25 MeV d e u t e r o n s in t h e i n t e r n a l b e a m of t h e s y n c h r o c y c l o t r o n of L y o n . The 65Zn a c t i v i t y has been separated c h e m i c a l l y f r o m the copper.

One of the 65Zn sources has been prepared by e l e c t r o p l a t i n g 65Zn on an iron f o i l ; t h e a c t i v i t y was d i f f u s e d u n d e r a r g o n a t m o s p h e r e i n t o t h e i r o n and t h e undiffused activit.y was e l i m i n a t e d f r o m the surface by etching, The depth of the d i f f u s i o n of 65Zn has not been c o n t r o l l e d ,

Permanent address : * U n i v e r s i t y IBN ZOHR, Fac. S c i e n c e s , Agadir, Morocco 9 * University Hassan II, Fac. Sciences-I, Casablanca, Morocco

9 Baltzer A.G., Scientific Publishing C o m p a n y

(4)

302 1. Berkes et al., Hyperfine magnetic field of Zn in iron

A second source has been p r e p a r e d by isotope s e p a r a t o r i m p l a n t a t i o n of 65Zn. In o r d e r to d i m i n i s h the density of i m p u r i t y a t o m s ( m a i n l y 65Cu) in iron, t w o i m p l a n t a t i o n e n e r g i e s h a v e b e e n used : 7.5 x 1014 a t o m s / c m 2 h a v e b e e n i m p l a n t e d w i t h 110 keV e n e r g y and 2.5 x 101/4 a t o m s / c m 2 w i t h ~0 keV e n e r g y , and t h e i s o t o p e s e p a r a t o r b e a m has b e e n s w e p t w i t h an e l e c t r o s t a t i c d e f l e c t o r to c o l l e c t on a t o t a l surface of 3.5 c m 2. The p r o f i l e of d e n s i t y r e p r e s e n t e d on fig.1 has been c a l c u l a t e d using the M o n t e C a r l o m e t h o d d e s c r i b e d in ref.6. As fig. 1 s h o w s , t h e d e n s i t y of i m p l a n t e d a t o m s d i d n ' t e x c e e d 0.2_5 a t . %. The i r o n has been annealed a f t e r i m p l a n t a t i o n at. 150~ for 1/4 hour : at this t e m p e r a t u r e the d i f f u s i o n of Zn was n e g l i g i b l e .

0 . 3

z

o

"< 0.2

i ' Y I,--

z ,.l (o

z

o 0 . 1 (.9 [.9 0 ~- 0.0 .<

0

i i i i i I i

10 20 50 40 50 60 70 80

DEPTH ( n m )

Fig. I. Density of implanted impurity atoms (mainly copper) in iron. Implantation energy:60-110 keV (see text)

The s a m p l e s h a v e b e e n s o f t - s o l d e r e d to t h e c o l d f i n g e r of a d i l u t i o n r e f r i g e r a t o r t o g e t h e r w i t h a 60CoFe__ or a 6 0 C o C o n u c l e a r t h e r m o m e t e r .

The pulse height s p e c t r a of i n t r i n s i c Ge d e t e c t o r s w e r e r e g i s t e r e d w i t h c o m p u t e r i - zed data a c q u i s i t i o n systems. The c o m p u t e r c o n t r o l l e d also the r.f. signal g e n e r a t o r for Nt,.4R/ON, the f r e q u e n c y of which was m o d u l a t e d in a continuous r a m p u p - d o w n mode.

F i g u r e 2 shows the i n t e n s i t y of the 1116 keV y - r a y versus inverse t e m p e r a t u r e in the

1.2 , ,

, ( 0 ) 1.1

1.0

0 . 9 I I

0 50 1 O0 150

, / T (K -~)

Fig. 2. Intensity of the 1116 keV gamma ray in the direction of

the magnetic field versus reciprocal temperature in the diffused

source. The continuous line corresponds to B2eff A 2 U2 = 394 T 2 .

(5)

1. Berkes et al., Hyperfine magnetic field of Zn in iron 303

diffused source. On account of the slow r e l a x a t i o n , points corresponding to the cooling- down o p e r a t i o n mode are o m i t t e d ; measurements at d i f f e r e n t t e m p e r a t u r e s were p e r f o r m e d by heating the m i x i n g chamber and w a i t i n g the s t a b i l i z a t i o n of the anisotropy, i.e. the t h e r m a l i z a t i o n of the 65Zn nucleus. The f i t t e d curve does not take into account the points corresponding to i m p o r t a n t t e m p e r a t u r e v a r i a t i o n s . We come back to the f i t t e d p a r a m e t e r s l a t e r .

Several a t t e m p s were p e r f o r m e d to destroy the o r i e n t a t i o n by nuclear m a g n e t i c resonance in the frequency range of 40 MHz to 66 MHz. No resonance has been found w i t h this source. As the d i f f u s i o n depth has not been c o n t r o l l e d , it could have been deeper than the r a d i o f r e q u e n c y skin depth.

N M R / O N e x p e r i m e n t s have been p e r f o r m e d w i t h the i m p l a n t e d source using d i f f e r e n t frequency sweep speeds. In the slow sweep mode several 2.4 M H z / h o u r increasing and decreasing f r e q u e n c y sweeps are summed up t o g e t h e r . The fit on one of these runs is presented on fig. 3. The summing up of equal i n t e n s i t y increasing and decreasing frequency measurements yields a r e l a x a t i o n - b r o a d e n e d s y m m e t r i c a l curve.

2.1 t,o

' 0

~--~ 2.05

0 CO v

2.C

1.95 39

6.4 u3

' 0

~ s

0 3 v

O

~ 6.3

6.25

tttttttttttttttt

41 43 45 47 49 51

Freq (MHz)

. I t ,

39 41 43 45 47

Freq (MHz,)

l

'1

49 51

Fig. 3. Lower part : NMR/ON resonance in 65ZnFe in one of the

runs. Increasing and decreasing frequency resonance curves of the

1116 keV gamma ray observed in the direction of the magnetic

field h a v e been summed up. I / T = 133 / K, Bex t = 0.096 T ,

modulation + 0.2 MHz, frequency sweep speed 2.4 MHz/h. Fitted

parameters : ~) = 43.77 ( I i ) MHz, FWHM = 0.9(i) MHz. Upper

part : Intensity o'f the 1116 keV gamma ray without frequency res

m o d u l a t i o n .

(6)

3 0 4 1. Berkes et al., Hyperfine magnetic field of Zn in iron

The w e i g h t e d c e n t e r of g r a v i t y o f the m e a s u r e m e n t s g i v e s ,ore s

=

4:~.82(8) M H z w h i c h , usinq the m a g n e t i c m o m e n t nf 65Zn / ' , / y i e l d s Rel I - 1s163 ~ (',L41 T. (Thr ~ !;iqn i~.

a d o p t e d From r e f . 3 . ) With B . = 0.096 (2) T we f i n d B h f ( Z n F e ) -- ~ ' e f f - B e x t = - 18.785(35) T at low t e m p e r a t u r e X L T h e q u o t e d e r r o r t a k e s i n t o a c c o u n t an e v e n t u a l ~mall K n i g h t s h i f t due [o the e x t e r n a l field, <K < 2 %).

C o m p a r i n g the m e a s u r e d a n i s o t r o p i e s of the g a m m a rays o f the d i f f u s e d s o u r c e and the i m p l a n t e d one, we f i n d t h a t only 39 (/4) % of n u c l e i are s u b i e c t Io the full s u b s t i t u t i o n a l h y p e r f i n e f i e l d ~n Ihis l a t t e r s o u r c e .

In o r d e r to conl.ro] thi.,; m e a s u r e m e n t , the f r e q u e n c y has been .';wept also w i t h a f a s t e r speed of B M H z / h o u r . G a u s s i a n line b r o a d e n i n g , n o n - z e r o m o d u l a t i o n w i d t h and a s i n g l e e x p o n e n t i a l r e l a x a t i o n a f t e r r e s o n a n c e h a v e been c o n s i d e r e d in the f i t o f these c u r v e s . I n c r e a s i n g and d e c r e a s i n g f r e q u e n c y c u r v e s h a v e been f i t t e d s i m u l t a n e o u s l y w i t h the same set of p a r a m e t e r s ( f i g /4/.

LD 3.15 _ 9 ' O

O

3,1 4-

3.05

a 3.0i

36

3.15 ~_____,_

~O ' O

o 3.1 i

+

C_..~3.05

b

3.0 36

i t I

[ ~ i~ Li

!tl'tl

, [

1

i

40 44 4 8

Freq ( M H z )

52

P

I

40 44 4 8 52

Freq ( M H z )

Fig. 4. Increasing (a) and decreasing (b) frequency resonance curves taken with a frequency sweep of 8 MHz/h. The gaussian curve is the fitted adiabatic resonance (see text), which could be measured with a total sweep time > > T'

I "

(7)

I. Berkes et al., Hyperfine magnetic field of Zn in iron 305

T h e f i t t e d v a l u e s are :

R e s o n a n c e f r e q u e n c y v : 143.91 (15) [VlHz

r e s

Width of the a d i a b a t i c r e s o n a n c e F W H M : 0.9 (3) M H z R e l a x a t i o n t i m e c o n s t a n t

at I/T : 133 K -1 T' : 2350 {550) s.

I D e s t r u c t i o n of o r i e n t a t i o n D=8/4 (7) %

It must be r e m a r k e d t h a t the v a l u e of the r e s o n a n c e f r e q u e n c y ~s p r a t t , t a l l y i n d e p e n d e n t of the c h o i c e of the o t h e r p a r a m e t e r s , w h i l e F W H M , T' 1 and D are s t r o n g l y c o r r e l a t e d in the f i t , w h i c h e x p l a i n s t h e i r l a r g e e r r o r s . The r e s o n a n c e f r e q u e n c y o b t a i - ned f r o m the f a s t sweep m e a s u r e m e n t s is in e x c e l l e n t a g r e e m e n t w i t h the p r e v i o u s d e t e r - m i n a t i o n . The c o m p a r i s o n of t h e f i t t e d a d i a b a t i c w i d t h w i t h t h a t o b t a i n e d in the slow sweep runs shows t h a t the r e l a x a t i o n b r o a d e n i n g was n e g l i g i b l e al Z.4 M H z / h o u r s w e e p speed and the m e a s u r e d r e s o n a n c e w i d t h . The p r o d u c t TT' 1 =18 (4) Ks a g r e e s w e l l w i t h t h a t o b t a i n e d by f a s t c o o l i n g by C h i l a s v i l e et ah / 1 / .

The 6 ( E 2 / M 1 ) m i x i n g r a t i o of the 5/2- -* 3/2 1116 keV t r a n s i t i o n is g i v e n as -0.1437(15) in NDS / 7 / but v a l u e s f r o m d i f f e r e n t d e t e r m i n a t i o n s a r e r a t h e r s p r e a d out o v e r a r a n g e f r o m -0.19 to - 1.9 . The r e d u c e d r a t e of the 5/2- -~ 5/2 e l e c t r o n c a p t u r e is log ft : 5.9. This log ft w o u l d suggest a JR : I E C transition, thus U 2 (5/2,5/2,1) : 0.&57.

The anisotropy of the 1116 k e V g a m m a " ray calculated with these p a r a m e t e r s is about 60 % Lower than the m e a s u r e d one for the diffused source. As in this m e a s u r e m e n t

?

g u N B / k T < < I, thus B 2 A 2 U 2 c~ ( g B / k T ) - A 2 U 2, the m e a s u r e m e n t does not allow to assign the deviation u n a m b i g u o u s l y to one parameter. T h o u g h a m e a s u r e m e n t at m u c h lower t e m p e r a t u r e s (e.g. by m e a n s of nuclear demagnetization) would allow the separation of the B~ and A), U;~ terms, in this case the spin lattice relaxation time w o u l d b e c o m e too long.

3. D I S C U S S I O N

Zn is s o l u b l e in iron up to a f e w p e r c e n t s at r o o m t e m p e r a t u r e / 8 / . Thus we can suppose t h a t the m a g n e t i c h y p e r f i n e f i e l d m e a s u r e d w i t h the r e s o n a n c e and t h a t of A g a r w a ] et al. / 3 / c o r r e s p o n d to the s u b s t i t u t i o n a l l a t t i c e s i t e of d i l u t e a l l o y s . The v a l u e lies on the s y s t e m a t i c t r e n d of h . f . f i e l d s of 3d4s e l e m e n t s in iron.

The r a t i o o f the h y p e r f i n e f i e l d s of 57Fe in iron at r o o m t e m p e r a t u r e and al q._' "' I/.

has been m e a s u r e d w i t h N 4 6 s s b a u e r - e f f e c t to a high p r e c i s , o n : Bhf(3OOIK)/Bhf{/4.ZK) : 0 9 7 4 6 ( 1 ) / 9 / . The high t e m p e r a t u r e d e p e n d e n c e of Bhf ( Z n F e ) shows t h a t it f o l l o w s a p p r o x i m a t i v e l y the m a g n e t i z a t i o n in iron / 3 / . So, we can suppose t h a t the h y p e r f i n e f i e l d o f zinc in i r o n shows s i m i l a r v a r i a t i o n b e t w e e n 300 K and 0 K as t h a t of i r o n , but a f f e c t i n g the c o r r e c t i o n f a c t o r w i t h a 1 % a b s o l u t e e r r o r : 0.975(10), g i v i n g Bhf ( Z n F e , 300K) : - 18.31(18) T, w h i c h is in good a g r e e m e n t w i t h t h a t m e a s u r e d w i t h D P A 9 by A g a r w a l et ah -18.4(3) T.

H e r z o g et al. e s t a b l i s h e d the r e l a x a t i o n t i m e f o r 6 9 m z n as T' : 7;600 (&O) s

1 5

/ 4 / . With the g i v e n l a t t i c e t e m p e r a t u r e s T we f i n d T T ' l ( 6 9 Z n F e ) / T T ' l (6 ZnFIe) : (65)/v (69) ]2 : 1.69 1.8(4). Tile s q u a r e of the r a t i o of the r e s o n a n c e f r e q u e n c i e s [ Vre s res

a g r e e s w , t h i n the s t a t i s t i c a l a c c u r a c y w i t h the i n v e r s e r a t i o of the TT' 1 p r o d u c t s in a g r e e m e n t w i t h the s y s t e m a t i c s of r e l a x a t i o n t i m e s in the high t e m p e r a t u r e l i m i t g B / k T

<< I.

The r e l a x a t i o n t i m e c o n s t a n t C. is d e r i v e d c o m p a r i n g the v a r i a t i o n of the

a n i s o t r o p y c a l c u l a t e d f r o m the t i m e e v o u t m n K m a s t e r e q u a t i o n s / 1 0 / w i t h the single

e x p o n e n t i a l v a r i a t i o n C K = 1/4 (3) Ks.

(8)

306 I. Berkes et at,, Hyperfine magnetic field of Zn in iron

Our m a g n e t i c f~eld d e t e r m m a D o n allows to Lmprove the prec~sLon of the m a g n e D c mornents of 6 9 m ' 7 ] m z n . H e r z o g et al. //4/ e s t a b l i s h e d the zero e x t e r n a l f i e l d N M R / O N

frequencLes as 36.81/4:3'-,J 14Hz for 6 9 m z n F e and 33./47 119) Mmz for 7 1 m z n F e , wlc,h y i e l d s ~1 ( 6 9 m z n l 1.1S7~'21 ~.l N and It ( 7 1 m z n ] 1.052 (6) UN, r e s p e c t i v e l y .

II ~s diffLcult to e x p l a i n the greal antsolrop~, observed in Ihe d i f f u s e d source. If we accept Ihal each r~ucleus Is subject to the h y p e r f l n e fLeld of - 18.8 T, the measured a n l s o t r o p l e s impose A.~ : A.> ':max) 1.1)R wLlh #5 (F2/M1 ; 111(, keV] - 0.7/4 and IJ~

~,/3, ',/2, 1, Ihus a pure JB () I-(7 Irans, l , o n whtc,h would be unusual w r t h respect to the log ft value. No i m p o r t a n t J13 : 0 c o n t m b u t l o n has been found n e i t h e r for o t h e r nuc,lel in Lh~s mass region for non 0+O a l l o w e d 13-translttons. H o w e v e r , ~f we a c c e p t the l i t e r a t u r e m+xlnc I r a t i o for lhe 1116 keV I r a n s l t l o n and J6 :: 1 for Ihe [ [7, Ihe a v e r a g e h y p e r f l n e h e l d would be 26 /4(9} T. A s h w o r t h et al. observed such a b e h a v t o u r ~n Cs +replanted ~nto ~ron and annealed al room t e m p e r a l u r e : Ihe resonant f i e l d was much l o w e r than the average e f f e c l t v e h y p e r f l n e h e l d / 1 1 / . l-he two s~tuatLons are, h o w e v e r , d~fferent. Cs ts not soluble ~n iron, c o n t r a r y tu Zn. On the o t h e r hand, the o b s e r v e d resonance w t d t h and the m t e g r a l destruc,tlon ~n our sample are sirnilar to those of the c ' o l d - l m p l a n t e d 6 9 m ' 7 1 m z n of H e r z o g et al. //4/ whlc,h shows Ihat the anneahng has not an ~mportant e f f e c t on the sites of Zn in tron.

A C K N O W L E D G E M E N T S

A u t h o r s are k~ndly i n d e p l e d to Dr. R. E d e r for helpful discussions and for hts help

~n the m e a s u r e m ~ n l s , to I . V~dal for chemlc,al p r e p a r a t i o n , to A. P l a n t l e r for tsolope s e p a r a t o r ~mplanlat~on, to R. Bou~mr for sync,hroc,yc,lotron i r r a d i a t i o n s and to 3.P.

HadioLJt for t e c h n i c a l c o n l r l b u t l o n . R [ FEI:(ENCES

/ l / O . A . (-hllasvLle, C..]. S a n c l u a r y and N.J. Stone,

Proc. 11-th Conf. on L o w Temp. Phys. (1968) ~North H o l l a n d PubI.Co) p.523 / 2/ P. [nia, Y . K . A g a r w a l and H.de Waard, Phys. Rev., 188 (1969) 605

/ ',/ Y.t4. A g a r w a l , B. B e r t s c h a t , m. Haas, F. P l e t t e r , E. R e c k n a g e l , E. Schlodder and 13. !}pellmeyer, Phys. L el.t., A17 (197/4) 161

/ 4/ P. H e r z o g , U. D ~ m m r l c h , 14.. F r e t t a g , C . D . H e r m a n n and !4. S c h l 6 s s e r , Z. Ph~.s., A332 (1989) 2b. 7

/ 5/ s l e d e r e r and V.S. Shtrley,

T a b l e of I s o t o p e s , 7 - t h E d + t l o n (ed. Yohn W~ley & Sons, N e w Y o r k , 1978) / 6/ Y.F. Z+egler, .}.P. Blersac,k and U. L i t t m a n ,

t h e stopp,ng p o w e r and range of ions in sohds. ( P e r g a m o n Press, N e w Y o r k (1985) / 7/ N..]. Ward and Y.K. TulL, N u c l e a r D a t a Sheets, 47 (1986) 135

/ U/ M. Hansen,

C o n s t , t u t l o n of B,nary A l l o y s (and Lts supplements), Mc ( } r a w mJIl, N e w Y o r k , (1958)

/ 9/ C. V i o l e t and D. P l p k o r n , a. Appl. Phys., 82 (1971) /4339 / 1 0 / E. I<leln,

In I ow T e m p e r a t u r e N u c l e a r (3r~enlat~on, eds. N.J. 51one and m. P o s t m a p.607 +Norlh H o l l a n d P u b l . , C o , A m s t e r d a m , 1986)

/ 1 1 / C..]. A s h w o r t h , P. Back, N.Y. Stone and .].P. Wh,te,

Idyp. lnl. 60 (1990) 929

Références

Documents relatifs

In other cases the Curie temperature is smaller than the crystallisation temperature and the annealing up to the Curie temperature induces a more rapidly decrease of p, with

Le clustering de I'activite IHBa dans les feuilles de nickel, cause par une grande dose d'implantation, est probablement responsable du manque d'interaction

It is concluded that the quantum spin fcc lattice with nearest neighbour anti- ferromagnetic Heisenberg and dipolar interactions ex- hibits several distinct multi-k ground

general form of the potential relief (or in the presence of a magnetic field) the particle overcoming the saddle point with small kinetic energy will not come back. So,

We have studied the propagation of highest energy cosmic rays in the Galactic magnetic field, for different assumptions on the large-scale field structure and/or primary cosmic ray

These results are extended in order to take into account strong- coupling effects and we show how measurements under a magnetic field may provide information

The solid line is not a fit to the data but is only drawn as a guide It can be noted that the center of the film shows a hyper- fine field of 341 kG which is approximately equal

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des