• Aucun résultat trouvé

Ensemble forecast of analyses with uncertainty estimation

N/A
N/A
Protected

Academic year: 2021

Partager "Ensemble forecast of analyses with uncertainty estimation"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-00947755

https://hal.inria.fr/hal-00947755

Submitted on 21 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ensemble forecast of analyses with uncertainty estimation

Vivien Mallet, Gilles Stoltz, Sergiy Zhuk, Alexander Nakonechniy

To cite this version:

Vivien Mallet, Gilles Stoltz, Sergiy Zhuk, Alexander Nakonechniy. Ensemble forecast of analyses with

uncertainty estimation. International Conference on Ensemble Methods in Geophysical Sciences, Nov

2012, Toulouse, France. �hal-00947755�

(2)

Ensemble Forecast of Analyses With Uncertainty Estimation

Vivien Mallet 1,2 , Gilles Stoltz 3,4,1 , Sergiy Zhuk 5 , Alexander Nakonechniy 6

1 INRIA

2 CEREA, joint laboratory ENPC - EDF R&D, Université Paris-Est

3 DMA, École normale supérieure, CNRS

4 HEC Paris

5 IBM Research, Dublin

6 Taras Shevchenko National University of Kiev

International Conference on Ensemble Methods in Geophysical Sciences

Toulouse, November 2012

(3)

Objective

To produce the best forecast of a model state using

a data assimilation system, which produces analysis state vectors z t

using one or several models, observations and errors description; and a given ensemble of forecasts x ( t m ) , possibly provided by the data assimilation system.

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 2 / 14

(4)

Ensemble Forecast of Analyses (EFA)

Notation

x ( t m ) State vector forecast by model/member m at time t z t Analysis state vector at time t

Strategy

Forecasting the analysis state vector z t computed by the data assimilation system

Rationale: The analyses are the best a posteriori knowledge of the state Aggregated forecast:

b z t , i =

X M m =1

w t ( , m i ) x t ( , m i )

Success if the ensemble forecasts b z t beat any sequence of forecasts x ( t m )

(5)

Ensemble Forecast of Analyses (EFA)

Notation

x ( t m ) State vector forecast by model/member m at time t z t Analysis state vector at time t

Principle

To produce an aggregated forecast b z t as efficient as possible, using the linear combination:

b z t , i =

X M m =1

w t ( , m i ) x t ( , m i )

t − 2 t − 1 t t + 1

x ( t m −2 ) x ( t m −1 ) x ( t m ) x ( t m +1 )

w ( t m −2 ) → b z t −2 w ( t m −1 ) → b z t −1 w ( t m ) → b z t w ( t m +1 ) → b z t +1

y t −2 → z t −2 y t −1 → z t −1 y tz t y t +1 → z t +1

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 4 / 14

(6)

Ensemble Forecast of Analyses (EFA)

Notation

x ( t m ) State vector forecast by model/member m at time t z t Analysis state vector at time t

Principle

To produce an aggregated forecast b z t as efficient as possible, using the linear combination:

b z t , i =

X M m =1

w t ( , m i ) x t ( , m i )

t − 2 t − 1 t t + 1

x ( t m −2 ) x ( t m −1 ) x ( t m ) x ( t m +1 )

w ( t m −2 ) → b z t −2 w ( t m −1 ) → b z t −1 w ( t m ) → b z t w ( t m +1 ) → b z t +1

y t −2 → z t −2 y t −1 → z t −1 y tz t y t +1 → z t +1

(7)

EFA Using Machine Learning

Computing the Aggregation Weights

Ridge regression with discount in time (λ > 0 and β > 0):

∀i w t , i = argmin

v∈ R M

λkvk 2 2 +

s < t

X

s =1

β

(t − s ) 2 + 1

z s , i − X M m =1

v ( m ) x s ( , m i )

! 2 

Theoretical Comparison With the Best Linear Combination With Constant Weights

1 t

st

X

s =1

z s , i − X M m =1

w s ( , m i ) x s ( m , i )

! 2

− argmin

v∈ R M

 1 t

st

X

s =1

z s , i − X M m =1

v ( m ) x s ( , m i )

! 2 

 > O ln t

t

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 5 / 14

(8)

EFA Using Filtering

Formulation in Terms of Filtering State equation:

w 0, i = c + e i

w t +1, i = Aw t , i + (I − A)c + e t , i

“Observations” (i.e., analyses in our case):

z t , i = E t , i w t , i + η t , i

E t , i = x t (1) , i , . . . , x t ( , m i )

(9)

EFA Using Filtering

Kalman Filtering

Assignment of variances to initial weight errors, (weight) model errors and analyses errors

The filter computes a variance P t , i for the weight error at time t The aggregated forecast has variance E t , i P t E T t , i

Minimax Filtering

Bounds on errors, described by an ellipsoid e T i Q −1 e i +

T X −1 t =0

e T t , i Q −1 t e t , i + X T t =0

A −1 t η t 2 , i ≤ 1

Admissible weights are compatible with weight model, “observations”

and errors bounds

Weights defined such that, for any direction ℓ, sup

e,e 0 ,...,e t −1 0 ,...,η t

T (w true tw b t ) ≤ sup

e,e 0 ,...,e t −1 0 ,...,η t

T (w true tw t )

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 7 / 14

(10)

Application to Air Quality Forecast

Simulations Description

Forecasting ground-level ozone at 15h00 UTC (peak) over Europe Ensemble with 20 members

One reference member in the ensemble benefits from data assimilation and actually provides the analyses

10 5 0 5 10 15 20

35 40 45 50 55

20 40 60 80 100 120 140 160 180

10 5 0 5 10 15 20

35 40 45 50 55

20

40

60

80

100

120

140

160

180

(11)

Application to Air Quality Forecast

Simulations Description

Forecasting ground-level ozone at 15h00 UTC (peak) over Europe Ensemble with 20 members

One reference member in the ensemble benefits from data assimilation and actually provides the analyses

RMSE (µg m −3 ), With Respect to Analyses and Observations Analyses Observations Reference model without assimilation 15.8 21.6 Reference model with assimilation 13.5 19.8

EFA with machine learning 11.3 15.6

EFA with filtering 10.9 15.7

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 8 / 14

(12)

Ozone Maps ( µ g m −3 ) Averaged For One Year

10 5 0 5 10 15 20 35

40 45 50 55

10 5 0 5 10 15 20 35

40 45 50 55

10 5 0 5 10 15 20 35

40 45 50 55

10 5 0 5 10 15 20 35

40 45 50 55

48

56

64

72

80

88

96

104

112

(13)

Uncertainty Map (Standard Deviation in µ g m −3 )

10 5 0 5 10 15 20

35 40 45 50 55

9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 10 / 14

(14)

Ozone in One Grid Cell ( µ g m −3 )

220 240 260 280 300 320 40

60

80

100

120

140

160

(15)

Ozone in One Grid Cell ( µ g m −3 )

220 240 260 280 300 320 40

60 80 100 120 140 160

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 12 / 14

(16)

Conclusions

Ensemble Forecast of Analyses

With machine learning: guaranteed to beat any linear combination with constant weights

With filtering: access to uncertainty quantification Some Perspectives

Machine learning with robust uncertainty quantification Some focus on aggregation of fields (with patterns)

Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation. Mallet, JGR, 2010.

Ozone ensemble forecast with machine learning algorithms. Mallet, Stoltz & Mauricette, JGR, 2009.

Air quality simulations with Polyphemus, http://cerea.enpc.fr/polyphemus/

Algorithms from data assimilation library Verdandi,

http://verdandi.gforge.inria.fr/

(17)

Time Evolution of the Weights

Machine Learning and Filtering

Jan Mar May Jul Sep Nov

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0 50 100 150 200 250 300 350 0.4

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 14 / 14

Références

Documents relatifs

Uncertainty quantification and ensemble forecast in coarse-grid or dimensionally-reduced computational fluid dynamics.. ECCM - ECFD 2018 - 6th European Conference on

The aggregation algorithm theo- retically guarantees that, in the long run and for any component of the model’s state, the ensemble forecasts approximate the analyses at least as

The aggregated forecasts demonstrate good results; for instance, they always show better performance than the best model in the ensemble and they even compete against the best

After the forecast, synthetic wavefield data are computed in the forecast ensemble to generate the forecast data (grey stars, Fig. To do so, we use the frequency domain forward

Evolution de paramètres de modèle glottique et comparaisons avec signaux physiologiques.. Gilles Degottex,

Ce que nous voyons, non sèulement ne nous suffit pas ( ce qui ne serait pas de grande conséquence), mais ne se suffit pas. Le donné renvoie toujours à quelque autre chose,

Figure 6: As in Figure 5, this time for the reflectivity maximum in the column for 30, 27, 18 and 15 member blended ensemble for 1, 2, 5 and 6 h forecasts based on

Figure 10: RMSE in W m −2 against the maximal number of members chosen from each center ensemble; (blue: no sorting), (green: sorting full ensemble), (red: sorting by center),