• Aucun résultat trouvé

3rd Early Career Issue

N/A
N/A
Protected

Academic year: 2021

Partager "3rd Early Career Issue"

Copied!
2
0
0

Texte intégral

(1)

EDITORIAL

3rd Early Career Issue

J. Vermant&H. H. Winter

Published online: 23 November 2014 # Springer-Verlag Berlin Heidelberg 2014

Rheologica Acta tries to be at the forefront of the field of rheology. Last year, we started providing researchers in the early stages of their career the possibility to contribute an invited paper to a special issue of Rheologica Acta. These papers are original contributions, which underwent the regular reviewing process, but the authors were given a bit more freedom to speculate about the impact of their work. Follow-ing the success of last year’s issues, we selected a few authors and invited them to do same. In this issue, you will find the fruits of their work, giving us a clear view of the topics, which are shaping up our discipline for the years to come.

Lerouge and coworkers present a cautionary tale on the use of large amplitude oscillatory shear flows (LAOS), which represent complex kinematic conditions and even for Newto-nian fluids secondary flows caused by inertia can complicate matters. When this is combined with a system prone to elastic instabilities, complex flow patterns will emerge (Fardin et al.2014). Bozorgi and Underhill (2014) apply LAOS to swimming bacteria, which are a class of active suspensions with some different nonlinear responses compared to the traditional passive suspensions. These authors also demonstrate how rheological fingerprinting of such active suspension may be obtained from the nonlinear material functions. Ardekani and coworkers tackle a different problem in swimming bacterial suspen-sions (Li et al. 2014). Whereas most work so far has focused on bacteria swimming in Newtonian media, most

bacteria live in environments, which contain polymers and DNA fragments which make the local environment viscoelastic. As a consequence, the hydrodynamic inter-actions will change. This is addressed here numerically by using a Giesekus model. The effect of both shear thinning and elastic effects is investigated numerically. Cha and coworkers (2014) focus on viscoelastic effects in the area of microfluidics, where the normal stress differences generated in shear flow are exploited to focus particles in the center of a channel, even in the absence of inertia.

Snijkers and Vlassopoulos (2014) investigate how an often used empirical rule in the rheological literature, the well-known Cox-Merz (CM) rule, holds up when applied to modern, molecularly engineered polymers. Even for more complex architectures, the rule is found to be observed surprisingly well. Failures to obey the CM rule are observed for branched polymers, and the relevance of this observation is discussed. Finally, Koos et al. (2014) report on exiting new types of suspensions, where attractive interactions between the particles are induced by thin capillary bridges between the particles created by a small amount of immiscible fluids. Such suspensions show all the hallmark features of aging systems and seem to be well suited to study these phenomena in depth.

We thank the authors for their fine contributions to the journal and hope that this collection once again reflects im-portant trends in rheology. We wish you enjoyable reading.

References

Bozorgi Y, Underhill PT (2014) Large-amplitude oscillatory shear rheol-ogy of dilute active suspensions. Rheol Acta doi: 10.1007/s00397-014-0806-y

J. Vermant (*)

Department of Materials, ETH Zürich, 8093 Zürich, Switzerland e-mail: Jan.vermant@mat.ethz.ch

H. H. Winter

Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA

e-mail: winter@ecs.umass.edu Rheol Acta (2014) 53:883–884 DOI 10.1007/s00397-014-0823-x

(2)

Cha S, Kang K, You JB, Im SG, Kim Y, Kim JM (2014) Hoop stress-assisted three-dimensional particle focusing under viscoelastic flow. Rheol Acta doi: 10.1007/s00397-014-0808-9

Fardin MA, Perge C, Casanellas L, Hollis T, Taberlet N, Ortín J, Lerouge S, Manneville S (2014) Flow instabilities in large amplitude oscil-latory shear: a cautionary tale. Rheol Acta doi: 10.1007/s00397-014-0818-7

Koos E, Kannowade W, Willenbacher N (2014) Restructuring and aging in a capillary suspension. Rheol Acta doi:10.1007/s00397-014-0805-z

Li G-J, Karimi A, Ardekani AM (2014) Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol Acta doi:10.1007/s00397-014-0796-9

Snijkers F, Vlassopoulos D (2014) Appraisal of the Cox-Merz rule for well-characterized entangled linear and branched polymers. Rheol Acta doi:10.1007/s00397-014-0799-6

Références

Documents relatifs

56 highlighted that the phylogenetic composition (identities) of the microbial communities often have stronger effects than total species richness and diversity on

In view of the large number of active substances and increasingly low MRLs, the analysis techniques used to analyse compounds must be reliable, highly selective and capable

Aging, aging theories, deductive analysis of impossibility, evolvability theory, mutation- accumulation theory, antagonistic pleiotropy theory, disposable soma theory,

Measurement: is the process of judging the extent of the learners' abilities to use English. Passive members: are the learners who are to

Co-cultures were exposed to suspensions of NMs in inserts using similar culture conditions and exposure kinetics to the air-liquid interface, to assess whether the cells were

This might explain the difference in the survival profile observed for the ringer group between the colonies, which showed a lower survival rate of ringer-injected bees

In order to validate the different assumptions of the present analytical model (Section 2 ), the direct frequency response method with a 2D finite element (FE) in ABAQUS Standard

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des