• Aucun résultat trouvé

Population PK/PD and the rational design of an antimicrobial dosage regimen in veterinary medicine

N/A
N/A
Protected

Academic year: 2022

Partager "Population PK/PD and the rational design of an antimicrobial dosage regimen in veterinary medicine"

Copied!
88
0
0

Texte intégral

(1)

01/29/22 Ottawa Juin 2004 - 1

Population PK/PD and the rational design of an antimicrobial dosage

regimen in veterinary medicine

Pierre-Louis Toutain

AAVM Congress - Ottawa June 2004

NATIONAL VETERINARY S C H O O L T O U L O U S E

UMR 181 Physiopathologie &

Toxicologie Expérimentales

(2)

Ottawa Juin 2004 - 2

Co-workers

Academia

Horse study

A. Bousquet-Mélou

M. Doucet

D. Concordet

M. Peyrou

Pig study

J. del Castillo

V. Laroute

D. Concordet

P. Sanders

M. Laurentie

H. Morvan

Industry

Horse study

Vetoquinol (France)

M. Schneider

Pig study

SOGEVAL (France)

C. Zemirline

P. Pomie

VIRBAC (France)

E. Bousquet

INTERVET (germany)

E Thomas

(3)

Ottawa Juin 2004 - 3

"The design of appropriate dosage regimens may be the single most important contribution of clinical

pharmacology to the resistance problem"

Schentag et al. Annals of Pharmacotherapy,

30: 1029-1031

(4)

Ottawa Juin 2004 - 4

Dosage regimen and prevention of resistance

Many factors can contribute to the development of bacteria resistance

the most important risk factor is repeated

exposure to suboptimal antibiotic concentrations

dosage regimen should minimize the likelihood of exposing pathogens to sublethal drug levels

(5)

Ottawa Juin 2004 - 5

Individual Groups or pens Flocks, herds animal of animal of animals Duration

Short <6 days L M H

Medium 6-21 d L M H

Long >21 days M H H

Ranking (Low, Medium, High) of extent of

antibiotic drug use in animal based on duration

and method of administration

(6)

Ottawa Juin 2004 - 6

What is the contribution of the kineticist to the prudent use of antibiotics

To assist the clinicians designing an optimal dosage regimen

To ensure that the selected antibiotic reach the site of infection at an appropriate effective

concentration, for an adequate duration and for all (or most) animals under treatment to

guarantee a cure (clinical, bacteriological) and

without favoring antibioresistance

(7)

Ottawa Juin 2004 - 7

The application of population pharmacokinetic modelling to

optimize antibiotic therapy

(8)

Ottawa Juin 2004 - 8

How to ensure that a dosage

regimen minimizes the likelihood of exposing pathogens to sub-clinical

drug levels

Individual animals

groups or pens vs flocks/herds

 population approach

(9)

Ottawa Juin 2004 - 9

Reminder

Traditional vs populational PK/PD approaches

What is PK/PD for antibiotics and how to determine a dosage regimen using PK/PD predictors

see P. Lees presentation

(10)

Ottawa Juin 2004 - 10

Traditional veterinary PK

Study performed in experimental setting

elaborate design

limited number of animalsrich data

Data analysis: two stages

1- modelling individuals  samples of individual estimates

Cl, Vss, F%, t1/2

2- statistical analysis

mean - SD

search for difference between subgroups (ANOVA), for associations (regression…)

(11)

Ottawa Juin 2004 - 11

Limits of traditional PK

Experimental conditions

may be not representative of the real worldconsider variability as a nuisance

Data analysis

variance and covariance often badly estimated and explained

Solution: the population approach

(12)

Ottawa Juin 2004 - 12

How to determine a dosage regimen using

PK/PD predictors

(13)

Ottawa Juin 2004 - 13

Dose titration

Dose Response

Black box

PK/PD

Dose Response

PK PD

Plasma

concentration

(14)

Ottawa Juin 2004 - 14

The main goal of a PK/PD trial in veterinary pharmacology

The main goal of a PK/PD trial in veterinary pharmacology

To be an alternative to dose-titration studies to discover an optimal

dosage regimen (will be presented

by P. Lees)

(15)

Ottawa Juin 2004 - 15

Contributions of the PK/PD approach to the population

determination of a dosage regimen

The separation of PK and PD variabilities

(16)

Ottawa Juin 2004 - 16

PK/PD variabilities for antibiotics PK/PD variabilities for antibiotics

Consequence for dosage determination

PK PD

Dose Plasma

concentration

Effect

BODY Pathogens

Physiological/constitutional variables

Breed, sex, age

Kidney function

Liver function...

Clinical covariables

pathogens susceptibility (MIC)

disease severity or duration

PK/PD population approach

(17)

Ottawa Juin 2004 - 17

PK/PD predictors of efficacy

MIC Cmax

Concentrations

24h Time

Cmax/MIC

Cmax/MIC : aminoglycosides

AUIC = AUC MIC Units = Time (h)

AUIC (or 24h AUC/MIC) : quinolones, tetracyclines, ketolides, azithromycins, streptogramins

T>MIC : penicillins, cephalosporins, macrolides, oxazolidinones

T>CMI

(18)

Ottawa Juin 2004 - 18

AUIC: an attempt to combine PK and PD properties of antibiotics

AUIC #

= = Dose / Clearance

critical breakpoint value

MIC

90

or MIC

50

PD

PK Capacity to eliminate

the drug

Fixed endpoint related to Emax and EC50

AUC MIC

Application : fluoroquinolones

(19)

Ottawa Juin 2004 - 19

Computation of dose using a PK/PD predictor

Dose = x x Clearance (24h) AUIC 24h

MIC fu x F%

Free fraction

bioavailability

PK

Breakpoint to PD be achieved

(20)

Ottawa Juin 2004 - 20

Computation of dose using a PK/PD predictor

Dose = x x Clearance AUIC 24h

MIC F%

PK PK Breakpoint to PD

be achieved

(average) (average)

MIC50 : average MIC90

(pop) average

(21)

Ottawa Juin 2004 - 21

Dispersion of variance around the mean may be the most relevant parameter to predict a population

dosage regimen for antibiotics

(22)

Ottawa Juin 2004 - 22

Variability and the likelihood of resistance

oral

Dose gut flora

Target biophase F%

Ingested dose

Experimental setting Field conditions

Therapeutic window

Undesirable concentration MIC90

Side effects

Suboptimal exposure

 resistance

Selection of resistance

MIC gut flora

Resistance:

pathogens of interest

1-F%

Resistance: zoonotic, commensal

(23)

Ottawa Juin 2004 - 23

Variability and the likelihood of resistance

Field conditions

Therapeutic window

Undesirable concentration MIC90

Side effects

Suboptimal exposure

 resistance

Selection of resistance

MIC gut flora Ingested dose

Experimental setting

Resistance:

pathogens of interest

gut flora

1-F%

Resistance: zoonotic, commensal

oral

Target biophase F%

Dose

(24)

Ottawa Juin 2004 - 24

Examples of population approaches for antibiotics in veterinary medicine

Identification and explanation of PK variability

marbofloxacin in horse

Determining drug PK characteristics in tissues using sparse sampling

marbofoxacin in ocular fluid in dog

Dosage regimen determining

doxycyclin in pig

(25)

Ottawa Juin 2004 - 25

Marbofloxacin in horses

A. Bousquet-Mélou et al.

(26)

Ottawa Juin 2004 - 26

Marbofloxacin in horses: PK

A fluoroquinolone

No marketing authorization in horses

Conventional PK study

data analysis using the two-stage approachclearance = 4.15 ± 0.75 mL/kg/min CV = 18%

Vss = 1.48 ± 0.3 L/kg

t

1/2

= 7.56 ± 1.99 h

(27)

Ottawa Juin 2004 - 27

Marbofloxacin in horses: PK/PD integration (oral route)

Value of efficacy index (AUIC24h) and Cmax/MIC calculated from PK

parameters obtained after the administration of 2 mg/kg BW in 6 horses

MIC90 = 0.027 µg/mL (enterobacteriaceae)

“average” PK/PD indexAUIC24h = 155 ± 21 Cmax/MIC = 31 ± 4.5

(28)

Ottawa Juin 2004 - 28

To measure the interindividual variability of systemic exposure to marbofloxacin in horses

To identify covariates explaining a part of this variability

Body clearance

The only determinant of AUC

Population PK approach for

marbofloxacin in horses: objective

(29)

Ottawa Juin 2004 - 29

Animals

patients from the Equine Clinic of the Veterinary School

 healthy horses from the Riding School

Covariates record

demographic, physiological, disease

 not all covariates presented

IV administration of marbofloxacin (2 mg.kg

-1

)

Nonlinear mixed-effects modelling

Kinepop software (D. Concordet)

Materials and Methods (1)

(30)

Ottawa Juin 2004 - 30

AUC imprecision

Sampling design

4 samples

5 samples

Number of samples per animal and selection of sampling times

D - optimal design to maximize the precision of AUC [0-24h]

previous informations : AUC[0-24h] Mean and Standard Deviation

Bousquet-Melou et al., Equine Vet J, 34, 2002

Sampling windows:

30min windows centred around 1.5, 3, 5, 7 and 19.5 h

post-administration

Sampling design selection

Materials and Methods (2)

(31)

Ottawa Juin 2004 - 31

PK model : -

biexponential equation

- parameterisation in volumes of distribution and clearances

i Vc, Vc

i

C,

μ η

V

Log  

i Vp, Vp

i

p,

μ η

V

Log  

i Cl, Cl

i

μ η

Cl

Log  

i , Cl Cl

i

d,

μ

d

η

d

Cl

Log  

Statistical model : -

lognormal distribution of PK parameters

d

d 2Cl

Cl N 0,ω

η

2Cl

Cl N 0,ω η

p

p 2V

V N 0,ω

η

c

C 2V

V N 0,ω

ηModel 1 : no covariate

i Cl, i

i 2

i 1

Cl

i

μ θ Age θ Weight Sex Disease η Cl

Log      

i

 

Model 2 : with covariates for body clearance

Materials and Methods (3)

(32)

Ottawa Juin 2004 - 32

• 52 horses, 253 blood samples

0.001 0.01 0.1 1 10

0 4 8 12 16 20 24

Time (h)

Marbofloxacin (g/mL)

Bousquet-Melou et al., Equine Vet J, 34, 2002

Results: conventional vs pop

kinetics

(33)

Ottawa Juin 2004 - 33

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

observed concentrations

(g/mL)

predicted concentrations (g/mL)

Clearance (pop)

population mean = 3.88 mL/kg/min

Inter-individual variability CV(%) = 50 %

Variability: model without covariable

(34)

Ottawa Juin 2004 - 34

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

observed concentrations

(g/mL)

predicted concentrations (g/mL)

Without covariable With covariables

Variability: model with covariables

(35)

Ottawa Juin 2004 - 35

Covariables for body clearance expressed in

L.kg-1.h-1

Weight P=0.001 Age

Sex Disease

NS NS NS

R

2

= 0.33

The body weight explains about 33%

of marbofloxacin clearance variability Note: dose was 2 mg/kg BW i.e. already scaled to BW

Variability: explicative covariable

(36)

Ottawa Juin 2004 - 36

-3 -2 -1 0

0 200 400 600

Body weight (kg)

Ln (Clearance)

0 0.2 0.4 0.6

0 200 400 600

Body weight (kg)

Clearance (L/kg/h)

Marbofloxacin: the body weight is a covariable

Allometric relationship with an allometric exponent >1

(37)

Ottawa Juin 2004 - 37

Marbofloxacin clearance in horses

0.233 50

0.19 - 0.246 18 - 21

Population trial Classical trials * Mean

(L.kg-1.h-1)

CV

(%)

*

Carretero et al., Equine Vet J, 34, 2002

Bousquet-Melou et al., Equine Vet J, 34, 2002

Influence of body weight

In the range of observed weights : about 3-fold variation in body clearance expressed per kilogram

Discussion

(38)

Ottawa Juin 2004 - 38

High interindividual variability of marbofloxacin body clearance in horses

 Underestimated in classical PK trials

Influence of body weight

 Consequences on systemic exposure

 Clinical relevance for efficacy and resistance ?

Current trial

 Multicentric experiment

(Montreal, Toulouse, Utrecht, Vienna)

 Increased number of covariates

Further trials

 Assessment of variability of PD origin

Conclusion

(39)

Ottawa Juin 2004 - 39

Population PK/PD

determination of a dosage

regimen for an antiobiotic

(40)

Ottawa Juin 2004 - 40

Objectives

Document, with population PK/PD approach, the dosage regimen for antibiotics in pig

Ultimate goal : make recommendations

to determine a dosage regimento establish MIC breakpoints

to establish PK/PD predictor breakpoints

(41)

Ottawa Juin 2004 - 41

Population trial

(INRA/SOGEVAL/CTPA) J. del Castillo et al.

Antibiotic: doxycyclin

Britain (2 settings)

215 pigs (30 to 110 kg BW)

oral (soup)

pens of 12-15 pigs (unit of treatment)

(42)

Ottawa Juin 2004 - 42

Population trial

Decision of treatment : metaphylaxis

prevalence of disease>10% (tachypnee, body temperature > 40°C)

Treatments :

Doxycyclin (5 mg/kg) or

Doxycyclin + paracetamol (15 mg/kg)

2 meals apart from 24h

Measure of covariables (rectal temperature /clinical signs etc.)

Blood samplings (4 or 5 after the 2nd dose)

Dosage HPLC (doxy, paracetamol+metabolite)

(43)

Ottawa Juin 2004 - 43

PK Variability

n = 215

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-5 0 5 10 15 20 25 30

Time (h)

Concentrations mg/mL

Doxycycline

(44)

Ottawa Juin 2004 - 44

PK doxycyclin variability analysis

(45)

Ottawa Juin 2004 - 45

Doxycycline : sex effect

Time (h)

Doxycycline

Sexe 0 Sexe 1

(46)

Ottawa Juin 2004 - 46

Doxycycline : body temperature effect

Rectal temperature

Doxycycline

(47)

Ottawa Juin 2004 - 47

Doxycycline : disease effect

Time (h)

Concentrations (µg/mL) healthydiseased

(48)

Ottawa Juin 2004 - 48

Variability analysis: AUC vs. body weight

Distribution of AUC [0, 24 h] with weight

0 5 10 15 20

20 40 60 80 100 120

BW (kg)

AUC (mg h mL-1)

(49)

Ottawa Juin 2004 - 49

How to make use of PK/PD

population knowledge to predict how well will doxycyclin perform

clinically?

(50)

Ottawa Juin 2004 - 50

The use of MonteCarlo simulation

Dose selection at the population level

Determination of breakpoints:

PK/PD

MIC

(51)

Ottawa Juin 2004 - 51

Material and Method

PK/PD analysis was performed using Monte Carlo simulations

The method accounts for the variability in PK as well as MIC data to determine the

probability of reaching a target AUC

0-24

/MIC

ratio

(52)

Ottawa Juin 2004 - 52

Data analysis

PK : non linear mixed effect model

seek to explain the variability by covariablesComputation of AUC and statistical

establishment of distribution

PK/PD: MonteCarlo approach to assess

the distribution of the PK/PD endpoint

(53)

Ottawa Juin 2004 - 53

Dosage regimen: application of PK/PD concepts

The 2 sources of variability : PK and PD

PK: exposure PD: MIC

Distribution of PK/PD surrogates (AUC/MIC) Monte-Carlo approach

AUC [0, 24 h] Distribution

0 2 4 6 8 10 12 14 16

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AUC (µg.h.mL-1)

Fquences (%)

MIC Distribution (simulation)

0 5 10 15 20 25 30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 CMI (µg/mL)

% de germes

(54)

Ottawa Juin 2004 - 54

AUC distribution

AUC [0, 24 h] Distribution

0 2 4 6 8 10 12 14 16

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AUC (mg.h.mL-1)

Frequences (%)

Under-exposure ?

(55)

Ottawa Juin 2004 - 55

Microbiological data Intervet, Virbac, AFSSA

Streptococcus suis (n=180)

Actinobacillus pleuropneumoniae (n=110)

Pasteurella multocida (n=206)

Haemophilus (n=25)

(56)

Ottawa Juin 2004 - 56

MIC distribution:

Actinobacillus pleuropneumoniae (n=106)

MIC (µg/mL)

0 5 10 15 20 25 30 35 40

0.25 0.5 1 2 4 8

Pathogens %

SUSCEPTIBLE

INTERMEDIATE

RESISTANT

(57)

Ottawa Juin 2004 - 57

MIC distribution

Pasteurella multocida (n=205)

0

MIC (g/mL) 5

10 15 20 25 30 35 40

0.0625 0.125 0.25 0.5 1 2 4

Pathogens %

SUSCEPTIBLE

(58)

Ottawa Juin 2004 - 58

MIC distribution

Streptococcus suis (n=180)

0 5 10 15 20 25 30 35

0.0313 0.0625 0.125 0.5 1 2 4 8 16 32

CMI (g/mL)

Pathogens %

SUSCEPTIBLE

INTERMEDIATE

RESIST.

Bimodal distribution

(59)

Ottawa Juin 2004 - 59

Statistical distribution of PK/PD predictors

Question: what is the percentage of a pig population to achieve a given value of the PK/PD predictor for a given dose of

doxycyclin for a:

Empirical (initial) antibiotherapy (pathogen

known, MIC unknown but distribution known)

Targeted antibiotherapy (MIC known)

(60)

Ottawa Juin 2004 - 60

Doctor or Regulator

In clinical therapy, we would like to give optimal dose to each individual patient for the particular disease

 individualized therapy (targeted antibiotherapy)

In new drug assessment / development, we would like to know the overall probability for a population of an appropriate response to a given drug and

proposed regimen

 population-based recommendations (empirical antibiotherapy)

H. Sun, ISAP-FDA workshop 1999

(61)

Ottawa Juin 2004 - 61

Population PK/PD: applications

Individualisation  doctor

Recommandation  regulator

(62)

Ottawa Juin 2004 - 62

Doxycycline (5 mg/kg) : empirical vs targeted antibiotherapy for Pasteurella multocida

0%

20%

40%

60%

80%

100%

0 24 48 72 96 120 144 168 192

% of pigs above the breakpoint

Empirical antibiotherapy

Targeted antibiotherapy (MIC = 0.25 µg/mL)

bacteriostatic Breakpoint to be achieved (AUC/MIC) (h)

(63)

Ottawa Juin 2004 - 63

Doxycycline (5 mg/kg): empirical vs targeted

antibiotherapy for Actinobacillus pleuropneumoniae

Bacteriostatic

0%

20%

40%

60%

80%

100%

0 24 48 72

% of pigs above the breakpoints

Empirical (MIC unknown) Targeted (MIC = 0.5 µg/mL)

Breakpoint to be achieved (AUC/MIC) (h)

(64)

Ottawa Juin 2004 - 64

Doxycycline (5 mg/kg) : empirical vs targeted antibiotherapy for Streptococcus suis

0%

20%

40%

60%

80%

100%

0 24 48 72 96 120 144 168 192

% of pigs above the breakpoint

Empirical antibiotherapy

Targeted antibiotherapy (MIC = 16 µg/mL)

bacteriostatic Breakpoint to be achieved

(AUC/MIC) (h)

(65)

Ottawa Juin 2004 - 65

Population dose determination

Question: what is the doxycycline dose to

be administered to achieve a given AUC/MIC ratio for a given percentage of the pig

population ? (e.g. 90%)

(66)

Ottawa Juin 2004 - 66

Doxycycline : selection of an empirical (initial) dose for Pasteurella multocida

0%

20%

40%

60%

80%

90%

100%

0 24 48 72 96 120 144 168

AUC/MIC ratio (h)

% of pigs above a given AUC/MIC ratio

5 mg/kg 10 mg/kg 20 mg/kg

bacteriostatic

Doses

(67)

Ottawa Juin 2004 - 67

Doxycycline : selection of an empirical (initial) dose for Actinobacillus pleuropneumoniae

0%

20%

40%

60%

80%

100%

0 24 48 72

AUC/CMI ratio (h)

% of pigs above a given AUC/MIC ratio

5mg/kg 10 mg/kg 20 mg/kg

bacteriostatic

Doses

(68)

Ottawa Juin 2004 - 68

Doxycycline : selection of an empirical (initial) dose for Streptococcus suis

0%

20%

40%

60%

80%

100%

0 24 48 72 96 120 144 168

AUC/MIC ratio (h)

% of pigs above a given AUC/MIC ratio

5 mg/kg 10 mg/kg 20 mg/kg

Doses

(69)

Ottawa Juin 2004 - 69

Determination of MIC

breakpoints by standard

developing organizations using

population approach

(70)

Ottawa Juin 2004 - 70

Determination of MIC breakpoints

Current situation

PK information is badly taken into account

 population approach

(71)

Ottawa Juin 2004 - 71

Determination (or revision) of the clinical MIC breakpoint for a given drug against a

given pathogen

Dose fixed (marketing authorization)

breakpoint to achieve determined:

T>MIC >80% of the dosage interval or AUC/MIC = 100h

computation of the critical MIC value for which

T>MIC (or other PK/PD indices) are in excess of

90% (or other %) of subjects.

(72)

Ottawa Juin 2004 - 72

Doxycycline (5 mg/kg) : MIC breakpoint for

Actinobacillus pleuropneumoniae to achieve a given AUC/MIC ratio for 90% of pig

0%

20%

40%

60%

80%

100%

0 24 48 72 96 120 144 168 192 216 240

Breakpoint AUC/MIC (h)

% of pigs above the breakpoint MIC = 0.0625 µg/mL MIC = 0.125 µg/mL MIC = 0.25 µg/mL

bacteriostatic 90%

(73)

Ottawa Juin 2004 - 73

Doxycycline (5 mg/kg): MIC breakpoint for Streptococcus suis to achieve a given

AUC/MIC ratio

Bacteriostatic

0%

20%

40%

60%

80%

100%

0 24 48 72 96 120 144 168 192

Breakpoint AUC/CMI (h)

% of pigs above a given AUC/MIC ratio

MIC = 0.125 µg/mL MIC = 0.5µg/mL

MIC = 0.0625 µg/mL 90%

(74)

Ottawa Juin 2004 - 74

Doxycycline(5 mg/kg) : MIC breakpoints for Pasteurella multocida to achieve a given

AUC/MIC ratio

0%

20%

40%

60%

80%

90%

100%

0 24 48 72 96 120 144 168 192

AUC/MIC ratio (h)

% de pc avec une AUC/CMI> seuil

MIC = 0.0625 µg/mL MIC = 0.125 µg/mL MIC = 0.25 µg/mL

Bacteriostatic

(75)

Ottawa Juin 2004 - 75

Determination of PK/PD predictor breakpoints

For drug dosage prediction, not only PK/PD index that determine the effect but also its magnitude must be

determined

Prospective or retrospective approach

using clinical data

(76)

Ottawa Juin 2004 - 76

Conclusion

For practitioners

to adjust the dosage regimen for a given animal (or a given breed…)

flexible dosage regimen

For drug companies and authorities

a general framework to propose an empirical (initial) dosage regimen

For standards-developing organizations MIC breakpoints

(77)

Ottawa Juin 2004 - 77

Experimental vs population

studies

(78)

Ottawa Juin 2004 - 78

Experimental Population

(79)

Ottawa Juin 2004 - 79

Experimental vs. population approach

Two questions regarding experimental approach

What is its validity (clinical relevance)

What about variability

(80)

Ottawa Juin 2004 - 80

Drug administration, social behavior and the dose

Experimental

Individually controlled by the investigator

(restricted, tubing…)

The nominal dose is guaranteed to all

individuals

Field

related to individual feeding behavior (fever, anorexia)

group effect (hierarchy,

dominance) or other behavior

Dose actually ingested can be much higher or much lower than the nominal dose

(81)

Ottawa Juin 2004 - 81

The pathology

Experimental Field

Standardised experimental • Spontaneous disease

infectious model

(82)

Ottawa Juin 2004 - 82

Animal selection

Experimental

Highly selected (as homogeneous as

possible) body weight, sex, age...

Population

Representative of the target

population different breed, age, pathological conditions…

(83)

Ottawa Juin 2004 - 83

Study design

Experimental

experimental, restrictive

artificial

(temperature, light…)

Population

Observational

natural (e.g. field)

Difference

Power,

inference space

interaction with environment behavior

(84)

Ottawa Juin 2004 - 84

Experimental vs population approach:

the status of variability

Experimental

viewed as a nuisance that has to be

overcome

Population

recognized as an important

feature that should be identified, measured and explained

(covariables)

(85)

Ottawa Juin 2004 - 85

Experimental vs population approach Accuracy and variability

In current experimental practices, major determinant of drug disposition (PK) or of drug effect (PD) can be modified, altered or suppressed

GLP is not synonymous to good science

!

(86)

Ottawa Juin 2004 - 86

Advantage of field population kinetics over classical experimental setting

Experimental environment

healthy animals selected for homogeneity inter-

individual variability is viewed as a nuisanceconditions rigidly

standardized

artificial conditions

Real world / clinical setting

patients representative of target population

variability (inter & intra-

individual, inter-occasion) is an important feature that should be identified and measuredseek for explaining variability

by identifying factors of

demographic pathophysiology

(87)

Ottawa Juin 2004 - 87

Doxycycline concentration variability:

population vs experimental trial

Number of data points Trial

Population n=215

Experimental n=15 to 19

0 4 6 12 24 Time (h)

0.0 0.5 1.0 1.5

DOXYCYCLINE (µg/mL)

(88)

Ottawa Juin 2004 - 88

Doxycycline concentration variability:

population vs experimental trial for time 6h post-administration

0 1 2 3

0.0 0.5 1.0 1.5

DOXYCYCLINE (µg/mL)

Number of data points 1: Population n=215 2: Experimental n=16 3: Experimental n=64

Références

Documents relatifs

This is the most difficult and crucial point in Stengers’s interpretation of Whitehead: at one and the same time, the invention of the scientific object, “independent of

A comparison of target- and manually controlled infusion propofol and etomidate/desflurane anesthesia in elderly patients undergoing hip fracture surgery. Passot

Yuan, “Applica- tion of PK/PD modeling in veterinary field: dose optimization and drug resistance prediction,” BioMed Research International, vol. Fumagalli, “Comment on

The PK/PD indices are mostly used as targets for efficacy in the process of dose selection [28], but it is also necessary to work on the dosage regimen optimization (frequency,

Dose [Target] Effect c Effect p Dose [Target] Effect c Dose [Plasma] Effect p Dose [Plasma] Effect c Effect p [Plasma] In vitro In silico for in vivo Human in vivo Rat in vivo

Microorganisme Tableau clinique Précautions infectieuse Matière transmission Voie de d'incubation Période Période de contagion précautions Durée des Remarques Infections

Aimad El habachi 1,3* , Emmanuelle Conil 1,3 , Jessica Carette 1 ,Abdehamid Hadjem 1,3 , Emmanuel Vazquez 2 , Azeddine Gati 1,3 ,Man Faï Wong 1,3 ,Gilles Fleury 2 and Joe Wiart

Additionally, the Monte Carlo simulations involving the angular distributions of x-rays demonstrate that the proposed approach describes well the RR enhancement measured in