• Aucun résultat trouvé

On the global and weak dimensions of pullbacks of non-commutative rings

N/A
N/A
Protected

Academic year: 2022

Partager "On the global and weak dimensions of pullbacks of non-commutative rings"

Copied!
8
0
0

Texte intégral

(1)

THÉORIE DES NOMBRES BESANÇON

Années 1996/97-1997/98

O n t h e g l o b a l a n d w e a k d i m e n s i o n s o f p u l l b a c k s o f n o n - c o m m u t a t i v e r i n g s

(2)

O n t h e g l o b a l a n d w e a k d i m e n s i o n s o f p u l l b a c k s o f n o n - c o m m u t a t i v e r i n g s

N i k o l a i K o s m a t o v

Ail rings will be assumed to have identity elements preserved by ring ho- m o m o r p h i s m s , and ail modules, unless specified otherwise, will be left m o d - ules. For a ring S, lgld S and lwd S will dénoté t h e left global dimension of S and t h e left weak global dimension of S, respectively. For an 5 - m o d u l e X and a right S - m o d u l e F, t h e projective dimension of X , t h e injective dimen- sion of X , t h e flat dimension of X , and t h e flat dimension of Y are denoted by p d5 X , ids X , f d s X and r f d s Y, respectively.

A c o m m u t a t i v e square of rings and ring h o m o m o r p h i s m s R — ^ Ra

«2 ii (1)

R2 R '

is said to b e a pullback (or a cartesian square, or a fibre p r o d u c t ) if given r i E R \ , r% G Ra with Ji(r'i) = 3 2 ^ 2 ) t h e r e is a unique element r Ç R such t h a t î'i(r) = r j and i2( r ) = r2 (note t h a t if j2 is a surjection t h e n so is b u t not conversely). T h e ring R, is called t h e fibre p r o d u c t (or pullback) of Ri a n d R,2 over R!.

Assuming t h a t j2 is surjective, Milnor [5, C h a p t e r 2] characterized pro- jective modules over such a ring R. Facchini and V â m o s [2] established ana- logues of Milnor's t h e o r e m s for injective and flat modules. K i r k m a n a n d K u z m a n o v i c h [3, T h e o r e m 2] showerl t h a t if (1) is a pullback square with j2

surjective, t h e n

lgld R ^ max{lgld Rk + r f dR (2)

For c o m m u t a t i v e rings, Scrivanti [6] s h a r p e n e d this u p p e r b o u n d on lgld i?

a n d o b t a i n e d an u p p e r b o u n d on lwd R,. Moreover, she gave examples which 1

(3)

showed t h a t , in a certain case, those results were best possible. Besides, Cowley showed t h a t it could b e bénéficiai to work only on one side of t h e rings in question [1, E x a m p l e 3.4]. He obtained t h e following "one-sided"

b o u n d [1, T h e o r e m 3.1]: if (1) is a pullback square with j2 surjective, t h e n

lgld R ^ max{lgld Rk -f p df i Rk} . (3)

k= 1,2

Our T h e o r e m s 9, 10 and Corollaries 12, 13 are t h e generalizations t o n o n - c o m m u t a t i v e rings of Scrivanti's results. In T h e o r e m 8, we provide a "one-sided" b o u n d on t h e left global dimension of a pullback ring. In Propositions 5, 6 and 7, we give sufficient conditions for an /?-module M t o have injective, projective and fla.t dimensions ^ n. In Corollaries 11 and 12, we deduce t h e u p p e r b o u n d s (3) and (2) as i m m e d i a t e conséquences of our Propositions 5 and 6. Here we relax t h e conditions and only require to be surjective.

W e begin with t h e following conséquence of [2, T h e o r e m 2].

T h e o r e m 1. Let (1) be a pullback diagram with i\ surjective. Then an R-module M is injective (projective, flat) if and only if H o m ^ - R i , M ) a n d H o m r ( R .2, M ) (R i ® r M and R2® r M ) are R.y - and R,2-injective (projective, f l a t ) modules respectively.

P r o o f . Set R " — j2( R2) . Since ii is a surjection, we o b t a i n j i ( R i ) C j2(R-2) = R"- T h u s we have a n o t h e r c o m m u t a t i v e square of rings a n d ring h o m o m o r p h i s m s

R - R !

>2 ii

R2 - n

It is clear t h a t this d i a g r a m is a pullback square with j2 : R.2 —>• R " surjective.

So t h e desired resuit follows f r o m [2, T h e o r e m 2],

P r o p o s i t i o n 2. Let M be an R-module, n be a positive integer, a n d let 0 — > M A / o A / , J î + I2— + . . .

be an injective resolution of M . Let Kt dénoté im(/<+i), t ^ 0. Suppose that idRk (Extl R(R,k, M ) ) ^ n — l f o r l = 0, 1, . . . , n and k = 1,2. Then id#fc(Hom/?(./?A;, Kt)) ^ n — t — 1 f o r t = 0, 1, . . . , n and k = 1,2.

(4)

P r o o f . For any n ^ 1 and k = 1 , 2 , t h e proof is by induction on t.

For t = 0, if we apply t h e f u n c t o r Ext*R(Rk, —) to t h e short exact sequence of fl-modules 0 —> M —> I0 I<0 — y 0, we obtain an exact sequence of iîfc-modules

0 — • H o mR{ Rk, M ) — • E o mR{ Rk, I0) h .

^ E o mR( Rk, K0) — > E x tl R( Rk, M ) (4) a n d isomorphisms of i?^-modules

E x tl R( Rk, K0) ~ E x t g ^ i f c , M ) , l > 1. (5) Set Akio = im / i * and break u p (4) into two short exact sequences of

i?fc-modules:

0 —> E o mR( Rk, M ) —> H o mR( Rk, I0) H Ak f i — • 0, (6) 0 —> Ak,o M- H o mR( Rk, Ko) —> E x t J ^ , M ) — > 0. (7) Since IQ is an injective i?-module, it can easily be checked t h a t R.k-module

HomJR(/t'fc, /o) is injective. Since k \R k( E o mR( Rk l M ) ) ^ n , we o b t a i n f r o m (6) t h a t idR k(Ak to) ^ w — 1. At t h e s a m e t i m e idnk(Ext}j(Z?.fc, M ) ) ^ n — 1.

Therefore, using (7), we get i d f>k ( Hom R ( R.k, K0 ) ) ^ n — 1.

For t ^ 1, we apply t h e f u n c t o r Ext*R(R.k, — ) to t h e short exact sequence of /^-modules 0 —> Kt~ \ M- It Kt —> 0. We get an exact sequence of /«^-modules

0 —> HomR(R.k, Kt- i ) —> H o mR( Rk, It) ^ H o m R( Rk, Kt) — • Ext^(jRfc, A'f_i) —> 0

and isomorphisms of / ^ - m o d u l e s

Extl R(R.k, Kt) ~ Extl+*{Rk, Kt- \ ) , l > 1. (9) P u t Ak,t = im (ft+i)* and break u p (8) into two short exact sequences of

/ 4 - m o d u l e s :

0 — • H o mR( Rk, A'4_i) —> H o mR( Rk, It) Ak,0 — • 0, (10) 0 —> Ak,t H o mR( Rk, Kt) —> E x t A ' t _ i ) —+ 0. (11)

(5)

By t h e inductive hypothesis, we have idp,k{H.omjt(Rk, Kt- i ) ) ^ n — t.

Since /< is an injective R-module, H o m / ^ / i ^ , It) is an injective / ^ - m o d u l e . Therefore, froin (10), idnk(Ak,t) ^ n — t — 1. C o m b i n i n g (5) a n d (9), we have E x t ^ / ? ^ A V i ) ^ . . . ~ E x tl R( Rk, K0) ~ E x t ^ i f c , M ) . Hence

i df l f c( E x tl n( Rk, K ^ ) ) = M ) ) ^ n - t - 1. Finally, f r o m (11),

we obtain idflfc(HomFi(Rk, Kt) ) ^ n — t — 1, as required.

T h e proofs of t h e following Propositions 3 and 4 are similar t o t h a t of Proposition 2 if we apply t h e f u n c t o r s T o r ^ ( R k , — ) t o t h e given resolutions.

P r o p o s i t i o n 3. Let M be an R.-module, n be a positive integer, a n d let

• • • —> P'i A Pi A Po A M —> 0

be a projective resolution of M . Let I \t dénoté ker ft, t ^ 0. Suppose that p df l f c( T o r p ( J 2 * , M ) ) ^ n - l f o r l = 0, 1, . . . , n and A: = 1,2. Then p d nk( R k A't) ^ n — t — 1 / o r f = 0, 1, . . . , « and k = 1,2.

P r o p o s i t i o n 4. Lei M 6e «n R,-module, n be a positive integer, a n d let

be a fla,t resolution of M . Let Kt dénoté ker ft, t ^ 0. Suppose that

f df t f c( T o r A f ) ) « - l f o r l = 0, 1, . . . , n «ml k = 1,2. Then

î dR k( R k Kt) ^ n - t - 1 f o r t - 0, 1, . . . , n and k = 1,2.

P r o p o s i t i o n 5. L d (%) be a pullback diagrarn with %i surjective, M be. an R.-module, and let n be a non-negative integer. Suppose that idK j c(Ext l R( Rk, M ) ) ^ n - l f o r l = 0, 1, . . . , n a n d k = 1,2. T h e n \ dR M ^ n.

P r o o f . For t h e case n = 0, t h e resuit follows f r o m T h e o r e m 1. For n ^ 1, consider an injective resolution of /?,-module M

By définition, p u t Kt = i m ( /< +i ) for t ^ 0. From Proposition 1, we get t h a t / 4 - m o d u l e Homp_(Rk, Kn- i ) is injective (k = 1,2). Hence, by T h e o r e m 1, Kn-X is an injective i?-module. This m e a n s t h a t i d r M ^ n.

Arguing as above, t h e reader will easily prove the following analogues of Proposition 5 for projective and flat dimensions.

(6)

P r o p o s i t i o n 6. Let (1) be a pullback diagram with ii surjective, M be an R,-module, a n d let n be a non-negative integer. Suppose that

p df l f c( T o r ? ( Rk, M ) ) ^ n - l f o r l = 0, 1, . . . , n and k = 1,2. Then

p drM < n.

P r o p o s i t i o n 7. Let (1) be a pullback diagram with ii surjective, M be an R-module, and let n be a non-negative integer. Suppose that f d ^ ( T o r f ( Rk, M ) ) ^ n - l f o r l = 0 , l , . . . , n a n d k = 1,2. T h e n î àRM ^ n .

Proposition 5 clearly implies t h e following t h e o r e m .

T h e o r e m 8 . Let (1) be a pullback diagram with i\ surjective, and let n be a non-negative integer. Suppose that f o r any R-module M we have that

idf l f c(Extl R{Rk, M ) ) ^ n - l f o r l = 0, 1, . . . , n a n d k = 1 , 2 . Then lgld R ^ n.

T h e o r e m 9 . Let (1) be a pullback diagram with i\ surjective, and let n be a non-negative integer. Suppose that f o r any left idéal J of R, we have that

p d ^ T o r P ( Rk, R / J ) ) ^ n - l f o r l = 0, 1, . . . , n a n d k = 1 , 2 . Then lgld R ^ n.

P r o o f . Let J b e a left idéal of R. Proposition 6 shows i m m e d i a t e l y t h a t p dr( R / J ) ^ n. Therefore, using Auslander's t h e o r e m , we have lgld R = s u p { p dr{ R . / J ) | J is a left idéal of R } ^ n.

T h e o r e m 1 0 . Let (1) be a pullback diagram with i\ surjective, and let n be a non-negative integer. Suppose that for any finitely generated left idéal J of R we have that

f d ^ ( T o r f [ Rk, R / J ) ) ^ n - l f o r 1 = 0 , 1 , . . . , n a n d k = 1 , 2 . Then lwd R ^ n.

P r o o f . Let J be a finitely generated left idéal of R. Propo- sition 7 evidently implies t h a t i dR( R / J ) ^ n. Therefore, since lwd R, = s u p { p dR( R / J ) | , / is a finitely generated left idéal of R}, we have lgld R ^ n.

(7)

C o r o l l a r y 1 1 . If (1) is a pullback diagram with i\ surjective, then lgld R ^ max{lgld Rk + p dH Rk} .

P r o o f . Set nk = lgldR.k, rnk = p df i R.k, Nk = nk + mk (k = 1 , 2 ) and N = max{iVi, N2}. It can be assumed t h a t mk, nk< 00. Let M be an i?,-module and k G {1, 2}. Silice p df l Rk = mk, we have E x t 'R( Rk, M ) = 0 for ail l ^ mk + 1 . At t h e s a m e t i m e , since l g l d i î ^ = nk, we get i dR k( E x tl R( Rk, M ) ) ^ nk = Nk - mk ^ Nk - l ^ N - l for any l = 0, 1, . . . , mk. Therefore, by Proposition 5, p dRM ^ N . This m e a n s t h a t lgld R ^ N.

Similarly, Propositions 6 and 7 allow us to prove Corollaries 12 and 13.

C o r o l l a r y 1 2 . If (1) is a pullback diagram with i\ surjective, then lgld R < max{lgld Rk + r f df l Rk} .

C o r o l l a r y 13. If (1) is a pullback diagram with i 1 surjective, then lwd R sC m a x { l w d Rk + r f dH Rk} .

A c k n o w l e d g e m e n t . T h e a u t h o u r would like to t h a n k Professor A. I. Generalov for lus help and guidance.

R e f e r e n c e s

[1] K . M . CoWLEY. One-sided bounds and the vanishing of E x t . J . Alge- bra, 1 9 0 ( 1 9 9 7 ) , 361-371.

[2] A . FaCCHINI, P . V a m o s . Injective modules over pullbacks. J . London M a t h . Soc., 3 1 (1985), 425-438.

[3] E . IClRKMAN, J . KuZMANOVICH. On the global dimension of fibre prod- uctif. Pacific J. M a t h . , 1 3 4 ( 1 9 8 8 ) , 121-132.

[4] S. MACLANE. Homology. Springer-Verlag, New York, 1963.

(8)

[5] J . MlLNOR. Introduction to Algebraic K-theory. Annals M a t h . Studies, vol. 72, Princeton University Press, Princeton, 1971.

[6] S. SCRIVANTI. Homological dimension of pullbacks. M a t h . Scand., 7 1 (1992), 5-15.

E q u i p e de M a t h é m a t i q u e s U . M . R . 0623 du C.N.R.S.

16, r o u t e de Gray

25030 Besançon Cedex France

D e p a r t m e n t of Mathernatics and Mec.ha.uics S a i n t - P e t e r s b u r g S t a t e University

Bibliotechnaya pl. 2

Saint-Petersburg, 198904, Russia E-Mail: koko@nkl442.spb.edu

Références

Documents relatifs

Changsha, Hunan 410081, People’s Republic of China jiaolongche n@sina.com Hunan Normal University, Department of Mathematics,.. Changsha, Hunan 410081, People’s Republic

This qualitative study develops an account of how, when, where and why Leeds the undergraduate medical students engage with an online curriculum mapped clinical skills

In other words the aim of our work is to identify the total collection of rational Gromov-Witten invariants for the Calabi-Yau varieties of dimension n &gt; 3 with certain

In this paper, we only investigate the finitistic weak dimension of arithmetical rings (it seems that it is more difficult for Gaussian rings).. Main results are summarized in

Olivier, Multifractal analysis of weak Gibbs measures and phase transition – application to some Bernoulli convolutions, Ergodic Theory Dyn.. Garsia, Entropy and Singularity of

An introduction to

Finally, I would like to acknowledge Ks Nielsen for discovering the two mistakes and for providing me with the example above.. He found the mistakes during his

The proof for the well-posedness of an adapted 6-tuple weak solution to the system of FB-SDEs in (1.1)–(1.5) is based on a general boundary reflection condition (called the