• Aucun résultat trouvé

(s]q)/(s/q) is the Helson constant of an infinite Kq-set, then A ( ~ Kq) is a tensor algebra.

N/A
N/A
Protected

Academic year: 2022

Partager "(s]q)/(s/q) is the Helson constant of an infinite Kq-set, then A ( ~ Kq) is a tensor algebra. "

Copied!
35
0
0

Texte intégral

(1)

Representations of tensor algebras as quotients of group algebras

STEN KAIJSER

lnstit,ut Mittag-Leffler, Djursholm, Sweden

w O. Introduction

1. Tensor algebras, or to be precise, projective tensor products of C(K)-spaces have impo~%ant relations both with I~ilbe~ space and with 11. The relation with Hilbert space was discovered b y Grothendieck, and was called b y him >>the funda- mental theorem on the metric theory of tensor products>>. I t certainly is the deepest result in this metric theory [see e.g. 6]. The relations with 11 were discovered b y Varopoulos, and their importance lies in the fact t h a t t h e y relate the algebra structure of tensor algebras to the algebra structure of group algebras [8]. These relations are two-fold, in the first place, a group algebra can in a canonical w a y be embedded as a closed subalgebra of a tensor algebra. Through this embedding, information on tensor algebras can be obtained from information on group algebras.

In the second place a tensor algebra can be represented as a quotient of a group algebra, so that information on tensor algebras can be transferred to group algebras.

The main result in the second connection is the following; if {K~}~= 1 are disjoint compact subsets of a compact abelian group, and if O K~ is a Kronecker set (or a K f s e t ) , then A ( ~ K~) is a tensor algebra. In this paper we shall consider to what extent the ]~Lronecker condition in the theorem of Varopoulos can be replaced b y I-Ielson conditions on the sets. Our main results are the following.

T~EO~E~ A. To every natural number n ~ 2, there corresponds a real number

~ , such that i f {K~}~=I are disjoint compact subsets of a compact abelian group, and i f U K~ is a H e l s o n - ( 1 - ~) set, or < o;n, then A ( ~ KI) is a tensor algebra.

THEOI~nM B. To every natural number q > 2, and every natural number n > 2, there corresponds a real number aq, n such that i f {K~}~I are disjoint compact subsets

(2)

1 0 8 STEiW K A I J S E I ~

of the group Dq, and O Ki is a Helson-(yq- a) set, where ~ < ~q,, and

rq -- sin

(s]q)/(s/q) is the Helson constant of an infinite Kq-set, then A ( ~ Kq) is a tensor algebra.

The proofs of these theorems are based on the metric theory of tensor algebras.

The main tool in the proof of Theorem A is a rather elementary measure inequality with which we can s t u d y the dual space of a tensor algebra.

To prove Theorem B we shall combine the methods used to prove Theorem A, with a theorem ef Bohnenblust and Karlin on the geometry cf Banach algebras.

However, besides this we shall also have to s t u d y various possible definitions of gelson-eonstants for subsets of Dq.

Loosely speaking, the proof of Theorem A is based on a notion of weak approxi- mation, while the proof of Theorem B is based on uniform approximation.

w 1. Tensor algebras in general groups

1. We shall start b y some standard definitions and notations. Let G be a compact abelian group and let E be a closed subset of G. We shall denote b y

A(E)

the restriction of

A(G)

to

E. A(E)

can also be represented as the quotient

A(G)/I(E),

where

I(E)

is the closed ideal of all functions f in

A(G)

with f-l(0) D E. I t follows from this representation t h a t

A(E)

is a Banach algebra with maximal ideal space E, and t h a t every element f in A (E), has an expansion

f(x) ~- ~ axz(x),

Z e G, ~ lax] < IlfllA(E) + ~, X e E . (1.1.1) The dual space of

A(E)

will be denoted

PM(E),

and its elements will be called pseudomeasu_res.

Let X be a compact space (all topological spaces considered in this paper will be assumed to be H a u s d o r f f spaces). We shall denote b y

(i) l x the identity element of

C(X)

(ii)

C(X)I

the unit ball of

C(X)

(iii)

S(X)

the group of all functions

f e C(X)

with If[ = 1 (iv)

S~(X)

the group of all functions

f e C(X)

with f~ : 1.

With the uniform topology,

S(X)

is a topological (abelian) group under point- wise multiplication of functions, and

Sq(X)

is a discrete subgroup of

S(X),

which separates the points of X if and only if X is totally disconnected.

Let E be a closed subset of a compact abelian group G. We shall call E

a) a Kronecker set,

if GIE is dense in

S(E).

b) a

Kq-set, if G[E Sq(E).

c) a

Helson-(a) set,

if

A(E) = C(E),

and if for every f in

C(E)

[If tiC(E) ~

aIIfI1A(E),

(3)

I:~I~3pI:~ESENTATIONS Oli' T E N S O R A L G E B R A S A S Q U O T I E N T S O F G R O U P A L G E B R A S 1 0 9

or e q u i v a l e n t l y b y d u a l i t y , if for e v e r y measure /x w i t h support on E ,

2 E G

I n dealing w i t h Helson-(~) sets, ~ < 1, we shall in this paper often m a k e t h e technical assumption, t h a t for e v e r y ~ E M ( E ) , /x # O, we can in fact f i n d Z r ~, such t h a t I~(X) l > aII/zftM(s) - N o t a t i o n a l l y this a s s m n p t i o n m e a n s t h a t we can avoid certain e-quantities, a n d conceptually it means, a t most, t h a t we consider a Helson-(~) set as a Helson-(a') set, for some ~' < ~.

L e t {X~}f~z be c o m p a c t spaces. We shall d e n o t e t h e i r cartesian p r o d u c t b y X a n d t h e i r disjoint union b y X ' . L e t fltrther fi E C ( X , ) , we shall define functions f E C ( X ) a n d f ' E C I X ' ) b y rasp.

I(x) = f(x x, x., . . . . , Xn) = fl(zl)f2(x2) . . . f,,(X,) (I.1.2) a n d

f ' l x , = f f . (1.1.3)

W e shall denote b y

(i) ] - [ (X) t h e set o f all functions fi E C(Xi)x for all i.

f E C(X) d e f i n e d b y (1.1.2), such t h a t (ii) g ( X ) t h e projective tensor p r o d u c t C(X1) ~ C(Xe) ~) . . . ~) C(X,,) [S].

V(X) is a semi-simple B a n a c h algebra w i t h m a x i m a l ideal space X, a n d every e l e m e n t F E V(X), has a representation

~ i

F@) = ~ a~t~(z), t~ e

]-[ (X), Ia~l < llFllv~x~ + ~.

k = l k = l

I t is well-known t h a t convex linear combinations of S ( X ) are dense in C(X)I, so t h a t in t h e above representation we m a y in fact assume fn E ] - [ (X), Ifif ---- 1.

A n algebra isomorphic to Some V(X) will be called a tensor algebra.

The dual space of V(X) will be d e n o t e d B M ( X ) , a n d is canonically identified

= X

w i t h t h e space o f continuous e-linear forms on ]-[i=~ C ( i ) . An element of B M ( X ) will he called a m u l t i m e a s u r e of order n, a m u l t i m e a s u r e o f order 2 is called a bi- measure. F o r A E B M ( X ) , we have IIAIIBM = s u p { [ A ( / ) [ t / E ~ - / ( X ) } , a n d we should like t o p o i n t out, t h a t in c o n t r a s t to the similar case for measures, we can n o t t u r n t h e sup i n t o a m a x bY going over to Borel functions.

L e t A E B M ( X ) , a n d let f j E C ( X j ) , 1 < j < _ < n , j : / : i . The functional on C(X~), t a k i ~ g ~ E C(X~) into (f~ | f~ | . . . . | fi_~ Q q~ | fi+~ | .... | f,,), is t h e n linear a n d b o u n d e d a n d is b y t h e Riesz representation t h e o r e m given b y a measure on Xi which w e s h a l l denote b y A~(fl | 9 9 9 ~ _ j | fi+i | 9 9 9 | f~). I t is clear t h a t

liA,<fx | . . . . | f , - , | f,+~ | . . - | f=)[[MtX,) ~ [tA[IB~" [Ifx[loo.-. [[f,,[[~ -

(4)

110 STEN ~:AIJSEI~

We have thus interpreted A as an ( n - 1)-linear operator into M(X~). I n the same w a y we can consider A as a multilinear operator from the products of a n y of the C(X)'s into the multimeasure space over the rest. I t is clear t h a t all these operators have the same norm, n a m e l y

IIAIIBM.

Let now A E B M ( X ) , let fi C C(Xd,, and define f E C(X) b y (1.1.2). We shall denote

2,(f) ---- A~(fl | .. 9 | fi_l @ f,+l | 9 .. | f.) 9 (1.1.4) Since we m a y consider each X~ as a subspaoe of X', we m a y also consider ~he

~,'s as (mutually singular) measures on X', and we can therefore define 2'(f) e M ( X ' ) b y

~.'(f) = 21(t) 4- ~,~(I) + . . . + 2 , , ( f ) . ( 1 . 1 . 5 ) VVe also observe t h a t since we have for each Xi II~i(f)llM(Xl)_< llAIIBM we have

IIZ(t)ilM<x,) < n llAli,mx).

I t is also obvious, b u t nevertheless important, t h a t BM(X) is a module over each C(X~) if we define the multiplication as follows: Let A E BM(X) a n d let ei E C(Xd, we define eiA, b y

(e~A)(fl | | J~ | . . , | f , ) = A ( f l | | e,f, | . . . | f~), A e O(Xj),

l < _ j < n . (1.1.6}

Clearly we have then Ile~AI[BM ~< [Ie~I[~ " [IAllBM-

The simplest example of a closed subset E of a group G, for which A ( E ) is a tensor algebra is the following:

L e t E i c Gi be Helson-(~i) sets, and let E = l - [ E l , then A(E) = A ( " ~ G~)/I(E), is a tensor algebra, and for every f in A ( E ) we have

tlflIv(E) ~ [ ~ ~ " HflIA(E) "

The above example works however only in product groups; and the importance o f the theorem of Varopoulos lies in the fact t h a t it does not, require the group to be a product. 'On the other h a n d it does require a ~>product seb> in a n arbitrary group, and such a thing is found in the following way.

L e t {K~}~ ~ be a set of closed subsets of a compact abelian group G, denoting their cartesian product b y K, we have K ---- ]-[ K~ c ]--[ G = G ~. L e t further s be the group addition map taking the point (gv g2 . . . g~) C G" to ~he point g l + g ~ + . . . - t - g n C G . The image of the set K under the. map s is usually called t h e s u m of the sets Kf, and we shall denote it b y ~ K ~ . The map s is a continuous group h o m o m o r p h i s m , and induces a map ~ from G into G ~ = G'.

B y restriction, the set of functions GlzK~ is mapped into a subse~ of the set o f

^ ,

funetioI~s G IK- Exte~ading ~ by lineari*y ~ e have a map, which w e shall also,

(5)

~ E P R E S E N T A T I O N S O ~ T E N S O ~ G E B R A S A S Q J ~ O T I N N T S O ~ G ~ O U r A L G E B R A S 111

denote by ~ of A ( ~ K ~ ) i n t o A(K). Identifying A ( ~ Kd with its image u n d e r in A(K), we m a y consider A ( ~ Ki) as the space Ao(K ) of all functions f in A(K), which have an expansion

f(ic) = ~ a,z,(ic), ~

ia, l < ~ , k = (ICl, I c e , - . . , Ic~), (1.1.7) and with )/i E s(G). ~ is the diagonal imbedding of G into G ~, and is of co~rse the set of all characters Z in G~, for which

z ( I c ) = z(Ic~ + Ic~ + - - 9 + Ic~), Ic = ( I c . Ic2,- 9 9 Ic~) 9

The natural embedding of A~(K) into A(K) is of course normdeereasing. We have further

A(K) : A ( K ~ • 2 1 5 2 1 5 =-

= A(K~) ~ A(K2) ~ . . . Q A ( K , ) c c(g~) ~ C(K2) Q . . . Q C(K~) = V(K) and .this gives a natural normdecreasing injection of A(K) into V(K). We shall denote b y T the composite of ~ and this natural i~jeetion. T is t h e n a norm- decreasing injective algebra homomorphism of A ( ~ Ki) into V(K), or equivalently of A~(K) into V(K).

2. To prove our main results we shall need the following two theorems from the mer t h e o r y of tensor algebras. These theorems will be proved in the next two sections.

THI~ORE~ 1.1. For every natural number n > 1, there exists a continuous real- valued function e,(x, y), 0 < x < 1, 0 < y ~ 2n, such that sn(O, O) = O, e,(x, y) is concave and increasing in each variable, and having also the following property:

Let {Xi}i~ 1 be compact spaces, and let X and X" be rasp. their cartesian product and disjoint union. Let A e BM(X), IIAll = 1, let f~, g~ ~ C(Xdl, be such that

B e { A ( f ) } > 1 - - x (1.2.1)

{ f

~ n - - y , (1.2.2)

X '

where f, g' and 2'(f) are defined by resp. (1,1.2), (1.1.3) and (1.1.5). Defining now also g by (1.1.2), we have

]1 - - A(g)] <

an(x, y).

(1.2.3)

T~EOnEM 1.2. For every natural number n > 2, there exists a continuous real- valued function %(y), 0 < y, with ~ ( 0 ) ~-- O, and having the following property:

X "

Let { ~}~=~ be compact spaces, let T be a locally compact space and let u be a positive measure on T with

]]Ul]M(T) __< 1 + y . (1.2.4)

(6)

112 S T E N K A I J S E I %

Let further f i ( x , t) E C(X, • T)I , resp. (1.1.2) and (1.1.3), and let

Writing now

we have F E V(X),

define f E C ( X •

f d r q x ' t)du(t) \ , = l x ,

T

F ( x ) = i., [ f(x, t)du(t)

IIFll~ < 1 -~ y, and

1tl - - Fl[v <_ ~ ( y ) .

and f ' E C ( X ' • T ) by

(1.2.5)

(1.2.6)

3. Using T h e o r e m 1.1 we shall n o w s t a t e a n d p r o v e T h e o r e m A in a slightly m o r e precise f o r m as follows.

T~EOREM 1.3. Let (5, 0 < (5 < 1, be a real number. For every natural number n ~_ 2, there exists a real number fi, > O, such that i f {K~}i~l are disjoint compact subsets of a compact abelian group G, and i f U Ki is a Helson-(1 - - f i ) set, fl < fin, then the m a p

T : A ( ~ K , ) - * V(K) is a topological isomorphism, and lIT-l]] < (3-1.

Proof. W e f i r s t define fi= in t e r m s of t h e f u n c t i o n en(','), b y t h e r e l a t i o n 1 - - e,(O, nfln) = d. Since we f u r t h e r assume fl < ft,, we can t h e n choose e > O, such t h a t

1 - - en(e, n(fl ~- e)) = 5 . (1.3.1) L e t n o w A E B M ( K ) ,

[]A[]BM

: 1. T o p r o v e t h e t h e o r e m it suffices b y well- k n o w n d u a l i t y a r g u m e n t s to p r o v e t h a t

t[T'(A)IIPM(ZKi) >-- 5 , a n d this m e a n s t h a t we m u s t f i n d a c h a r a c t e r Z in

[A(Z)I > a .

s(G), such t h a t

(1.3.2)

(1.3.3) L e t e > 0 be t h e e d e f i n e d b y (1.3.1). B y t h e d e f i n i t i o n of n o r m in B M ( K ) we can t h e n f i n d functions fi E C(K~), such t h a t

A ( t ) = ~ e { A ( t t } > 1 - ~ ,

(7)

I ~ E : P R E S E I g T A T I O N S O:F TENSOI% A L G E B R A S A S Q U O T I E N T S O F GI%OIJF A L G E B I ~ A S 1 1 3

where we h a v e d e f i n e d f b y (1.1.2). L e t n o w 2'(f) 6 M ( U Ki) = M(K') be t h e measure d e f i n e d b y (1.1.5), a n d let f ' 6 c ( u K d = C(K') be d e f i n e d b y (1.1.3).

Since we n o w huve b y definition

f f'dA'(f) = nA(f) > n(1 -- e), (1.3.5) uK~

a n d since [!f'll~ --< 1, We h a v e II),'([)IIM(UKI ) ~ n(1 -- e). B y the a s s u m p t i o n on the set U K , we can n o w f i n d a character Z 6 G, such t h a t

l f zdZ'(f) I > (l -- fi)Ill'(t)l[ > n -- n(fl + e) .

(1.3.6)

OK i

L e t e -~~ be t h e a r g u m e n t of t h e integral in (1.3.6), a n d p u t gl ~-e~OZ[K~.

We have t h e n g~ 6 C(K d a n d we define g a n d g' b y (1.1.2) a n d (1.1.3). B u t this implies t h e n t h a t

g~{ f g'dX'(t) }= P~e{e'~ f zdx'(t)}----[f zdX'(t)i > n-- n(~ + ~ ) .

(1.3.7)

B y (1.3.4), (I.3.7) a n d T h e o r e m 1.1 we h a v e t h e n I1 - - A ( g ) l < e.(e, n(/3 @ e)) = 1 - - d ,

a n d therefore IA(g)l > ~. B u t we have also IA(g)] = [ei"~ = IA(z)], a n d therefcre /A(z)/ >_ b, a n d this proves t h e theorem.

w 2. T w o m e t r i c l e m m a s

1. To prove Theorem 1.1 we shall need two lemmas. The first l e m m a is the k e y l e m m a of the proof. I t is an i n e q u a l i t y for bimeasures, which follows from a more general i n e q u a l i t y valid in complex Le-spaces, 1 < p < 2. The second l e m m a is simply a eonvenient q u a n t i t a t i v e version of t h e qualitative s t a t e m e n t , t h a t for every # in M(K), the function g in the u n i t ball of L~(I#]), for which

fgd~

= I1~11, is unique as an element of L~(I#]).

LEMMA 2.1. Let X 1 and X 2 be compact Hausdorff spaces, let A 6 B M ( X I X X 2 ) , and let e~ 6 C(X1), i = 1, 2, be such that sup~ex,{[el(x)] + /2(x)[} _< 1. Let further eiA 6 BM(X), be the bimeasure defined by (eiA)(f @ g) ~ A(eif @ g), f 6 C(X1), g e C(X~).

Then

IIAII~M >--[lelA[k~.M + ~

4

Ile2AII~M

(8)

1 1 4 S ~ E N tg:AI J S E I ~

The proof of Lemma 2.1 is based on the following general inequality.

PROeOSlTIOZ~ 2.2.

Let i~ be a 10ositive measure on a locally compact Hausdorff space X , and let f and g belong to Lv(#), then the following inequalities hold."

if 1 0 ~ 1, then

2:e 2~

2-~ llf -4- e~~ gil:dO

>~ 2-~ [ I[f!l~ -4-

e~~ :dO

(2.1.1)

o 0

I f

1 < p < 2 ,

then

(1?

2~

[If + e~~ dO >-- Jlf]l~ + ~i )]glib.

0

(2.1.2)

Note

1. In the case

is ~rue, and is of course elementary.

_Note

2. For all 10>~1, we have

2,~

sup IIf @

e'~ _ > 2~ IIf -~ e~~ dO

0

p ~ 2, a stronger inequality with 4/.~2 replaced b y 1

(2.1.3)

In a pplieatioI1 we shall often need to combine (2.1.3) witll the inequMities (2.1.1) or (2.1.2) above.

Proof of the proposition.

We s~art by observing that for arbitrary complex numbers a, b, we always have

and

2:v 2~

2Z4 ~ Ilal + e~~

0 0

(2.1.4)

if

~2V

if

2~ [ [ a / + e ' ~ ~ [J~l+e~~

o 0

(2.1.~)

> _ - (lal+e'~lbl)dO

= I a l + ~ Ibl

7g 0

4

\:12

= : a l ' + ~: Ib:•) .

We now prove (2.1.1).

Usi~g the definitio:~ of lterm, Fubi;:i's ~,hcorem a:td (2.1.4) we have

(9)

R E P r E S E N T a T I O N S O E T E N S O ~ A L G E B R A S A S Q U O T I E N T S O F G R O U P A L G E B R A S 115

2xr 2 ~

if , f f

2~ IIf + e'~ dO = -~ If + e'~gldtt dO =

0 0 X

2 ~ 2 ~

I 1

X o X 0

Now using Fubini's theorem again, then the triangle inequality, and then again the definition of norm, we have

2 z 2~

f l f -~u tifl + d~ = -~x l f f llfl -I- d~ >_

X 0 0 X

2z. 2~v

if

dO

= ~ l]If]l~ +

e'~ dO.

O

l ! / :

--> ~ (If] +

e'~ *

This proves (2.1.1).

Before proving (2.1.2), we observe, t h a t if p > 1, then by tI61der's inequality, (2.1.4) and (2.1.5), we have

2 ~ 2:v

12~ [a + e%FdO_> ~ [a + e%IdO _> [al 2 + -~ Ibl S

(2,I.6)

0 0

We now prove (2.1.2). Using the definition of norm, and Fubini's theorem, we have

2~: 2 ~

9 ~ 2/e

0 0 X

2.~ (2.1.7)

1 ~2/p

X 0

Applying (2.1.6) and Minkowski's inequality (observe t h a t

p/2 <

1), we have

~:rg

(f f

X 0

~ 2 lp

If + d~ dO dlx)

X

>-

. Ifl ~ + ~ 5gl ~) ~ ) >

X

4 \2/p

X

which is by definition [[fll~ +

(4/~)llgll~,

and so (2.1.2) is proved.

(10)

116 S T E N K A I J S E R

Proof of Lemma

2.1. W e f i r s t observe t h a t it follows i m m e d i a t e l y f r o m P r o 13osition 2.2, t h a t if /~, v E M ( X ) , t h e n

m a x I1# +

e'%il ~

II#ll 2 + ~ II~ll 2 9

0 _ < o E 2 a

W e consider A as an o p e r a t o r f r o m

C(X~)

into

M(X2).

n o t a t i o n s we h a v e t h e n o b v i o u s l y

IIAIIBM =-

sup

llA2(f)liM(xO

IIe~AIIBM =

sup

][A~(e~f)llM(XO f e

C(X1)

tIe~AII~M

= sup

I]A2(Qf)I!M(X~)

N o w let s be a positive n u m b e r . W e can f i n d fl C C(X1),

][A2(e~fi)llM(XO >_ ]Ie~AI].M- e.

B y l i n e a r i t y , a n d b y (2.1.8) we h a v e n o w

m a x

I[A2(effl + io

e

e2f2)llM(X, ) ~ =

m a x

[[A2(effl ) 4- io e Ae(eJ,2)lIi(x~ ) > 2

0_<o_<2:r

4 4

> llA2(elfl)l] 2 4- ~ HA2(eJ2)H 2 > (I[e~AIIBM - s) 2 4- ~

(][e2A[IBM - - e) ~ 9

(2.].s)

Using our s t a n d a r d

(2.].9)

such t h a t

Since s is a r b i t r a r y , a n d since Ilelfl

@ e~%2fi.tl~ ~__ 1,

t h e l e m m a follows.

2. I n t h e p r o o f of t h e t h e o r e m , we shall also n e e d t h e following lemma.

L~MMA 2.3.

Let a, b be positive numbers, and let X be a compact Hausdorff space. Let further # E M ( X ) , f, g c L| be such that

I1~11~1, f i l l ~ l , []g/l~l

and geffd# fgd.

then

( f I f - - g ] d ] t t O e ~ f ]f -- gied]t t] ~

2 ( % f f a 4 - %ffb)e.

(2.2.1) (2.2.2)

#

Proof.

W r i t e # = F . j#], IF[ = 1 a.e. (]#l).

]~eplaei~g t h e n f a n d g b y J'~, g~, a n d # b y f#l, we see t h a t we m a y assume t o be positive.

W e n o w w r i t e

f --- A + if2, g = g14- ig2 ; fi, gi

real. (2.2.3) W e h a v e t h e n

(11)

I~EP:RESENTATIONS OF TENSOI~, ALGF.Btl, AS AS Q U O T I E N T S OF G R O U P A L G E B R A S 1 1 7

fLd.>l-a, fgld.>,--b (2.2.4)

a n d therefore

f

f ~ d # >

( f ) '

f , d # > _ ( l - - a ) ~_> 1 - - 2 a , b u t t h e n

f <,' + < f (, - :;> ~, <

1 -- (1 --

2a) = 2a,

N O } V

f g~ d~ > 1 -- 2b (2.2.5)

f g~ d# ~ 2b

(2.2.6)

_< f (, - ~ a - e,>+ = ~ .

(2.2.7)

Writing this in terms of real a n d i m a g i n a r y parts, we have

= f (, - ~<:,., +:,.,>>~. = ~ f

(I - - f l @" f l ( 1 - - ~'1) - - f 2 ~ 2 ) d / ~ -

Using (2.2.4) we h a v e n o w

A < 2 (a @ b + f f2g2 d~ ),

a n d finally b y Schwarz's i n e q u a l i t y a n d (2.2.6),

< 2(a + b + (2a. 2b) 1/2) = 2 ( V / a + V / b ) ~ . This proves the lemma.

w 3. Two metric theorems

1. We shall n o w first prove Theorem 1.1. To do this we shall first prove t h e special case n = 2, a n d we shall t h e n prove t h e general ease b y i n d u c t i o n on n.

Proof of special case.

We shall prove t h a t t h e function

~2(x, s) = VTv + ~(2. + v/T. + ~/Yv)l/2

satisfies the conditions of t h e theorem, a n d we s t a r t b y observing t h a t it is d e a r l y increasing a n d concave.

We n e x t observe t h a t since 1121(l)[IM(x 0 < 1, we clearly h a v e b o t h

t ~ e { / g l d & ( f ) } > l - - y

a n d

I~e{fgfl,~2(f)}>l-y.

(3.1.1)

XI X2

(12)

118 STE?r KAIJSE~

B y linearity we have n o w

A(g) ---- A(g~ | g2) = A((f~ § g~ -- fl) | g2) = A(f~ | g2) -- A((f~ - - gl) | g2) (3.1.2) a n d therefore

ll -- A(g)I _< ]1 - - A(f~ | g2)] § i A ( ( f l - - gl) @

gu)/=

A @ B . (3.1.3) :By definition of n o r m we h a v e n o w [A(f~ | g2)l <-- 1, a n d b y (3.1.1) we h a v e I~e {A(fl | g2)} >~ 1 -- y, a n d this implies t h a t A < ~ y y .

I t remains to prove that B _< ~(2x -b % / 2 x + %/~y)~/2, a n d towards this we firs~ observe t h a t

~ e { f fldAl(I)} = R e { A ( f ) } ~ l - - (3.1.4) X~

:By (3.1.1), (3.1.4) a n d L e m m a 2.3 we h a v e ~herefore

f lA - g1Id[21(f)[ ~< ~ 2 x - ~ %/~-y. (3.1.5)

X~

L e t us write e 2 = If: - - g11/2, a n d e: = 1 -- % W e h a v e t h e n

{/ } 1/

g ~ { ( r | = g e (1 - - ~z)f~dXl(f) _> 1 - - x - - ~ Ill - - a l d l & ( t ) l >

X~ X~

1 (3.1.6)

1 - - x - - ~ ( V - ~ x q- @ T y ) > HelAI]BM.

B y L e m m a 2.1 we have f u r t h e r

IleaAIlsM <_ ~ 1 - - 1--

4

][qAII ~ + ~ lle2All 2 < 1, a n d therefore

~ (2X ~- ~-~X -]- V ~ y ) 1/2 Y~

F i n a l l y we have now, d e n o t i s g h = sign (fl -- gl),

B = IA((fl - - gl) @ g2)[ = [2A(e~ h | g2)[ = 2l(e2A)(h Q g2)[

a n d this proves t h e special case n = 2.

(3.1.7)

(3.1.8)

(13)

R E P R E S E N T A T I O N S O F T N N S O ~ A L G E B R A S A S Q ~ O T I N N T N OF G ~ O U P A L G E B R A S 119

2. T h e general case.

T h e p r o o f is b y i n d u c t i o n . W e d e f i n e el(x, y) = y, a n d we t a k e f o r e2(x, y) t h e f u n c t i o n d e f i n e d a b o v e . W e n o w a s s u m e sk(x, y), 1 < / c < n - - 1 c o n s t r u c t e d , a n d we shall c o n s t r u c t edx, y). L e t t h e r e f o r e A ~. B M ( X ) b e a m u l t i m e a s u r e of o r d e r n, a n d let f , ff ~ ] ~ ( X ) , s a t i s f y t h e a s s u m p t i o n s of t h e t h e o r e m . W e ~ i t e f = f l @ f2 | fa | 9 9 9 | f - , g = gl | g~ | ga | 9 9 9 | g~, a n d we use t h e f a c t

t h a t a m u l t i m e a s m ' e m a y b e c o n s i d e r e d as a n o p e r a t o r f r o m a p r o d u c t of s o m e o f t h e C ( X ) spaces i n t o t h e m u l t i m e a s ~ r e s p a c e o v e r t h e rest, w h i c h is a m u l t i m e a s u r e s p a c e of lower order. This m e a n s t h a t we m a y use t h e i n d u c t i o n h y p o t h e s i s t o r e p l a c e a n y k, k < n - - 1, o f t h e f ' s b y

i r e ( A ( f l | f~ | g~ | g4 @ 9 9 9 Re {Atfi | g~ | g3 | g4 | . . . l~e (A(g I | f2 | ga | g4 | 9 9 9

g's. D o i n g this we h a v e e.g.

@ g,0} > 1 - - e~_~(x, y ) .

(3.2.1)

B u t n o w A(~ @ ~ o @ g a @ g 4 | @ g , ) , q~EC(X~), ~ f E C ( X ~ ) , is a bi- m e a s t u ' e in B M ( X 1 X X2), a n d we use t h e special case p r o v e d a b o v e to conclude t h a t

LA(G)I > 1 - - e2(G_2(x , y), 2 G _ l ( x , y ) ) . (3.2.2) W e define ghus e~(x, y) = s2(e,_2(x, y), 2e,~_l(x, y)), a n d t h i s c o m p l e t e s t h e p r o o f o f T h e o r e m 1.1. I t is e a s y t o v e r i f y t h a t s~(x,y) is c o n c a v e a n d increasing.

3. I n t h e p r o o f of T h e o r e m 1.2 a n essential role is p l a y e d b y a r e s u l t o f B o h n e n b l n s t a n d K arlin ( P r o p o s i t i o n 3.1 below). T o s t a t e t h i s r e s u l t we shall n e e d s o m e n o t a t i o n s ,

L e t A be a B a n a c h a l g e b r a w i t h u n i t e l e m e n t 1, a n d d u a l s p a c e A ' . W e shall define a c o n v e x set D A C A ' , b y

a n d

D A = { f e A ' [ f ( i ) = l, HfllA'~ 1}. (3.3.1) L e t f u r t h e r a E A, we shall t h e n w r i t e

V(a) ~ {z e C l z ~ f(a), f e D~} ,

(3.3.2)

v(a) =: s u p Izl, z E V(a) . (3.3.3)

V(a) is called t h e n u m e r i c a l r a n g e a n d v(a) t h e n u m e r i c a l r a d i u s o f t h e e l e m e n t a E A. T h e r e s u l t t h a t we shall n e e d is t h e following

PROPOSlTrOX 3.1. [2] Let A be a B a n a c h algebra w i t h u n i t 1, and let a E A , then llaIIA ~ e . v(a).

(14)

1 2 0 s:rEI~ K A I J S E R

P r o o f of Theorem 1.2. To see t h a t F C V we first observe t h a t for all t C T we h a v e t r i v i a l l y f E V, ][f]]7 < 1. W e n e x t use t h e fact t h a t t h e f u n c t i o n t ---~-f(x, t) is a c o n t i n u o u s f u n c t i o n f r o m T t o V. T h e r e f o r e t h e integral is well-defined a n d t a k e s its v a l u e in V. F i n a l l y we h a v e

HFHv ~_ f [If(x, t)llTdu(t ) ~_ 1 -[- y . (3.3.4)

T

F o r t h e second p a r t of t h e t h e o r e m we shall p r o v e t h a t for a n y f u n c t i o n e~(x, y) satisfying t h e conditions o f T h e o r e m 1.1, t h e f u n c t i o n Vn(y), d e f i n e d b y

~(y) = e. y + (1 + y)~o o, ~ (3.3.5)

satisfies t h e conditions of T h e o r e m 2. T o do this it suffices b y p r o p o s i t i o n 3.1 t o p r o v e t h a t

v ( 1 - - F ) < y + ( 1 - ~ y ) e , O, , (3.3.6) w h e r e v ( i - F ) d e n o t e s t h e n u m e r i c a l radius.

T o w a r d s this, let A E D v a n d let t h e (probability) measures 2~ --~ 2~(1) a n d 2' be d e f i n e d b y (1.1.4) a n d (1.1.5). W e h a v e n o w

[A(i - - F)] z [1 - - A ( F ) I : ]-- y -~ (1 ~- y - - A ( F ) ) I (3.3.7)

I I I

= i - y + (i - A(f(~, t))du(t/ < y + I1 - A(f(x, t))Idu(t/.

I

T T

Comparing t h e final t e r m in (3.3.7) w i t h t h e r i g h t h a n d t e r m in (3.3.6) we see t h a t it suffices to p r o v e t h a t

f

1 -~ y ]1 - - A ( f ( x , t))ldu(t ) < ~ O, . (3.3.8)

T

Let, n o w t E T. W e shall write

n - - y ( t ) ~

~e[fr'(x't)d~(x')}~,

, , (3.3.9)

X '

a n d we h a v e t h e n

i l - - A ( f ( x , t))[ _~ sn(0, y ( t ) ) . N o w b y (1.2.5) a n d F u b i n i ' s t h e o r e m we h a v e also

(3.3.10)

(15)

R E P R E S E N T A T I O N S O F T E N S O R A L G E B R A S AS Q U O T I E N T S O F G R O U P A L G E B R A S 121

fv(t)du(t)=fnd. (t,-- e{f

T T T X "

= n(1 4 - y ) - -

f,

= n + n y - n = n y .

X "

(3.3.11)

Since the function e~(O, y) is concave we h a v e b y J e n s e n ' s inequality (turned upside down)

1 + y [1 -- A ( f ( x , t)lldu(t ) < 1 + y

T T

e~ O, l @ y y(t)du(t) = s, O, i ~ y '

T

(3.a.12)

and this proves the ~heorem.

Remark." I n the case n = 2, one can using Grothendieck's ~)fundamental theorem~y prove t h a t the function V2(Y) ---- 15y satisfies the conditions of the theorem.

As an i m m e d i a t e consequence of Theorem 2, we have the following

COROLLARY 3.1. Let {X~}~I be compact spaces and let X and X ' be as above.

Let for each i, gi E S ( X 0, i.e. gi E C ( X d and Ig~l = 1, and define the functions g C C(X) and g' E C ( X ' ) by (1.1.2) and (1.1.3). Let T be a locally compact space and let u be a positive measure on T with HuH <_ 1 @ y. Let further for each i, f i E C ( X i x T h and let f and f ' be as above, and let

f f ' ( x ' , t)du(t) = g'(x') .

J T

Writing now F(x) =

f , f(x, t)du(t)

we have F E V, llF]lT < 1 - t - y and ] [ g - - F H <_ ~,,(y).

Proof. W e shall define functions hi E C(X~ • T) b y hi(xl, t) = g(x~)fi(xi, t).

Defining t h e n h, h', and H b y resp. (1.1.2), (1.1.3) and (1.2.6) we h a v e b y T h e o r e m 1.2.

H E V, J]H][ v_< 1 q - y and I [ 1 - - H [ l _ < ~ , ( y ) . B u t we h a v e also g - - g ' l , F - - - - g . H , a n d IIg/]v<-- 1, IIF[] _< []g]I" !]HH --< 1 @ y and l[g - F]I --< ]]g[[" [[1 -- HI] < ~7,(Y).

(3.3.13) and therefore

(16)

122 S T E ~ KAIJSEI%

COI~OLLAI~Y 3.2. Let {Xi}~_ 1 be compact spaces, and let F E V(X) ll~ll. < 1 , I!1 - FII~ < y ,

then II1 -- l i l y <-- lO~?~(y) .

be such that (3.3.14)

w 4. Helson sets in Dq

1. The group Dq is the preduct, as a group and as a topological space, of a denumerably infinite number of compact abelian groups isomorphic to Z(q), the

/ x

cyclic group of order q. The dual group Dq, is the sum of the corresponding dual groups. Dq is compact metrizable and totally disconnected, and ~ is discrete and denumerably infinite [7].

I n w 1 a closed subset E of a compact abelian group G was called a K~-set if GIE = St(E). I t is easy to see t h a t the group Dq contains K~-sets, and it was observed b y Varopoulos, t h a t if {K~}'~=I are closed subsets of Dq, and if U K~

is a Kq-set, then A ( ~ Kd is a tensor algebra. OR the other trend the gro~Ip Dq does not contain tIelson-(~)-sets, for c~ arbitrarily close to 1, so Theorem 1.1 e a r not in general be used to provide weak conditions oR a set {K~}~=I of subsets, ensuring A ( ~ Ki) to be a tensor algebra. Nevertheless it seems reasonable, in the light of Theorem 1.1 to conjecture t h a t if U Kf is almost a Kq-set then A ( ~ Ki) is a tensor algebra. In the next paragraph we shall prove this in the ease n = 2, i.e. A ( K 1 + K J is a tensor algebra if K 1 U K2 is almost a K~-set. I n the proof of this result an important role is played b y functions with fq = 1, in fact we shall have to assume t h a t the characters are sufficiently dense in the appropriate metric sense in S~(K 1 U J~TJ. This assumption is however not used in the definition of the ttelson constant, and we shall therefore consider also another type of Kelson- constant, which is more suitable for our purposes, and is conceptually more natural for subsets of D~. We then s t u d y the relations, between the two concepts, and we shall prove t h a t t h e y are essentially equivalent.

2. We shall presently consider subsets E of the group Dq t h a t are either Kq-sets or ]-Ielson-sets. I n these considerations an essential role is played by the groups S~(E) and its subgroup #q]F. To see the nature of this role we shall however first consider a more general problem. We shall need some definitions and notations.

Let K be a compact metrizable Hausdorff space, and let P be a compact convex set, containing 0, in the complex plane. We shall denote by ~P(K) the set of all functions f in C(K) with f ( K ) C P, and by P'(K) the set of Borel functions with f ( K ) c:: P. P(K) is a bounded convex subset of C(K). To avoid triviMities we assume t h a t P contains some point outside 0, and it is easy to see t h a t then, every function in C(K) can be represented b y a finite linear combination of functions

(17)

R E P R E S E N T A T I O N S O F T E N S O R A L G E B R A S A S Q U O T I E N T S O F G R O U P A ~ G E B ~ A S 123

f r o m

P(K).

W e can t h e r e f o r e define an e q u i v a l e n t n o r m in

C(K),

which we shall call t h e

P-norm,

as follows

J[f[[~ = i n f ~ ]akl o v e r all r e p r e s e n t a t i o n s

f - - ~ akfi, f i e P(K).

(4.2.1) W e shall d e n o t e t h e space

C(K),

w h e n g i v e n t h e P - n o r m b y

Cp(K).

T h e n o r m - d u a l of

Cp(K)

will be d e n o t e d

Mp(K),

a n d is t h e u s u a l space

M(K),

w i t h n o r m given b y

II~!L. = sup [ f f ~l~ l , f c P(K ) .

(4.2.2) W e shall l a t e r consider m a i n l y the cases, w h e n P is a set Pq = t h e c o n v e x hull of t h e qth roots o f u n i t y , a n d w h e n P is t h e refit interval. W e also observe t h a t t h e P - n o r m obtained, w h e n P is t h e u n i t disc, is t h e usual sup n o r m in

C(K)

resp. t h e u s u a l t o t a l mass n o r m in

M(K).

F o r a c o n v e x set E o f c o m p l e x n u m b e r s we shall d e n o t e t h e radius of t h e set b y

r(E),

i.e.

r(E) =

sup Iz[, z e E, a n d we shall d e n o t e t h e p e r i m e t e r b y

p(E).

F o r a b o u n d e d c o n v e x set c o n t a i n i n g 0, we h a v e 2r(E) _~

p(E) ~_ 2~. r(E).

F o r n o r m a l i z a t i o n of t h e base set

P, we

shall assume t h a t 1 e P , a n d t h a t

r(P) ~ 1.

D e n o t i n g t h e u n i t i n t e r v a l b y I , a~ld t h e u n i t disc b y D, we assume t h u s I ~ P c D . T h e s e a s s u m p t i o n s i m p l y t h a t t h e P - n o r m of a m e a s u r e is a t m o s t t h e t o t a l mass, a n d t h a t t h e P - n o r m o f a positive m e a s u r e is t h e t o t a l mass.

A nat~tral s t a r t i n g - p o i n t for i n v e s t i g a t i o n s on P - n o r m s is t h e following fact, wcl]-kno~vn in t h e t h e o r y of c o n v e x sets.

L e t C a n d D be c o n v e x sets in t h e plane, a n d let E be t h e sum-set E = C + D . T h e n E is a c o n v e x set, a n d

p ( E ) : p ( C ) -~ p ( D ) .

(4.2.3)

T h e i d e n t i t y (4.2.3) is i m p l i c i t l y c o n t a i n e d in some m o r e general f o r m u l a s in e.g. B o n n e s e n - - F e n c h e l [1], a n d is obvious on i n s p e c t i o n w h e n C a n d D are polygons. F i n a l l y a n ~nalytic p r o o f of (4.2.3) can be b a s e d on a i b r m n l a of Cauchy, showing t h e p e r i m e t e r of a c o n v e x set t o be a linear f u n c t i o n of t h e w i d t h of t h e set.

This f o r m u l a can be w r i t t e n e.g. as follows [see 1, p. 48]

2 z

if

p(C)

~ ~- [ sup

(x. u) --

inf ( y . u) ]

dO,

(4.2.4)

~ E C y E C

0

u : (cos

O,

sin 0), ( x - u ) t h e usual i n n e r p r o d u c t in 1t ~.

F o r m u l a (4.2.4) clearly shows t h e a d d i t i v i t y o f t h e p e r i m e t e r . W e observe also t h a t t h e radius is s u b a d d i t i v e u n d e r a d d i t i o n of c o n v e x sets, so t h a t if E = C -~ D, t h e n

r(E) <_ r(C) + r(D) .

(4.2.5)

(18)

] 2 4 S T E N X ( A I J S ] ~ I ~

W e n o w i n t r o d u c e some notions, t h a t will be used t h r o u g h o u t this w L e t P be a c o m p a c t c o n v e x set c o n t a i n i n g 0 in t h e c o m p l e x plane. L e t a b3 a c o m p l e x n u m b e r , we shall w r i t e

a P = {w l w = az, z E P } . (4.2.6)

a '~

L e t n o w a --~ { ~}~=~ be a set of c o m p l e x n u m b e r s . T h e P - r a n g e o f a is t h e set Qp(a) = ~ (akP) = {z [ z = ~ akzk, zk e P } . (4.2.7)

k = l k ~ l

I t is obvious t h a t p ( a P ) : [a] . p ( P ) , and it t h e n follows f r o m (4.2.3), t h a t

n

p(Qp(a)) = ( ~ lakl) " p ( P ) . (4.2.8)

k = l

L e t n o w K be ~ c o m p a c t m e t r i z a b l e H a u s d o r f f space, a n d let # E M ( K ) . T h e P-range of # is t h e set

Qp(#) = r { z l or e q u i v a l e n t l y

~= f fd~, f eP(K)},

K

(4.2.9)

Q.(~)={z z--ffd~, fcP'(K)}. (4.2.9')

Qe(#) is t h e c o n t i n u o u s linear image u n d e r #, of t h e bou'nded c o n v e x seC P ( K ) , a n d is t h e r e f o r e b o u n d e d a n d c o n v e x . I t follows m o r e o v e r e.g. f r o m a p a r t i t i o n o f u n i t y a r g u m e n t , t h a t

P(@P(~)) : P ( P ) " [r~[l~(~) 9 (4.2.10)

B y d e f i n i t i o n we h a v e f u r t h e r JI/~Jtp : r(Qp(#)). T h e fact t h a t b o t h t h e P - n o r m a n d t h e usual n o r m can be r e a d off f r o m t h e set Qp(/~), indicates t h e i m p o r t a n c e o f this set for p r o b l e m s on relations b e t w e e n P - n o r m s a n d usual n o r m s .

N o w t h e p e r i m e t e r of a c o n v e x set is a m o n o t o n e f u n c t i o n on t h e set of all c o n v e x sets, so a set of p e r i m e t e r L c a n n o t be c o n t a i n e d in a circle of radius r if r < L/2n, a n d we heJve t h e r e f o r e

P ( P )

[l#I]P ~ ~ - ~ [[/~[[~t(rc)- (4.2.11)

D e n o t i n g b y I F t h e i d e n t i t y m a p of C(K), considered as a m a p f r o m C(K) i n t o Cp(K), we see t h u s t h a t [[Ie][ ~ 2z~/p(P).

L e t n o w P be one o f t h e se~s Pq (resp. t h e u n i t i n t e r v a l I), a n d let us s p e a k of q-norms i n s t e a d o f Pq-norms, a n d of spaces Cq(K), a n d Mq(K), a n d o f ~,he q-~ange Q~(#). W e h a v e in this case p(P~) = 2q. sin (u/q) (resp. 1o(1) == 2), a n d f r o m (4.2.11) we h a v e t h e n

(19)

R E P R E S E N T A T I O N S O F T E N S O R A L G E B R A S A S Q U O T I E N T S O F G R O U P A L G E B R A S 125

2q sin

(n/q)

i]#[!q ~> 27r H#HM(~) (4.2.12)

1

resp., ll#il

~ -I]~ll~(~>.

(4.2.13)

2~

I f t h e set K is totMly disconnected, th~n convex combinations of functions f r o m S~(K) are dense in

Pq(K),

a n d therefore the set Qq(/~) is in fact the closed convex hull of t h e set of all z in C, such t h a t z =

f f d # ,

w i t h f in

Sq(K).

I n particular we have therefore II#]lq ~

r(Qq(#))

= sup

ff@], f e Sq(K).

Combining this w i t h t h e definition of a Kq-set, we see t h a t the Helson c o n s t a n t of a Kq-set is yq = sin

(~/q)/(r~/q).

W h e n P is t h e u n i t interval, we use t h e general principle, t h a t w h a t can almost be done b y continuous functions, can be done b y Borel functions, to conclude the existence of a Borel function ~, which we m a y in fact assume to be i d e m p o t e n t , w i t h I f ~ d#l >--/I#/I~(K)/~.

These results are all well-known, [3, p. 565; 5]. The s t a n d a r d proofs are different, b u t also the more n a t u r a l approach given here is known, see e.g. [5, p. 674].

3. B y v e r y general a r g u m e n t s we h a v e proved t h a t no infinite subset of Dq can h a v e a t t e l s o n c o n s t a n t greater t h a n yq, a n d t h a t on the other h a n d a Kq-set h a s t h e 1-[elson eonsta'nt yq. I f K is a Kq-sct we have in fact

A(K) ~- Cq(K)

canonically, which m e a n s t h a t for e v e r y function f in C(K) resp. e v e r y measure

# in

M(K),

we have

llfllA(~) = Ilfl/q --< 7~111fll~ (4.3.1)

L e t n o w E be a Helson set in D~. T h e I{~lson c o n s t a n t ~(E) of E is d e f i n e d b y comparing n o r m s in

A(E)

a n d n o r m s in

C(E).

B y t h e above we m a y write a(E) = yq(1 - - 7 ) , a n d we h a v e t h e n

Ilf[l~ >- yq(1 - - 7)

"l]fI[4(E),

all

f e C(E),

(4.3.2) resp. H/*I[eM(~) ~> yq(1 --V)[I#][M(E), all # e

M(E).

(4.a.2') I f V is small, t h e n condition (4.3.2') is, in t e r m s of a f i x e d /,, a strong condition if

II#llq/][#llM

is close to yq, while it requires considerably less if I[#][q/][/~/[M is close t o 1. I~ is therefore n a t u r a l to consider i n s t e a d of (4.3.2) a n d (4.3.2') conditions of t h e following t y p e

][fll, >- (1 - - d)ll/llA, all

f e C(E),

( 4 . 3 . 3 ) resp. II/~IIpM ~ (1 - d)l!#l/~, all /~ e

M(E) ,

(4.3.3') a n d we shall m a k e the following definition:

(20)

1 2 6 S T E N K A I J S E I ~

Definition 4.1. Let K

be a I t e l s o n set in

Dq.

W e shall s a y t h a t K is a

H(q, fi) set

if for e v e r y

f C C(K),

we h a v e

[IfIIA(K) <

fi-~llfllq

or e q u i v a l e n t l y , i f for e v e r y # C

M(K)

we h a v e

I t is clear t h a t a

H(q, fl)

set w i t h fi close to 1, is a H e l s o n set w i t h IIelson c o n s t a n t close to yq. W e shall h o w e v e r also p r o v e , a n d this is t h e m a i n r e s u l t o f this section, t h a t a t I e l s o n set, w i t h H e l s o n c o n s t a n t close t o 7q is a

H(q, fl)

set, w i t h fl close to 1.

T h e m a i n step t o w a r d s this is to p r o v e t h e following t h e o r e m .

TI~EOI~EM 4.1.

Let ~ be a positive number, 0 < ~ <

rain (~2/8q2, 1/15),

and let K be a totally disconnected metrizable compact Hausdorff space. Let further ~ c Sg(K) be a family of functions with the following property:

Eor every measure # C M(K), there exists g E ~, with

I

t I sin (=/q) (1 4.3.4)

f g ~ > ~/q

i

I 1

Then: I f ~ = ] . I~1,

that

and f g

f a Borel function with f~ ~- 1, there exists g E ~, such

d# > (1 - 14 ~ ( /q)' 2/3 )II~!I~<K) if q _> 2 (4.3.5) d/, > (1 - - 5~ 2/3) " ]]/~]]M(K) / f q = 2 . (4.3.6)

[

-Remark

1. W i t h o u t loss o f g e n e r a l i t y we assume t h a t t h e f a m i l y ~ is closed u n d e r m u l t i p l i c a t i o n b y qth r o o t h s o f u n i t y (otherwise s i m p l y adjoin all multiples b y qe, r o o t s o f u n i t y ) , a n d we shall u n d e r this condition p r o v e t h a t we can in fact f i n d g C ~, such ~hat

Re ( f g d#) > (1--14(~/q)2/3)llttl1M(K) .

-Remark 2.

T h e o r e m 4.1 is s t a t e d a n d shall be p r o v e d w i t h o u t using t h e con- cepts of q-norms. I n t h e following proof, t h e n o r m o f a m e a s u r e will always be t h e t o t a l mass n o r m .

.Remark 3. I f ~ ~-- z2/Sq 2,

t h e n (1 - - ~)7q ~ (1 - - 14(~/q)2/3), a n d this shows t h a t t h e given r a n g e o f a's contains t h e r a n g e o f i n t e r e s t .

Remark

4. T h e o b s e r v a n t r e a d e r has a l r e a d y n o t i c e d t h a t we h a v e followed o u r own advice f r o m w 1, a n d used s t r i c t inequalities in b o t h a s s u m p t i o n s a n d con- clusions o f t h e t h e o r e m .

(21)

REPRESENTATIONS OF T E N S O ~ ALGEBRAS AS QUOTIENTS OF G~OUP ALGEBRAS 1 2 7

4. Outline of proof:

A n y f u n c t i o n g in

Pq(K)

w i t h (I.(g)[

(and w i t h - - (~/q) < a r g

(I,(g)) < (z~/q))

is close in Ll([/~i) to t h e f l m c t i o n f . T h e p r o o f consists t h e r e f o r e essentially in findir~g a f u n c t i o n g in ff sufficiently close t o f. T h i s we can n o t do o~fly in t e r m s of t h e m e a s u r e #, a n d we shall t h e r e f o r e c o n s t r u c t a n o t h e r m e a s u r e v, which is more a d e q u a t e for our purposes. I n t h e ease q = 2, t h e m e a s u r e # is a s s u m e d t o be real, a n d t h e p r o b l e m is t o f i n d a suitable i m a g i n a r y p a r t to a d d to #. T h e c o n s t r u c t i o n s in t h e p r o o f are m a i n l y geometric, a n d a cruciM step in t h e p r o o f is a p u r e l y geometric l e m m a on t h e p e r i - m e t e r of c e r t a i n c o n v e x sets.

Proof of theorem.

F r o m general facts a b o u t sets Qp (#), we k n o w t h a t Qq(#) is for e v e r y

# 6 M(K)

a c o m p a c t c o n v e x set c o n t a i n i n g 0. W e also k n o w t h a t

p(Qq(/.z)) -~- p(Pq)

9 I]/~[I = 2 ~ . [1~[[.

W e n e x t observe t h a t if

f E Pq(K)

t h e n

f . P q ( K ) c

Pq(K), a n d t h e r e f o r e

Q~(f'a) c Q~(/~).

I f we h a v e m o r e o v e r

fq

= 1, t h e n

f . P ~ ( K ) -- P~(K)

a n d hence

Qq(f.#)

= Q~(/~). (4.4.1)

I n fact, (4.4.1) holds also if

fq = 1, and

if f is a B o r e l f u n c t i o n . I a p a r t i c u l a r it follows tha'~

Qq(#)

is i n v a r i a n t u n d e r m u l t i p l i c a t i o n b y qth r o o t s of rarity. A n o t h e r consequence of (4.4.1) is t h a t if # ~ - f - I # ] , fq = 1 t h e n

Qq(/~) = I[/~[[ 9 P u . (4.4.2)

T o see this we assume, b y (4.4.1), t h a t # is positive. W e t a k e t h e n

g = 1

6

Pq(K),

a n d we see t h a t t h e c o m p l e x n u m b e r I]~]l belongs t o Qq(#). Since Qq(#) is c o n v e x a n d i n v a r i a n t u n d e r m u l t i p l i c a t i o n b y qth roots of u n i t y , we h a v e t h e n

I]~lI-Pu c Qq(~).

N o w we also k n o w t h a t t h e sets h a v e equal p e r i m e t e r s , a n d t h e r e f o r e t h e y are equal.

T o illustrate t h e g e o m e t r i c n o t i o n s involved, we shall c o n s t r u c t explicitly t h e set Qq(#), for a m e a s u r e /~ w i t h finite s u p p o r t . I n this ease we m a y also write Qq(a), for a c e r t a i n set a = {ak}~=~. B y (4.4.1) we m a y assume t h a t

-- (z/q) <

arg (%) <

(u/q),

a n d it is also clear t h a t we m a y assume t h a t arg (%) <_ arg ( ( ~ k + l ) ,

all k. W e n o w t a k e z 0 = ~ = 1 ak, a n d we see t h a t z0 is a b o u n d a r y p o i n t o f Qq(a).

I n fact z0 m a x i m i z e s t h e real p a r t in Qq(a), a n d m a x i m i z e s t h e i m a g i n a r y p a r t a m o r g all such points. W e n o w define c o n s e c u t i v e l y

Z k = Z k _ 1 -~- a k ( @ - - 1 ) , @ = e 2 m / q .

All t h e p o i n t s {zk}~=0 are t h e n e x t r e m e points of Q~(a), a n d we h a v e f u r t h e r z, = @'z0. D , f i n i r g n o w zk+, = @'zk, we get all t h e e x t r e m e points of Qq(a).

See Figures 1 a n d 2.

(22)

128 STEN KAIJSER

Fig. 1. Q2(a)

a = ( a l , a2, aa)

Z3

~2

Z~

Fig. 2. Q3(a)

/

a = ( a 1, a.~)

Z* -- oa 1 --~, a 2

.Z3 ~ Z o = a i + a~

Z 4

Conversely, we see t h a t if Q is a c o n v e x polygon, i n v a r i a n t u n d e r m u l t i p l i c a t i o n b y q,h roots of u n i t y , t h e n Q is a Qq(a), for some set of c o m p l e x n u m b e r s . T o c o n s t r u c t one such set, we assume t h a t Q has say q . n vertices. W e e n u m e r a t e t h e n t h e v e r t i c e s consecutively, st~rtil~g f r o m a n a r b i t r a r y v e r t e x b y %, z l , . . . , zn,...zq,. W e h a v e t h e n z~ = @z0, a n d we define a k ~ (% - - zk_~)/( @ -- 1), 1 </c: < n.

(23)

R E P R E S E N T A T I O N S OF T E N S O R A L G E B R A S AS Q U O T I E N T S OF G R O U P A L G E B R A S 129 W e shall n o w p r o v e t h a t i f t h e given m e a s u r e /x is c o n t i n u o u s , or m o r e precisely i f # can b e d e c o m p o s e d i n t o s u f f i c i e n t l y small m u t u a l l y singular p a r t s , t h e n t h e eonehision o f t h e t h e o r e m holds. T o w a r d s this we f i r s t define a real n u m b e r

a,

b y t h e r e l a t i o n

1 + 3q

(tana--a)

= ( 1 - - ~ ) - I (4.4.3)

47~

or e q u i v a l e n t l y ,

I 4~ c~

r a n t s - - ~ ~ - - 9 - -

3 I - - c r q-"

Using now the elementary estimate ~2 < I0, and the assumption ~ <

~218q~ <

zz~/32, we h a v e

47~ ~x

This implies t h e n

(,+)','

< \ - - i - ~ / < \ ~ / < q "

On t h e o t h e r h a n d , we h a v e also c~ < 1/15 a n d t h e r e f o r e a < ~14.

W e n e x t d e n o t e b y

Aq(a)

t h e set d e f i n e d as t h e c o n v e x hull o f t h e u n i o n o f t h e u n i t disc a n d t h e p o i n t s Qk(1/cos a), 1 < k < q. W e f u r t h e r d e f i n e a f u n c t i o n

_F(x)

(or m o r e p r o p e r l y

F~,.(x))

b y

Z o gr

F i g . 3. A~(a)

Z~ Z~

Z1

4 Zn

X5

(24)

1 3 0 S T E I ~ l~ A / J S E / ~

for

F ( x ) -~ sup y o v e r all (x, y) E Aq(a ),

cos (2~/q) 1

~ x ~

c o s a - - - - c o s a

(4.4.5)

(Figures 3 a n d 4.)

W e h a v e , since a ~ ~/q, p(Aq(a)) = 2 z + 2q(tan a - - a), so i f A ' is a p o l y g o n w i t h s u f f i c i e n t l y small sides a n d w i t h v e r t i c e s on t h e b o u n d a r y o f A s ( a ), t h e n

~o(A') ~ 2~ + -~ 2q(tan a - - a). W e shall p r e s e n t l y c o n s t r u c t a v whose Qs(v) is such a n inscribed p o l y g o n . W e shall t h e n h a v e

[fvl[ = 19(Qs(v))/p(Ps) = :p(Qs(v))/2zrs ~ F~-~ 1 + ~ - (tan a - - a) , (4.4.6) a n d b y (4.4.3) a n d t h e a s s u m p t i o n s on ~, we can t h e n f i n d g E ~ w i t h ]I~(g)] ~ 1.

T o m a k e the c o n s t r u c t i o n , we f i r s t b r e a k # into small pieces. W e p a r t i t i o n K into a f i n i t e n u m b e r o f disjoint B o r e l sets {Ei}N=l, a n d we a s s u m e for s i m p l i c i t y t h a t I # t ( E 0 ~ - r i ~ 0, all i. W e d e n o t e / ~ - r ~ - 1 . # 1 ~ i, so t h a t we h a v e

~u----~rl/~. H o w , for all i we h a v e Qq(#~) = Ps, a n d this implies t h a t i f

/~(a)

-~ ~. a@, t h e n Qs(#(a)) - - Qq(a). T h e m e a s u r e v will be such a linear com- b i n a t i o n , a n d for q ~ 2 t h e c o n s t r u c t i o n is i l l u s t r a t e d g e o m e t r i c a l l y in F i g u r e 3. W e shall c a r r y o u t t h e c o n s t r u c t i o n f i r s t in t h e s o m e w h a t simpler case q ---- 2, a n d t h e n for a n a r b i t r a r y q.

T h e case q --~ 2. W e a s s u m e ]]#]] --~ (cos a) -1, a n d we h a v e t h e n positive n u m b e r s {rl}N=l, such t h a t ~ ri ---- (cos a) -1. W e d e n o t e n o w

(25)

R E P R E S E N T A T I O N S OF T E N S O R A L G E B R A S AS Q U O T I E N T S OF G R O U P A L G E B R A S 1 3 1

k

x k = - - ( c o s a ) - i d - 2 ~ r ~ , 0 < k < x Y (i.e. x 0 - ~ - ( c o s a ) - l ) ,

i ~ 1

a n d we d e n o t e , in t e r m s o f t h e F ( x ) d e f i n e d in (4.4.4) zk = xk -4- i F @ t ) , 0 < k < N . W e can n o w f i n a l l y d e f i n e

Zk - - Z k _ l

a k - - , l < k < N . 2

T h e set a = {ak}N=, is c o n s t r u c t e d in such a w a y t h a t Q~(a) is a p o l y g o n in- scribed in A ~ ( a ) , a n d we h a v e R e (ak) = rk. W e d e f i n e n o w v = ~ ak#k, a n d we h a v e t h e n /~ = - i ~ e (v). W e a s s u m e n o w t h a t all r~ are so small t h a t Ilvll > (~/2)(1 _ ~ ) - x , so t h a t t h e r e exists g E ~ w i t h 1I~(9)1 > 1. A s s u m i n g R e (I~(g)) >__ O, we h a v e R e ( I , ( g ) ) > cos a, a n d since g is real a n d since g = R e (v) we h a v e

I A s ) > cos a = cos~ a "lbll >- (1 - 5 . ~/~)ll~*ll

A r b i t r a r y q. W e a s s u m e a g a i n [(/~[[ = (cos

a) -1,

a n d we h a v e t h e n also in t h i s case positive n u m b e r s {r~}~=l, such t h a t ~ r~ = (cos a) -x. I n this case we shall h o w e v e r f i r s t pass o v e r t o t h e n u m b e r s {sl}~=l d e f i n e d b y

W e d e n o t e n o w

W e define n o w L

W e d e n o t e f u r t h e r

a n d

D e f i n i n g n o w zk d e f i n e d for all k,

s~ = 2 (1 - - cos a cos (~/q))ri .

k

x~-~--{- ( c o s a ) - i - ~ s i , 0 < k < N .

/ = 1

b y xL >_ cos ( z / q ) > xL+l, a n d Zk = Xk E i F @ k ) , O < k < L .

N

y k = ( c o s a ) - i - ~ s . L - 4 - 1 < k < N ,

/ = k + l

wk = yk - - i F ( y k ) , L - 4 - 1 < k < N .

for L ~ - l < k < N b y z i == ~ . wk, Q = e 2"~/q, 0 < k < N . W e can n o w d e f i n e

w e h a v e z k

Z k - - Z k _ l

a k - - , l < k < N .

~ - - 1

T h i s finishes t h e c o n s t r u c t i o n of t h e n u m b e r s ak. W e set v = ~ ak/xk, so t h a t Qq(v) is a p o l y g o n inscribed in A q ( a ) , a n d a s s u m i n g all rk s u f f i c i e n t l y small we h a v e t h e n ?4(1 -- a)llv[I > 1. B y a s s u m p t i o n , t h e r e t h e n exists g E such t h a t lI,(g)[ > 1. Assuming - - ( x / q ) < arg ( I , ( g ) ) <_ ( x / q ) , we h a v e , since

(26)

132 S T E I ~ K A I J S E R

I~(g) e Qq(v): c Aq(a), Re (I,(g))

> cos a. W e shall e s t i m a t e R e

(I,(g))

a n d t o - w a r d s t h i s w e f i r s t d e f i n e f g dttk = tk = 1 - - uk, a n d since

tk E Pq,

w e h a v e

- - (~/2 - -

x/q) <

a r g (uk) _< (u/2 - -

~r/q).

W e c a n n o w w r i t e

~e

(I,(g))

= R e ( E ak(1 - - uk))

a n d

l~,e (I (g)) -= ~e ( E

rk(1 - - us))

O u r t a s k is t h u s t o e s t i m a t e R e ( ~

rkuk)

-

1

~ ( X a ~ )

COS ~/,

1

~e ( X ~ 0 . (4.4.7)

COS

in t e r m s o f R e ( ~

akuk).

E x a m i n i n g c a r e f u l l y t h e c o n s t r u c t i o n o f t h e n u m b e r s ak, w e see t h a t - -

(u/q)

< a r g (ak) <

ztlq,

so t h a t R e

(akuk)

> 0, u n l e s s uk = 0. W e d e f i n e n o w f o r e v e r y k a p o s i t i v e n u m b e r bk, b y t h e c o n d i t i o n t h a t bk is t h e l a r g e s t r e a l n u m b e r , s u c h t h a t

Re (bku) < Re (aku),

f o r all u w i t h - - (x/2 - -

x/q) <_

a r g (uk) < (x/2 - -

~r/q),

(4.4.8)

Fig. 5.

9 I

{ ' ;

I

I

I I

I I

I I

I I

I i

I s~ I

r- 1,

t I

I I

Références

Documents relatifs

In this section, we will give some properties of these Green functions that we will need later. The proof of the following lemma is based on elementary potential theory on the

In the sequel, we explain that even though γ is conjecturally not a value at an algebraic point of these arithmetic special functions, certain representations hidden in (1)(15)

In Theorem 7 we suppose that (EJ is a sequence of infinite- dimensional spaces such that there is an absolutely convex weakly compact separable subset of E^ which is total in E^, n =

In Section 3, we prove the following differentiable sphere theorem for compact manifolds with positive scalar curvature..

9 As outlined in these brief summaries, the role of science in Professional Foul and Hapgood has much in common with Stoppard’s use of chaos theory in Arcadia, since catastrophe

Just like the speed of light stops to be a fundamental constant when we express durations in meters, the constant b stops to be a fundamental constant if we use it to define a

5. According to Theorem 2, the Liouville set S q is not empty.. ) of even positive integers.. Erd˝ os, Representation of real numbers as sums and products of Liouville numbers,

A stratification X of X is said to be adapted to E if its open stratum is contained in the largest open submanifold of X over which E can be