• Aucun résultat trouvé

<1 f u(~)_SR u(z)dx,

N/A
N/A
Protected

Academic year: 2022

Partager "<1 f u(~)_SR u(z)dx,"

Copied!
12
0
0

Texte intégral

(1)

A R K I V F O R MATEMATIK Band 3 nr 39

Communicated 13 March 1957 b y OTTO FROSTMAI~ a n d L. CARLESO~

O n t h e e x i s t e n c e o f a l a r g e s t s u b h a r m o n i c m i n o r a n t o f a g i v e n f u n c t i o n

By YNcv~. DOMAR

1. Introduction

Suppose t h a t E is an open connected set in a k-dimensional Euclidean space.

We say t h a t a real-valued function u (x) in E is subharmonie if it satisfies the following conditions (Rad6 [3], §§ 1.1, 2.3):

(i) u(x) is bounded above on every compact subset o[ E.

(ii) u (x) is upper semicontinuous on E, i.e. /or every real number a the set o[ points x, where

u (x) < a, is an open set.

(iii) For every k-dimensional compact sphere S R (~) c E, with centre ~ and radius R, we have

<1 f

u(~)_SR u(z)dx, (1)

ZR(D

where S~ denotes the volum~ o/ the sphere, and where the integration is carried out with respect to the (k-dimensional) Lebesgue measure.

L e t us now suppose t h a t F ( x ) is a given non-negative, upper semicontinuous function on E. We allow the function to assume the value + ~ . We shall then consider the class {F) of all subharmonie functions u(x), such t h a t

u (z) _< F (x)

for every x E E.

I t is easy to realize t h a t if two functions u 1 (x) a n d u2 (x) belong to {F), then the same is true for the function

yfax {ul (x), u~ (x)}.

The corresponding property holds for a n y finite number of functions in {F}.

Our aim in this paper is to show t h a t under certain conditions also the function

M (z) = sup u (x)

us{F}

belongs to {F}, i.e. t h a t F ( x ) has a largest subharmonic minorant.

(2)

y. n o ~ r t , St&harmonic minorant of a given function

Because of our assumption t h a t F > 0, we see t h a t for a n y u E {F}

Max {u (x), 0} e { ~ } .

Hence, if we denote b y {F*} t h e class of all non-negative functions in {F}, we obviously h a v e

M (x) = sup u (x).

u~{F +}

The above-mentioned problem is trivial if k = 1, for t h e n the class of sub- harmonic functions coincides with the class of convex functions. I f k _ 2, how- ever, the question has been discussed in several papers. A m a i n result is t h e following t h e o r e m b y SjSberg [4] and Brelot [1] (el. also Green [2]).

Theorem 1. M (x) is subharmonic i/ and only i/ it is bounded on every compact subset o/ E.

Hence we can confine ourselves to the problem o f finding conditions on E a n d on F (x), under which M (x) is bounded. This problem was discussed for k = 2 b y SjSberg [4]. Our results are, however, s o m e w h a t more general, and we shall use e l e m e n t a r y methods, which can be carried over to the corresponding problem for more general classes of functions. Thus our results will remain t r u e for the class of functions which we obtain if the right-hand m e m b e r of t h e inequality (1) is exchanged for

B f u(x)dx,

SR ZR (D

where B is a n y fixed n u m b e r _ 1. Moreover, the p r o p e r t y " u p p e r semicontinuous"

in the s t a t e d definitions m a y be exchanged for " m e a s u r a b l e " w i t h o u t affecting the results.

T h e o r e m 1 is true even if we m a k e these modifications. The necessity p a r t is obvious, a n d we shall briefly sketch a proof of the sufficiency. We form the function

H

(x)

= Min {F (x), G (x)}, where for a n y ~ E E,

a ( ~ ) =

nlSR(~)CE ue{F+}~R SR(~)

Obviously u (x) _< H (x) _< F (x)

for a n y x E E and a n y u E {F+}. F u r t h e r m o r e it can be shown t h a t H ( x ) ful- fils the three in the above-mentioned w a y modified conditions in t h e definition of subharmonicity. The only difficult p a r t is the verification of (ii); however, for a n y fixed R, the function

f u(x) x

d

zR CD

(3)

ARKIV F6R MATEM_KTIK. Bd 3 nr 39 is continuous, uniformly in u, at every point ~ with 2R ( ~ ) c E, and this has the effect t h a t the functions

"f

sup ~

u(x)dx

u e{F+} R

SR(D

are continuous functions of } whenever t h e y are defined, thus G (}) is upper semieontinuous. Apparently the above-mentioned properges of H (x) imply t h a t it is the largest function in the class {F+}. Hence the existence of a "subharmonic"

M (x) is secured.

I t m a y be observed that, with this change in the definitions, Theorem 1 is no longer trivial in the case k = 1.

2. A general sufficient condition

I n the case /c= 2 the following theorem was known b y Beurling (cf. [4] p.

319). However, no proof has been published.

Theorem 2. M (x) is bounded on every compact subset o[ E i/ /or some e > 0 f [log + F (x)] k-1+8 d x < oo.

E

To prove the theorem we need the following lemma, where u (x) is an arbitrary function in the class iF+}, and where l~ is the measure of the set E~ where

e'<u(z)

< d +1.

I, is finite for v > 0, if the condition in t h e theorem is fulfilled.

Lemma 1. Let D be a positive constant and ){ a positive integer, both so large that

e 1

Dk Sx + - ~ <_ 1,

where S 1 is the volume o/ the k-dimensional unit sphere. T h e n the/ollowing is true:

I ] /or some integer v and some point x~ 6 E

(x,,) > e ~ ( 2 )

and SR (x~) c E,

1

where R > D (l~_a + l~-;.+x + ... + l,,) ~, then SR (xv) contains a point X~+l, where

U (~:v+l) ~ d+X*

(4)

Y, DOMAR, Subharmonic minorant o f a

given function

Proo/ o/ Lemma 1.

Suppose t h a t

u(x)<e

"+a in SR (x,).

t h a t this implies a contradiction.

We are going to show

(2) a n d ( 1 ) g i v e

e'<_u(x,)<_~ I u(x) dx.

1 (3)

S R (x v)

N o w let us denote by, S' the set of all points in SR (x,) which do n o t belong to the set

lJ E . .

A p p a r e n t l y

u(x)<_e "-~, if x E S'.

Hence the right-hand m e m b e r of (3) is

l f u(x)d* l f

< s~ + ~ ~ (~) d:~

~ E n S"

1 e,+l

1 [ e R e 1~

-s~<-- q'-~+ +l')+~ e-as~<e I , ~ + J

]

which is impossible.

Proo[ o[ Theorem 2. Let D

and t be chosen in the w a y described in L e m m a 1.

Suppose t h a t for some point x~ E E a n d for some u E {F +}

u ( x . ) _ > e " ,

where n is an integer satisfying n > 4 . Then according to L e m m a 1 e v e r y sphere around x . with a radius

1

> D ~ (l,_~+-.. +l~) ~

~=Tt

contains either a b o u n d a r y point of E or a point

Xm E E

where u(zm)>_e".

However, since u (x) is bounded on every c o m p a c t subset of

E,

this implies t h a t the distance between x , a n d the b o u n d a r y of E is

1 ~ 1 1

< D (l,_a + + l~) ~ _< D ~

_ . . - ( l , _ a + . . . + l , )

n

oo 1' ~ 1 k - l + e 1

_ < D ( I + 1) Z ~ -

l,

- D ( 2 + 1) Z k_--vci~ v ~

l,

k.

n-)~ n--2 ~ k

Using H61der's inequality, we see t h a t t h e right-hand m e m b e r is

(5)

A R K I V F O R M A T E M A T I K . B d 3 n r 3 9

k - 1 1

n k n - 2 J

1 1

E E

1

F ( z ) ] ~ - l + ~ d x ,

w h e r e (~. is i n d e p e n d e n t of t h e choice of u(x) a n d t e n d s t o O, w h e n n-->c~.

H e n c e if w e h a v e . a t s o m e p o i n t in E , M (x) > ~ 8 ,

w e m a y c o n c l u d e t h a t t h e d i s t a n c e b e t w e e n t h i s p o i n t a n d t h e b o u n d a r y of E is 1

~ [log + . F ( x ) l k - l + ' e d x . E

T h i s shows t h a t M (x) is b o u n d e d o n a n y s u b s e t of E w h i c h is s i t u a t e d a t a p o s i t i v e d i s t a n c e f r o m t h e b o u n d a r y of E , a n d h e n c e t h e t h e o r e m is p r o v e d . Remark. T h e t h e o r e m is a p p a r e n t l y still t r u e u n d e r a w e a k e r a s s u m p t i o n , n a m e l y if for e v e r y c o m p a c t s e t C c E t h e r e e x i s t s a n u m b e r e > 0 s u c h t h a t

f [log + F(x)]k-l+~dx< ~ .

C

3. A s i m i l a r t h e o r e m u n d e r m o r e r e s t r i c t i v e a s s u m p t i o n s I f k = 2 , t h e case w h e n

F (Z 1, X 2) = F ( x l ) ,

w h e r e x 1 a n d x 2 a r e t h e C a r t e s i a n c o o r d i n a t e s , a n d w h e n E is a r e c t a n g l e w i t h i t s sides p a r a l l e l t o t h e c o o r d i n a t e axes, is of p a r t i c u l a r i n t e r e s t . I n t h a t case t h e e x p o n e n t l + e in T h e o r e m 2 m a y be e x c h a n g e d for 1. This is a n e a s y c o n s e q u e n c e of T h e o r ~ m e I I I i n S j S b e r g [4]. W e t h a l l n o w s t u d y t h e corre- s p o n d i n g p r o b l e m for a n a r b i t r a r y k.

W e a s s u m e t h a t x 1, x 2 . . . x k a r e C a r t e s i a n c o o r d i n a t e s of t h e space. L e t p b e a p o s i t i v e i n t e g e r < k , a n d l e t 0 b e a n o p e n s e t i n t h e p - d i m e n s i o n a l E u c l i d e a n s p a c e w h i c h h a s t h e C a r t e s i a n c o o r d i n a t e s x 1, x 2 . . . x p. at a n d b~, w h e r e i = p + 1, p + 2 . . . k, a r e a s s u m e d t o b e f i n i t e r e a l n u m b e r s .

W e d e f i n e E a s t h e s e t of a l l p o i n t s w h i c h s a t i s f y (x:, x 2 .. . . x p) E 0

a n d a~<x'<b~ i = p + l , p + 2 . . . k.

(6)

Y. DOMAS, Subharmonic minorant of a given function

T h e n we let _~ be a n y function, defined in E, which only depends of the first p coordinates, i.e.

F (x) = F (x 1, x ~ .. . . . x~). (4)

L e t m E denote the Lebesgue measure of E . There exists a function y ( m ) , defined and non-increasing in the interval O < m < m E a n d such t h a t , for e v e r y Y0, the one-dimensional measure of the set where y ( m ) > Y0 is the same as t h e k-dimensional measure of the subset of E, where F ( x ) > Y0-

Theorem 3. M (x) is bounded on every compact subset of E i/

m E 1

f log + y (m) d (m ~) < ~ .

0

F o r the proof we need the following lemma, where u (x) is an a r b i t r a r y func- tion in the class {E +} a n d where m, is the measure of the set F,, where F ( x ) > e ~. Obviously m, is finite if v > 0, a n d if the condition in t h e theorem is fulfilled.

L e m m a 2. Let D be a positive constant and 2 a positive integer, both so large that

e 2 ~-v 1

+ ~ _ < 1 . D ~ 21 1-I (b~ - a d

p + l

Then the /ollowing is true:

I / /or some integer v and some point x~ E E

u(x~)>e"

(5)

and Sn (x,) c E,

1

where R > D mV~_~ ,

then Sn (x~) contains a point 3c~+ 1 where

u (X~÷l) > e "+1.

Proof o/ L e m m a 2. The condition (4) a n d our special choice of t h e set E i m p l y t h a t F,_a consists of the points, which satisfy

(x 1, x ~ .. . . . x ") 6 F:_~

a n d a~<x~<bi, i = p + l , p + 2 . . . k, where F'_~ is a certain p-dimensional set. Moreover, the set

2 = 2R (x,) n F~_~

(7)

.kRKIV F 6 R MATEMATIK. B d 3 n r 3 9 is included in the set, which is characterized b y the conditions

(x 1, x ~ . . . z ~) e F ' _ ~

a n d

x~-R<x~<x~+R, i=p~-l,

p + 2 . . . k,

if we let (x I . . . x~) denote t h e coordinates of x~. Hence the measure of the set S is (2R) ~-~

1-[ (b, - a,)

~ + 1

We suppose t h a t u ( x ) < e "~1 in SR (x~), and are going to show t h a t this im- plies a contradiction. B y (5) and (1) we have

< 1 f u ( x ) d ~ .

e ~ <_ u (x~) _ SR

(6)

We denote b y S' the set of all points in S a (x,) which do n o t belong to the set S. A p p a r e n t l y

u(x)<e

~-a if x E S'. Hence t h e right-hand m e m b e r o f 6 is

S S"

1 (2R) ~-" 1

e~[D e2k-~R k

+ 1 ] _ e , "

< - - e r + l ~ r ~ - a J r e~-;( ~ R <

- - S n l-I (b~ - ai) ~ S n YI (b~ - a~)

p + l p + l

This gives a contradiction, and hence the l e m m a is true.

Proo[ o/ Theorem 3.

L e t D a n d ~t be chosen ha t h e w a y described in L e m m a 2.

Suppose t h a t for some point xn E E a n d for some u E ( F +}

u ( x , ) > e ~,

where n is an integer satisfying n > 2. Then, using L e m m a 2, we m a y as in the proof of T h e o r e m 2 conclude t h a t t h e distance f r o m xn to t h e b o u n d a r y of E is

rav

0

m y m v mrL _.~

_< D ~ d (m ~ ) _< D log + y (m) d (m ~) = D log +

n - ~ . n - 2

m~+ 1 m~+ 1 0

1

y(m)d(m~),

a n d since ghis tends to 0, when n - - > ~ , the t h e o r e m is proved.

(8)

Y. DOMAR,

Subharmonic minorant of a given function

Remark 1.

I f p = 1, t h e condition in t h e t h e o r e m is e q u i v a l e n t t o f log + F (x) d x < oo.

E

I f p > 1, t h e c o n d i t i o n is fulfilled if for some e > 0 f [log +

F(x)]V+~dx< ~ .

E

Remark 2.

As T h e o r e m 2 this t h e o r e m is t r u e even if t h e c o n d i t i o n is o n l y fulfilled on e v e r y c o m p a c t subset of E. T h e t h e o r e m m a y f u r t h e r m o r e be ex- t e n d e d t o certain cases where x 1 .. . . . x g do n o t m e a n Cartesian coordinates. One e x a m p l e of this is the case w h e n k = 2 a n d p = l, a n d when x ~ a n d x ~ d e n o t e angle a n d radius, respectively, in polar coordinates. SjSberg p r o v e d t h e t h e o r e m this case.

4. On the necessity o f t h e conditions in T h e o r e m 2 and T h e o r e m 3 W e shall n o w show t h a t t h e e x p o n e n t s k - 1 + ~ a n d

l i p

in T h e o r e m 2 a n d T h e o r e m 3, respectively, c a n n o t be improved.

T o tahis e n d we shall introduce, for e v e r y A > 0, a f u n c t i o n uA (a, t) in t h e set ~ :

0 < a < l , - ~ o < t < ~ , (Cartesian coordinates).

I n t h e set ~ A : O < a < l , we define uA (a, t) as

: t ~- e A a c o s A t

R e {e~ eA(°+'°} = e~

I t I < ~- arc sin e- Az, 1

This f u n c t i o n is h a r m o n i c , _> 0, a n d vanishes if I t l = ~ arc sin e- A.. 1

T h e n we define uA(a, t) as 0 if

0 < a < l ,

[ t l > ~ a r e s i n e -A~.

1

W e shall s t a t e some simple l e m m a s concerning t h e f u n c t i o n s uA (a, t).

L e m m a

3. For any n > O

( z t 2 ~ n

f f

[log +

uA (a, t)]ndad(P)<_2 \ ~ - ~ ] "

(9)

ARKIV FOR MATEMATIK. Bd 3 nr 39

Proof. I n ~ we have uA (a, t ) < e ~ ,

(7)

a n d hence

f~ f~A

1

= 2 f ( 2 ) e ~ A " (~___)n (arc sin e-A~) "d~<_2 ~ - ~ ] •

0

L e m m a 4. There exists an even /unction G (t), non-increasing/or t > 0, such that const.

log G (t)

Itl l o g ~

1 when t->0, and such that, for every A >0,

if (~, t) c ~ .

uA (~, t) _ V (t),

Proo]. I n ~ n we have eA°lsin A t l < l ,

7t 1

hence b y (7) uA ((r, t) <_e ~ ,sin Atl.

~ e A

A n d (7) gives moreover uA (or, t) < e~

Since e A a n d 1/1 sin A

t I ([

A

t[

< ~ / 2 ) are increasing a n d decreasing, respectively, considered as functions of A, it is easy to see t h a t we m a y choose for G (t) the expression

1 g-2 I s i n Ao(t)t [

where A o (t) is the smallest solution of the equation 1

e~ = I sin A t~"

Then a simple estimation shows t h a t log a (t)~ .n/2

ttllog[

1 when t--->0.

(10)

Y. DOM-~R, Subharmonic minorant o f a given function

L e m m a 5. L e t o, x 1, x 2 .. . . . x , _ l be the Cartesian coordinates o/ the n-dimen- sional E u c l i d e a n space. (n >_ 2). P u t

t =

(~ +... + ~_~)~.

T h e n the / u n c t i o n v = uA (a, t) 2~-s

is subharmonic, considered as a /unction on the subset 0 < a < 1 o/ the n - d i m e n s i o n a l space.

Proo[. I t is well k n o w n t h a t a continuous, n o n - n e g a t i v e f u n c t i o n v is s u b h a r - m o n i e if it satisfies

A v _ > 0

w h e n e v e r v > O. H e r e A d e n o t e s t h e L a p l a c e o p e r a t o r . H e n c e in o u r case we h a v e t o p r o v e t h a t

5~v ~ v n - 2 Ov Av=~-~a~+~-/~ t ~t ->°

if (a, t) e flA. A direct c o m p u t a t i o n gives

e - ~ e ,

U s i n g t h e i n e q u a l i t y I sin

we see t h a t A v_> 0. T h e a b o v e a r g u m e n t s fail if t = 0 , b u t since t h e second d e r i v a t i v e s of uA (o, t) a r e continuous, we m u s t h a v e A v_>0 also in t h a t case.

N o w we are in a position t o discuss t h e e x p o n e n t s in T h e o r e m 2 a n d T h e o r e m 3.

Theorem 4. T h e exponent k - 1 + 8 i n Theorem 2, k >_ 2, cannot be exchanged /or k - 1 .

Proof. L e t us choose E as t h e set

0 < a < l , - o o < x ~ < c ~ , v = l , 2 , . . . , / c - 1 , w h e r e a , x 1 . . . Xk_ 1 d e n o t e Cartesian coordinates. W e p u t

t = (x~ + x~ +.-. + ~ _ 1 ) ~ a n d s t u d y t h e f u n c t i o n s vA (a, t) = UA (a, t) 2k-3,

(11)

ARKIV FOR MATEMATIKo B d 3 n r 3 9

which are subharmonic, according to L e m m a 5. B y L e m m a 3, if A >_ 1, f [log + vA (a,

t)]/c-1

dtr d x 1 ... dXk_l < - - A - - ' const.

E

(s)

where the constant is independent of A.

L e t us choose a sequence of positive numbers A1, A 2 .. . . . An . . . such t h a t

~ I/A~

converges. Then we define the function F in the theorem as F ( z , t) = sup vA, (a, t).

(8) gives S [l°g + F ( a , t)] k-i d a d x 1 ... d x k _ l < oo,

E

and hence the condition in Theorem 2 is fulfilled with the exponent k - 1 . B u t the subharmonic functions vA~ (a, t) satisfy

vA, (,~, t) _< F (,~, t),

and nevertheless t h e y are not uniformly bounded if t = 0 , 0 < ( r < l . Hence Theorem 2 is not true with this change in the exponent.

Theorem 5. The exponent l i p in Theorem 3 cannot be exchanged /or a larger number.

Proo/. In the definition of E which precedes Theorem 3 we choose for 0 the p-dimensional unit sphere, and p u t

t = ( ( x l ) 2 -~ (X2) 2 - ~ " " ~- ( z p ) 2 ) ~ .

L e t a denote one of the remaining k - p coordinates.

We choose as E the function G(t) ~p-1, where G(t) is defined in L e m m a 4.

I t is easy to show t h a t if we p u t

m = c t v

for a suitable choice of the constant c, then we obtain y(t) = O ( t f ~-1.

Hence, if the exponent in the theorem is larger than 1 / p , the integral has the value

1

eonst, f log + G (t) d (t~),

0

(12)

Y. DOMAR, Subharmonic minorant of a given function

where ~ > 1, a n d t h e n L e m m a 4 imphes that. the integral converges; thus the modified condition of Theorem 3 is fulfilled.

On the other hand, the functions uA (a, t) 2v-1 are subharmonic in E according to L e m m a 5, a n d t h e y satisfy

UA (0", t) 2p-1 ~< G (t) 2p-1

b y L e m m a 4, b u t t h e y are n o t uniformly bounded. Hence T h e o r e m 3 cannot be t r u e with this change in the exponent.

R E F E R E N C E S

1. hi. BRELOT, Minorantes sous-harmeniques, extr6males et capacit6s. J . Math. Pures Appl.

24, 1945.

2. J . W. GREEN, Approximately subharmonic functions. Prec. Amer. Math. See. 3, 1952.

3. T. RAP6, Subharmonie Functions, Berlin 1937.

4. N. SJ•BERG, Sur les minorantes sousharmoniques d ' u n e fonction donn6e. Neuvi~me Con- gr~s des math~maticiens Seandinaves, Helsingfors, 1938.

Tryekt den 7 mai I957

Uppsala 1957. Almqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

[r]

Presumably&#34; the act ivat ion by triangular _ sweep mllYha ve the same elfect on the sU ~f~ce as 't he..; high o.ve rp otential ~a.t applied alt ernat ely and of course,.the

Compléter les pointillés de la définition ci-dessus en choisissant le mot qui convient parmi les deux propositions suivantes1.

[r]

L’exemple standard d’une suite qui converge dans L 1 mais

[r]

• Rappeler la relation définissant la position du centre dʼinertie dʼun système de plusieurs masses ponctuelles m i.. • Calculer la position du centre dʼinertie

Dépassés, les parrains à la Coppola, Le crime organisé prospère aujourd'hui à l'ombre des tours de banlieues, Là, le trafic de cannabis a remplacé le proxénétisme et la