• Aucun résultat trouvé

Representations of mock theta functions Advances in Mathematics

N/A
N/A
Protected

Academic year: 2022

Partager "Representations of mock theta functions Advances in Mathematics"

Copied!
72
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Representations of mock theta functions

Dandan Chena, Liuquan Wangb,∗

aSchoolofMathematicalSciences,EastChinaNormalUniversity,Shanghai 200241,People’sRepublicofChina

bSchoolofMathematicsandStatistics,WuhanUniversity,Wuhan430072,Hubei, People’sRepublicofChina

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received17December2018 Receivedinrevisedform14October 2019

Accepted3February2020 Availableonlinexxxx

CommunicatedbyGeorgeAndrews DedicatedtoProfessorBruceBerndt ontheoccasionofhis80thbirthday MSC:

05A30 11B65 33D15 11E25 11F11 11F27 11P84

Keywords:

Mockthetafunctions Hecke-typeseries Appell-Lerchseries

3φ2Summationformulas

MotivatedbytheworksofLiu,weprovideaunifiedapproach to find Appell-Lerch series and Hecke-type series represen- tations for mock theta functions. We establish a number of parameterized identities with two parameters a and b.

Specializing the choices of (a,b), we not only give various known and new representations for the mock theta func- tionsoforders2,3,5,6 and8,butalso presentmany other interesting identities. We find that some mock theta func- tions of different orders are related to each other, in the sense that their representations can be deduced from the same(a,b)-parameterizedidentity.Furthermore,weintroduce the concept of false Appell-Lerch series. We then express theAppell-Lerchseries,falseAppell-LerchseriesandHecke- typeseriesinthispaperusingthebuildingblocksm(x,q,z) andfa,b,c(x,y,q) introducedbyHickersonandMortenson,as wellasm(x,q,z) andfa,b,c(x,y,q) introducedinthispaper.

We also show the equivalences of our new representations forseveralmock thetafunctionsandtheknownrepresenta- tions.

©2020ElsevierInc.Allrightsreserved.

* Correspondingauthor.

E-mailaddresses:ddchen@stu.ecnu.edu.cn(D. Chen),wanglq@whu.edu.cn,mathlqwang@163.com (L. Wang).

https://doi.org/10.1016/j.aim.2020.107037 0001-8708/©2020ElsevierInc. Allrightsreserved.

(2)

Contents

1. Introduction . . . . 2

2. Preliminaries . . . . 8

2.1. Usefulbasichypergeometricseriesidentities . . . . 9

2.2. BuildingblocksforAppell-Lerchseries,falseAppell-LerchseriesandHecke-typeseries 12 3. Mockthetafunctionsoforder2 . . . 18

3.1. RepresentationsforA(2)(q) . . . 20

3.2. RepresentationsforB(2)(q) . . . 23

3.3. Representationsforμ(2)(q) . . . 25

4. Mockthetafunctionsoforder3 . . . 27

4.1. Representationsforf(3)(q) . . . 28

4.2. Representationsforφ(3)(q) . . . 28

4.3. Representationsforψ(3)(q) . . . 30

4.4. Representationsforω(3)(q) . . . 35

4.5. Representationsforν(3)(q) . . . 35

4.6. Representationsforρ(3)(q) . . . 36

5. Mockthetafunctionsoforder5 . . . 37

5.1. Representationsforf0(5)(q) . . . 39

5.2. Representationsforφ(5)0 (q) andψ(5)0 (q) . . . 40

5.3. RepresentationsforF0(5)(q) . . . 43

5.4. Representationsforf1(5)(q) . . . 46

5.5. Representationsforφ(5)1 (q) andψ(5)1 (q) . . . 47

5.6. RepresentationsforF1(5)(q) . . . 48

6. Mockthetafunctionsoforder6 . . . 50

6.1. Representationsforφ(6)(q) . . . 51

6.2. Representationsforψ(6)(q) . . . 53

6.3. Representationsforρ(6)(q),σ(6)(q) andλ(6)(q) . . . 54

6.4. Representationsforμ(6)(q) . . . 55

6.5. Representationsforγ(6)(q) . . . 58

6.6. Representationsforφ(6) (q) . . . 59

6.7. Representationsforψ(6)(q) . . . 60

7. Mockthetafunctionsoforder8 . . . 60

7.1. RepresentationsofS(8)0 (q) andS1(8)(q) . . . 62

7.2. RepresentationsofT0(8)(q) . . . 62

7.3. RepresentationsforT1(8)(q),U0(8)(q),U1(8)(q) . . . 63

7.4. RepresentationsforV0(8)(q) . . . 63

7.5. RepresentationsforV1(8)(q) . . . 65

8. Concludingremarks . . . 67

Acknowledgments . . . 70

References . . . 70

1. Introduction

In his last letter to Hardydated on January12, 1920, Ramanujan gavea list of 17 functionswhichhecalled“mockthetafunctions”.Hedefinedeachfunctionasaq-series in Eulerian form and separatedthem into four classes:oneclass of thirdorder, two of

(3)

fifthorder,andoneofseventhorder.Ramanujanalsostatedidentitiessatisfiedbymock theta functions of the same order. In his lost notebook [39], identities for mock theta functionsof thesixthand tenthorderswererecorded.Sincethen, mockthetafunctions haveattracted theattentionofmanymathematicians.

It wassometime before researchersunderstoodthe modularityof mocktheta func- tions. From the Eulerian forms of mock theta functions, it is difficult to observe any significant transformation properties. Therefore, finding alternative representations for mockthetafunctionsbecomesthefirsttaskforstudyingtheirmodularbehaviors.With thecontributionofmanyworks,Watson[46,47],Andrews[4],AndrewsandHickerson[8], Berndtand Chan[10],Choi[14–17], Garvan[21],Gordonand McIntosh[24],Hickerson [28], andZwegers [50], toname afew,we nowknow thatmockthetafunctionsusually admitatleastoneofthetwokindsofrepresentations:Appell-LerchseriesorHecke-type series. A complete list of Appell-Lerch series representations for classical mock theta functionscanbefound in[29,Section5].

Appell-Lerchseriesareseriesoftheform

n=−∞

(1)nqn(n+1)/2bn

1−aqn . (1.1)

Here and throughout this paper, we assume that |q| <1. After multiplying the series (1.1) by thefactora/2 andviewing itas functioninthe variablesa,b and q, itis also usually refereed as a level Appell function. This kind of series was first studied by Appell[9] andLerch[31].

AseriesisofHecke-typeifithasthefollowingform:

(m,n)D

(1)H(m,n)qQ(m,n)+L(m,n),

whereH andLare linearforms,Qisaquadratic form,and Dis somesubsetofZ×Z such thatQ(m,n) 0 for every (m,n) D. Historically Q(m,n) was assumed to be indefinite(see[3] forexample).HereweallowQ(m,n) tobedefiniteaswell.Thefollowing classicalidentity of Jacobi expresses aninfinite product as aHecke-type series [3, Eq.

(3.15)]:

(q;q)3= n=−∞

m≥|n|

(1)mq(m2+m)/2.

Hereandlater weusethestandardq-seriesnotation:

(x;q)0:= 1, (x;q)n:=

n−1

k=0

(1−xqk), (x)= (x;q):=

k=0

(1−xqk).

(4)

Motivated by Jacobi’s identity, Hecke [26] systematically investigated theta series related toindefinitequadraticforms.Forinstance,Hecke[26, p.425] foundthat

n=−∞

|m|≤n/2

(1)m+nq(n2−3m2)/2+(n+m)/2= n=1

(1−qn)2,

whichisoriginallyduetoRogers[40,p.323].KacandPeterson[30] illustratedwaysfor proving Hecke-typeidentitiesusingaffineLiealgebra.

Appell-LerchseriesandHecke-typeseriesplayedimportantrolesinq-series.Itserves asbridgesbetweenmockthetafunctionsandthetheoryofmodularforms.Forexample, forthethirdordermockthetafunction1

f(3)(q) :=

n=0

qn2

(−q;q)2n, (1.2)

Watson [46] foundthefollowingAppell-Lerchseriesrepresentation f(3)(q) = 2

(q;q) n=−∞

(1)nq32n2+12n

1 +qn . (1.3)

Forthefifthorder mockthetafunction f0(5)(q) :=

n=0

qn2 (−q;q)n

, (1.4)

Andrews [4] showedthatithasaHecke-typeseriesexpression as:

f0(5)(q) = 1 (q;q)

n=0

|j|≤n

(1)jq52n2+12n−j2(1−q4n+2). (1.5)

ByusingtheAppell-LerchseriesorHecke-typeseriesexpressionsofmockthetafunctions suchas(1.3) and(1.5),Zwegers[49] successfullyfitmockthetafunctionsintothetheory of modular forms. For more detailed introduction to the developments of mock theta functions, we refer the reader to the survey of Gordon and McIntosh [25], the paper of Hickerson and Mortenson [29], the recent books of Andrews and Berndt [6], and Bringmann etal.[11] aswellas thereferenceslistedthere.

There are several ways for establishing Appell-Lerch series or Hecke-type series ex- pressions for mock theta functions. To deduce Appell-Lerch series representations of third order mocktheta functions, Watson used atransformation formulaconnecting a

1 Throughout this paper, toavoid confusion,we use a superscript (n) to indicatethata mock theta functionisofordern.

(5)

terminated 8φ7 series to a terminated 4φ3 series. Andrews [4] used Bailey chain the- orytoproduce Hecke-typeseriesexpressionsforthefifthandseventhordermocktheta functions. Liu [32] derived some q-series expansion formulas and gave new proofs to (1.5). Ina series of works, Liu[33,34] established some transformation formulas for q- hypergeometricseriesandtherebyprovedmanyinterestingHecke-typeidentitiessuchas (see[34,Proposition1.11])

n=0

(q;q2)nqn

(q2;q2)n = (q;q2) (q2;q2)

n=0

n j=−n

(1)n+jqn2+n−j2. (1.6) AmonganumberofnicetransformationformulasofLiu,thefollowingonehasshown itspowerinestablishingHecke-typeidentities(see[33,Theorem1.7] or[34,p.2089]).

Theorem1.1. Formax{|uab/q|,|ua|,|ub|,|c|,|d|}<1,wehave2 (uq, uab/q;q)

(ua, ub;q) 3φ2

q/a, q/b, v c, d ;q,uab

q

= n=0

(1−uq2n)(u, q/a, q/b;q)n

(1−u)(q, ua, ub;q)n (−uab)nq(n23n)/2×3φ2

q−n, uqn, v c, d ;q, q

. (1.7) Utilizing Theorem 1.1, several new Hecke-type identitieshave been found byWang andYee[44,45].Inparticular,theyprovedthat[45, Theorem1.1]

n=1

qn(q;q2)n

(−q;q2)n(1 +q2n) = n=1

|j|≤n

(1)jqn2+j2

n=1

(1)nq2n2. (1.8) Note thatthis isaHecke-type identity associated with adefinite thetaseries, which is quiterareintheliterature.Furthermore,Wang[43] usedTheorem1.1togivenewproofs forfivefalsethetafunctionidentitiesofRamanujan.Inarecentwork,ChanandLiu[12]

usedTheorem1.1 toestablishthreeHecke-typeidentitiessuchas

n=1

(q;q)n (−q;q)n

(1)nqn(n1)/2= n=1

n j=n+1

(1−qn)2(1)n+j+1q2n2nj2. (1.9) Inthis paper, we continue to employTheorem 1.1 to illustrate a systematicway to establish various representations for q-series in the Eulerian form. We first generalize Theorem1.1to thefollowingform.

Theorem 1.2. Suppose max{|αabz/q|,|αa|,|αb|,|αc1|,· · ·,|αcm|} < 1 and m is a non- negativeinteger.Wehave

2 Fortheconvergence,weonlyneedtoassumethat|uab/q|<1.Werequiremax{|ua|,|ub|,|c|,|d|}<1 sothatthedenominatorofeachtermappearingintheidentitydoesnotvanish.

(6)

(αq, αab/q;q)

(αa, αb;q) m+2φm+1

q/a, q/b, αb1,· · ·, αbm

0, αc1,· · ·, αcm ;q, αabz/q

= n=0

(1−αq2n)(α, q/a, q/b;q)n(−αab/q)nqn(n−1)/2 (1−α)(q, αa, αb;q)n

×m+2φm+1

q−n, αqn, αb1,· · ·, αbm

0, αc1,· · ·, αcm ;q, zq

. (1.10)

Theorems 1.1 and 1.2provide an elegant way forfinding alternativerepresentations for basic hypergeometric series. Indeed, these theorems allow us to write a series in Eulerian formas asuminvolvingtruncatedm+2φm+1series. Insuitablesituations,this truncatedsummaybefurthersimplifiedandinturnweobtainverynicerepresentations oftheoriginalseries.SuchnicerepresentationsinvolveAppell-LerchseriesorHecke-type series. For example, using Theorem 1.1 we establish the following (a,b)-parameterized identity (seeTheorem5.12):formax{|ab|,|aq2|,|bq2|}<1,

(q2, ab;q2) (aq2, bq2;q2)3φ2

q2/a, q2/b, q2 0, q3 ;q2, ab

= (1−q) n=0

(1 +q2n+1)(q2/a, q2/b;q2)n (aq2, bq2;q2)n

(−ab)nq3n2+2n n j=n

q−2j2−j. (1.11)

Itturnsoutthatbychoosingsuitablevaluesfor(a,b) inthisidentity,wegetHecke-type seriesrepresentationsforfourmockthetafunctionsoforders5,6and8.Namely,wefind that

F1(5)(q) :=

n=0

q2n(n+1) (q;q2)n+1

= 1

(q2;q2) n=0

2n j=0

(1)nq5n2+4n(j+12 )(1 +q2n+1), (1.12) ψ(6)(q) :=

n=1

qn(−q;q)2n2

(q;q2)n =q(−q;q) (q;q)

n=0

(1)nq3n3+3n n j=−n

q−2j2−j, (1.13)

T1(8)(q) :=

n=0

qn(n+1)(−q2;q2)n

(−q;q2)n+1

=(−q2;q2) (q2;q2)

n=0

q4n2+3n(1−q2n+1) n j=−n

(1)jq−2j2−j, (1.14)

V1(8)(q) :=

n=0

q(n+1)2(−q;q2)n

(q;q2)n+1

=q(−q;q2) (q2;q2)

n=0

(1)nq4n2+4n n j=−n

q−2j2−j. (1.15)

(7)

Furthermore,theparameterizedidentity(1.11) alsogeneratesnewHecke-typeidenti- ties.Forinstance,ifwetake(a,b)→(0,1) in (1.11),wegetthefollowingidentitywhich seemsto benew:

n=0

(1)n (q2;q2)n (q;q2)n+1

qn(n+1)= n=0

n j=n

(1 +q2n+1)q4n2+3n2j2j. (1.16) By establishing different (a,b)-parameterized identities, we are able to provide dif- ferentrepresentationsfor thesamemocktheta function.Anexample isthatusing two parameterizedidentities other than(1.11),we find two Appell-Lerch series representa- tionsforV1(8)(q).Namely,

V1(8)(q) = (−q4;q4) (q4;q4)

n=−∞

(1)nq(2n+1)2

1−q4n+1 (1.17)

=q(−q;q) (q;q)

n=−∞

(1)nqn2+2n

1 +q4n+2 . (1.18)

Theformula(1.15) wasfoundbySrivastava[41] andCui,GuandHao [18] usingBailey pairs,and(1.17) isduetoGordonandMcIntosh[24].Therepresentation(1.18) appears tobe new,andwewillshowthatitisequivalentto(1.17) (seeSection7.5).

Wewillpresent24parameterizedidentitieslike(1.11).Threeofthemwerediscovered byLiu [33]. Bychoosing suitablevaluesfor theparameters, we provide newproofs for most of the known Appell-Lerch series or Hecke-type series representations for mock theta functions of orders 2, 3, 5, 6 and 8. Meanwhile, we will also show many new Hecke-typeidentitiesassociatedtodefinite orindefinitequadraticforms.

Inorder to write Appell-Lerchseries or Hecke-type series representations inastan- dardwayand thushavingclearer understandingoftheirmodularproperties,Hickerson and Mortenson [29] introduced two functions m(x,q,z) and fa,b,c(x,y,q) (see (2.19) and (2.20) fordefinition). They serve as building blocksfor Appell-Lerch series and a largefamilyofHecke-type series,respectively.Moreover,their modularpropertieshave beenwell studiedbyZwegers [49].Hickerson andMortenson[29] also developedanap- proachtoexpressaHecke-typeseriesintermsofAppell-Lerchseries.Inparticular,they [29, Section 5] gave representations for all classical mock theta functions in terms of m(x,q,z).

In this paper, we will follow [29] and write the Appell-Lerch series and Hecke-type seriesweobtainedintermsofthesebuildingblocks.Alongthisprocess,wefindthatthere arecertainserieswhoseshape issimilar toAppell-Lerchseriesbutcannotbeexpressed intermsofm(x,q,z).Forexample,in(3.15) weestablishthefollowing identity

n=0

(1)nqn(n+1)(q2;q2)n

(q;q2)2n+1 = n=0

q2n2+2n 1−q2n+1

1 n=−∞

q2n2+2n

1−q2n+1. (1.19)

(8)

This doesnot satisfythe definitionof Appell-Lerch series in(1.1). Similarly,there are someHecke-typeserieswhichseemsnotexpressiblebyfa,b,c(x,y,q).Anexampleis(1.8) (see(2.46)).Therefore,weintroducetwonewfunctionsm(x,q,z) andfa,b,c(x,y,q) (see (2.37) and(2.38)).Sincethesummandsinm(x,q,z) andm(x,q,z) differbysigns,wecall m(x,q,z) afalseAppell-Lerchseries.Wewillexpressalmost alltheAppell-Lerchseries, falseAppell-LerchseriesandHecke-typeseriesinthis paperusingthesebuildingblocks m(x,q,z), fa,b,c(x,y,q), m(x,q,z) and fa,b,c(x,y,q). In particular, we use the method in[29] toconvertarepresentation intermsoffa,b,c(x,y,q) toarepresentationinterms of m(x,q,z).

Besides seeing the modularity of a series clearly, there is another advantage for ex- pressingAppell-LerchseriesandHecke-typeseriesusingm(x,q,z) orfa,b,c(x,y,q).That is, wecanuse propertiesof these buildingblocksto transformbetweendifferent forms.

By doing this, we can see if different series representations are equivalent or not. For example, after writing (1.17) and (1.18) in terms of m(x,q,z) and using propertiesof m(x,q,z) establishedin[29],wefindthattheyareinfactequivalent (seeSection7.5).

The paper is organized as follows. In Section 2, we first recall some formulas from the theory of basichypergeometricseries. We also discuss somelimiting casesof Wat- son’s q-analogofWhipple’stheorem.Theformulas listedinSection2.1 willbe used in evaluatingcertainterminated3φ2series,whicharefundamentalforestablishingparame- terizedidentities.TheninSection2.2wegivethedefinitionsandusefulpropertiesofthe building blocksof Appell-Lerch series, false Appell-Lerch series and Hecke-type series.

As examples, we will rewritethe identities(1.8) and (1.9) usingthese building blocks.

InSection3,weshall firstproveTheorems1.1 and1.2. Thenweapply Theorem1.1 in Sections 3-7,where wediscuss mock thetafunctions of orders 2,3,5, 6and 8,respec- tively. For eachmocktheta function,we correspondinglyestablishsomeparameterized identities.Each oftheseidentitiesgivesus arepresentationforthemockthetafunction and producesnewinterestingidentities.

2. Preliminaries

In thissection, we firstcollectsomeuseful identitiesonbasichypergeometricseries.

ThenweintroduceseveralbuildingblocksforexpressingAppell-LerchseriesandHecke- typeseriesand someformulasforsimplifyingsuchexpressions.

Throughoutthispaper,wedenoteζn:=e2πi/n.Forconvenience,weadoptthefollow- ingcompact notation:

(a1, a2,· · ·, am;q)n= (a1;q)n(a2;q)n· · ·(am;q)n, (a1, a2,· · ·, am;q)= (a1;q)(a2;q)· · ·(am;q). WerecalltheJacobi’stripleproductidentity:

j(x;q) := (x)(q/x)(q)= n=−∞

(1)nq(n2)xn.

(9)

Againforconvenience,wedenote

j(x1, x2, . . . , xn;q) :=j(x1;q)j(x2;q)· · ·j(xn;q). (2.1) Assomespecialcases,weletaandmbe rationalnumberswithmpositive anddefine

Ja,m:=j(qa;qm), Ja,m:=j(−qa;qm) andJm:=Jm,3m= (qm;qm). Wewillusethefollowingidentitieswithoutmention(see [29,Section2]).

J0,1= 2J1,4= 2J22

J1, J1,2= J25

J12J42, J1,2= J12

J2, J1,3= J2J32 J1J6, J1,4= J1J4

J2

, J1,6= J1J62 J2J3

, J1,6= J22J3J12 J1J4J6

.

We also recall the classical partial fraction expansion for the reciprocal of Jacobi’s thetaproduct(see[39,p.1] or[42, p.136]):

n=−∞

(1)nq(n+12 )

1−qnz = J13

j(z;q). (2.2)

Herezisnotanintegralpowerofq.Thisformulawillbeusedseveraltimesforsimplifying expressions.

2.1. Usefulbasic hypergeometric seriesidentities

Inthissubsection,wecollectsomeusefulidentities,whichwillbeimportantindeduc- ingAppell-LerchseriesorHecke-typeseriesrepresentationsfromq-seriesoftheEulerian form.

Thebasichypergeometricseriesrφs isdefinedas[23,Eq. (1.2.22)]

rφs

a1,· · ·, ar b1, . . . , bs

;q, z

= n=0

(a1,· · ·, ar;q)n (q, b1,· · ·, bs;q)n

((1)nqn(n1)/2)1+srzn. From[34, Eq.(3.14)],we find

3φ2

q−n, αqn, β c, d ;q, q

= (−c)nqn(n−1)/2(qα/c;q)n

(c;q)n 3φ2

q−n, αqn, d/β

d, qα/c ;q, qβ/c

. (2.3) Wealsoneedthefollowingformula[23,p.28] whichrelatesa3φ2series toa2φ1 series:

3φ2

q−n, b, bzq−n/c 0, bq1−n/c ;q, q

= (c;q)n (c/b;q)n2φ1

q−n, b, c ;q, z

. (2.4)

(10)

Watson’sq-analogofWhipple’stheorem(see,forexample,[23,Eq.(2.5.1)];[32,The- orem5])canbestated inthefollowingform.

Lemma 2.1(Watson).Letnbe anonnegativeinteger.Wehave (αq, αab/q;q)n

(αa, αb;q)n 4φ3

qn, q/a, q/b, αcd/q αc, αd, q2/αabqn ;q, q

(2.5)

=8φ7

qn, q√ a,−q√

a, α, q/a, q/b, q/c, q/d

√α,−√

α, αa, αb, αc, αd, αqn+1 ;q, α2abcdqn−2

.

Intherestofthissubsection,wediscusssomeconsequencesofLemma2.1,whichwill be usedfrequently.

From [34,Proposition2.2] wefind

3φ2

q−n, αqn+1, αcd/q αc, αd ;q, q

=(−α)nqn(n+1)/2 (q;q)n

(qα;q)n

n j=0

(1)j(1−αq2j)(α, q/c, q/d;q)j

(1−α)(q, αc, αd;q)j

(cd/q)jq−j(j+1)/2. (2.6) Lemma 2.2.Forany nonnegative integern,we have

3φ2

q−n, αqn+1, q/c αd, q2/c ;q, d

=(q/c)n (αc, q;q)n (q2/c, αq;q)n

n j=0

(1)j(1−αq2j)(α, q/c, q/d;q)j (1−α)(q, αc, αd;q)j

(cd/q)jqj(j+1)/2. (2.7)

Proof. Replacingαbyαq,β byαcd/q,cbyαcanddbyαdin(2.3),wehave

3φ2

q−n, αqn+1, αcd/q αc, αd ;q, q

=(−αc)nqn(n1)/2(q2/c;q)n (αc;q)n 3φ2

q−n, αqn+1, q/c αd, q2/c ;q, d

. (2.8)

Combining thiswith(2.6),wegetthedesiredidentity.

Lettingα→q1inLemma2.2,wegetthefollowingresult.

Lemma 2.3.Forany nonnegative integern,we have

3φ2

qn, qn, q/c d/q, q2/c ;q, d

= (q/c)n(1−qn)(c/q;q)n (q2/c;q)n

(2.9)

(11)

×

(c+d)q+cd(q−2)−q3 (c−q)(d−q)(1−q) +

n j=2

(1)j(1−q2j−1) (1−qj)(1−qj1)

(q/c, q/d;q)j

(c/q, d/q;q)j(cd)jqj(j+3)/2

.

Lettingd→ ∞in(2.6),wefindthefollowingtransformationformula, whichappears asProposition2.3in[34].

Corollary2.4. Foranynonnegative integer n,wehave

2φ1

qn, αqn+1 αc ;q, c

=(−α)nqn(n+1)/2 (q;q)n

(qα;q)n

n j=0

(1−αq2j)(α, q/c;q)j

(1−α)(q, αc;q)j

(c/α)jq−j(j+1). (2.10)

Lemma2.5. Forany nonnegativeinteger n,wehave

3φ2

qn, αqn+1, q 0, q2/c ;q, q

= (αc, q;q)n

(q2/c, αq;q)n(α/c)nqn2+2n n j=0

(1−αq2j)(α, q/c;q)j

(1−α)(q, αc;q)j cjα−jq−j2−j. (2.11) Proof. Replacing (b,c) by(αb,αc) in (2.4),wehave

3φ2

qn, αb, bzqn/c 0, bq1−n/c ;q, q

= (αc;q)n (c/b;q)n2φ1

qn, αb αc ;q, z

. (2.12)

Now,setting(b,z)= (qn+1,c) in (2.12),weobtain

3φ2

q−n, αqn+1, q 0, q2/c ;q, q

= (αc;q)n (cq−n−1;q)n2φ1

q−n, αqn+1 αc ;q, c

. (2.13) Substituting(2.10) into (2.13),wecompletetheproofof Lemma2.5.

Takingα→q−1 inLemma2.5,we obtain Lemma2.6. Forany nonnegativeinteger n,wehave

3φ2

q−n, qn, q 0, q2/c ;q, q

= (1−qn)(c/q;q)n (q2/c;q)n

cnqn2+n

×

q−2c+cq (1−q)(c−q)+

n j=2

1−q2j1 (1−qj−1)(1−qj)

(q/c;q)j (c/q;q)j

cjq−j2

. (2.14)

(12)

From [34,Proposition2.5] wefind3 (1)n(αq;q)n

(q;q)n qn(n+2)/22φ1

q−n, αqn+1 αc ;q,1

= n j=0

(1−αq2j)(α, q/c;q)j (1−α)(q, αc;q)j

qj2j(αc)j. (2.15)

Lemma 2.7.Forany nonnegative integern,we have

3φ2

qn, αqn+1, q/c 0, q2/c ;q, q

= (αc, q;q)n

(q2/c, αq;q)n(q/c)n n j=0

(1−αq2j)(α, q/c;q)j

(1−α)(q, αc;q)j (αc)jqj2−j. (2.16) Proof. Taking(b,c,z)= (αqn+1,αc,1) in(2.4),weobtain

3φ2

qn, αqn+1, q/c 0, q2/c ;q, q

= (αc;q)n

(cq−n−1;q)n2φ1

qn, αqn+1 αc ;q,1

. (2.17) Togetherwith (2.15),wecomplete theproof ofLemma2.7.

Wewill alsoneedtheq-Pfaff–Saalschützsummationformula[23,p.40,Eq. (2.2.1)]:

3φ2

qn, aqn, aq/bc aq/b, aq/c ;q, q

= (b, c;q)n

(aq/b, aq/c;q)n aq

bc n

. (2.18)

2.2. BuildingblocksforAppell-Lerchseries,falseAppell-Lerch seriesandHecke-type series

Following HickersonandMortenson[29], wedefine m(x, q, z) := 1

j(z;q) r=−∞

(1)rq(r2)zr

1−qr−1xz, (2.19)

where x,z∈C:=C\{0}withneitherz norxzanintegralpowerofq. Let fa,b,c(x, y, q) :=

sg(r)=sg(s)

sg(r)(1)r+sxrysqa(r2)+brs+c(s2). (2.20)

Here x,y∈C and sg(r):= 1 for r≥0 andsg(r):=1 forr <0.

3 Thereisatypoin[34] thatqn(n+1)/2shouldbereplacedby(−1)nqn(n+1)/2.

(13)

Intermsoftheabovebuildingblocks,identities(1.3) and(1.5) canbe rewritten(see [29,Eq.(5.4)])as

f(3)(q) = 2m(−q, q3, q) + 2m(−q, q3, q2) = 4m(−q, q3, q) +J3,62

J1 (2.21) and[29,Eq. (8.12)]

f0(5)(q) = 1 J1

f3,7,3(q2, q2, q) +q3f3,7,3(q7, q7, q) = 1 J1

f3,7,3(q5/8,−q5/8,−q1/4).

(2.22) HickersonandMortensonwerealsoabletoconvert(2.22) intoanexpressioninterms of m(x,q,z) (see [29, Corollary 1.12]). Since the modular properties of m(x,q,z) and fa,b,c(x,y,q) have been well studiedin [49], it will be easier for us to understand the modularpropertiesofanAppell-Lerchseries orHecke-typeseriesafterexpressing them usingthese buildingblocks.

In this paper, we will also express the Appell-Lerch series or Hecke-type series we encounteredintermsofthesebuildingblocks.Insomecases,theexpressionsinm(x,q,z) orfa,b,c(x,y,q) maybefurthersimplified.Wecollectthefollowingpropertiesofm(x,q,z) and fa,b,c(x,y,q), which will be helpful for simplifyingthe final expressions. Following [29],theterm“generic”willbeused tomeanthattheparametersdonotcausepolesin theAppell-Lerchsumsor inthequotientsofthetafunctions.

Lemma2.8. (Cf.[29,Proposition 3.1].) Forgenericx,z∈C

m(x, q, z) =m(x, q, qz), (2.23)

m(x, q, z) =x−1m(x−1, q, z−1), (2.24)

m(qx, q, z) = 1−xm(x, q, z). (2.25)

Lemma2.9. (Cf.[29,Theorem3.3].) Forgenericx,z0,z1C

m(x, q, z1)−m(x, q, z0) = z0J13j(z1/z0;q)j(xz0z1;q)

j(z0;q)j(z1;q)j(xz0;q)j(xz1;q). (2.26) Lemma2.10.(Cf. [29,Theorem3.5].) Forgenericx,z,zC

m(x, q, z) =

n1 r=0

q(r+12 )(−x)rm(−q(n2)−nr(−x)n, qn2, z)+

zJn3 j(xz;q)j(z;qn2)

n1

r=0

q(r2)(−xz)rj(−q(n2)+r(−x)nzz;qn)j(qnrzn/z;qn2) j(−q(n2)(−x)nz, qrz;qn)

. (2.27)

(14)

As acorollaryofthis powerfulformula,wehavethefollowing result.

Lemma 2.11.(Cf.[29,Corollary3.7].) Forgenericx,z∈C

m(x, q, z) =m(−qx2, q4, z4)−x qm(−x2

q , q4, z4) J2J4j(−xz2;q)j(−xz3;q) xj(xz;q)j(z4;q4)j(−qx2z4;q2).

(2.28) Thefollowing lemmacontainsusefulformulas forsimplifyingexpressionsintermsof fa,b,c(x,y,q).

Lemma 2.12.(Cf.[29,Propositions6.1-6.2,Corollary 6.4].)Forx,y∈C fa,b,c(x, y, q) =fa,b,c(−x2qa,−y2qc, q4)−xfa,b,c(−x2q3a,−y2qc+2b, q4)

−yfa,b,c(−x2qa+2b,−y2q3c, q4) +xyqbfa,b,c(−x2q3a+2b,−y2q3c+2b, q4), (2.29) fa,b,c(x, y, q) =−qa+b+c

xy fa,b,c(q2a+b/x, q2c+b/y, q), (2.30) fa,b,c(x, y, q) =−yfa,b,c(qbx, qcy, q) +j(x;qa), (2.31) fa,b,c(x, y, q) =−xfa,b,c(qax, qby, q) +j(y;qc). (2.32) In[29, Eq.(4.6)] itwasdefinedforxbeingneither0noranintegralpowerofqthat

h(x, q) := 1 j(q;q2)

n=−∞

(1)nqn(n+1)

1−qnx . (2.33)

It wasalsoprovedthatforgenericx∈C [29,Proposition4.4]

h(x, q) =−x−1m(x−2q, q2, x). (2.34) Meanwhile, Hickerson and Mortenson [29, Eq. (4.8)] also defined for x2 being neither zeronoranintegralpowerofq2that

k(x, q) := 1 xj(−q;q4)

n=−∞

qn(2n+1)

1−q2nx2. (2.35)

It wasprovedthat[29,Eq.(4.10)]

xk(x, q) =m(−x2, q, x2) + J14

2J22j(x2;q). (2.36) Wewill use(2.34) and(2.36) later.

(15)

Whilem(x,q,z) andfa,b,c(x,y,q) canbeusedtoexpressAppell-Lerchseriesandabig familyofHecke-typeseriesweencountered,therearestillsomeserieswhichareunlikely toberepresentedbythem.Fortheseserieswehavetointroducetwonewbuildingblocks.

Wedefineforx,z∈C withxznotbeinganintegralpowerofqthat m(x, q, z) =

r=−∞

(1)rsg(r)q(r2)zr

1−qr−1xz . (2.37)

Thiscloselyresembles(2.19) exceptthatwedonothaveafactorofinfiniteproductand wehaveintroducedsg(r) in thesummand.

Inawaysimilar to(2.20),wedefine fa,b,c(x, y, q) :=

sg(r)=sg(s)

(1)r+sxrysqa(r2)+brs+c(s2). (2.38) The difference between this function and fa,b,c(x,y,q) is that we have removed sg(r) fromthesummand.

WehavesomeformulassimilartoLemma2.12forfa,b,c(x,y,q).

Lemma2.13.Wehave

fa,b,c(x, y, q) =fa,b,c(−x2qa,−y2qc, q4)−xfa,b,c(−x2q3a,−y2qc+2b, q4)

−yfa,b,c(−x2qa+2b,−y2q3c, q4) +xyqbfa,b,c(−x2q3a+2b,−y2q3c+2b, q4), (2.39) fa,b,c(x, y, q) =−qa+b+c

xy fa,b,c(q2a+b/x, q2c+b/y, q). (2.40) Proof. Decomposethedefinition(2.38) dependingontheparityofrands,weget(2.39).

Replacing(r,s) by(−r−1,−s−1) weget(2.40).

Atthismoment,themodularpropertiesofm(x,q,z) andfa,b,c(x,y,q) areunclearand deserveinvestigationinthefuture.Inparticular, m(x,q,z) doesnotmeetthedefinition of Appell-Lerch series given in (1.1). However, since the summands in m(x,q,z) and m(x,q,z) onlydiffer by signs, which is similar to the case of false theta functions, we wouldliketocall m(x,q,z) asafalse Appell-Lerchseries.

Specialcases ofthefunctionsm(x,q,z) and fa,b,c(x,y,q) existintheliterature. For example,WangandYee [45,Eqs.(5.1),(5.5)] establishedthefollowingidentity

n=1

(1)n1qn(q2;q2)n−1 (−q2;q2)n

= n=1

qn(n+1)/2 1 +q2n

−1 n=−∞

qn(n+1)/2

1 +q2n . (2.41) Upondecomposingthesumsontherightsideaccordingtotheparityofn,wecanwrite therightsideas

Références

Documents relatifs

The goal of this paper is to prove that the quotient of a first order Appell-Lerch series by a suitable theta-function can be written, near every given root of unity, as the sum of

It is possible to make this analytic proof work in the algebraic set-up [M1] of theta functions over any algebraically closed field of characteristic different from two.. However,

Let G 2 be the exceptional Lie group of automorphisms of the complex Cayley algebra and C be a smooth, connected, projective curve of genus at least 2.. Using the map obtained

It is natural to introduce for a curve C the integer r(C) defined as the minimal rank for which there exists a semi-stable rank-r(C) vector bundle with trivial determinant over

D In the same way that we extended constructions involving trigonometric polynomials to more general functions in proofs like that of Theorem 2 from Lemma 20 so we can

Every quasi p-group ~i.e. a finite group generated by its p-Sylov sub- groups) is the Galois group of an unramified covering of the affine line in. characteristic

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

As mentioned in the introduction, Z = (0ev) C A2,n is the locus of all the principally polarized abelian surfaces which are isomorphic to a product of two elliptic curves (with