• Aucun résultat trouvé

Permafrost: distribution and relation to environmental factors in the Hudson Bay lowland

N/A
N/A
Protected

Academic year: 2021

Partager "Permafrost: distribution and relation to environmental factors in the Hudson Bay lowland"

Copied!
38
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Symposium on the Physical Environment of the Hudson Bay Lowland

[Proceedings of the], pp. 35-68, 1973-03-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=de2095a3-557b-4bd5-8474-5a00f2a398b6

https://publications-cnrc.canada.ca/fra/voir/objet/?id=de2095a3-557b-4bd5-8474-5a00f2a398b6

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Permafrost: distribution and relation to environmental factors in the

Hudson Bay lowland

(2)
(3)
(4)

PERMAFROST

-

DISTRLBUTION AND RELATION T O

ENVIRONMENTAL FACTORS IN THE HUDSON BAY LOWLAND

R. J . E. Brown 1

SYNOPSIS

The Hudson Bay Lowland l i e s m o s t l y in the p e r m a f r o s t r e - gion of Canada. The distribution of p e r m a f r o s t v a r i e s f r o m d i s - continuous i n the southeast, n o r t h of the 30 "F m e a n annual a i r i s o t h e r m , t o continuous i n the northwest, between the 2 5 ° F and 2 0 ° F m e a n annual a i r i s o t h e r m s . The active l a y e r v a r i e s f r o m 1 t o 3 f e e t , and p e r m a f r o s t r a n g e s in t h i c k n e s s f r o m a f e w inches a t the southern l i m i t t o 200 feet i n the continuous zone a t Churchill. In the discontinuous zone, p e r m a f r o s t i s found in p e a t p l a t e a u s and p a l s a s which a r e p r e v a l e n t , but it d o e s not o c c u r in intervening wet d e p r e s s i o n s n o r in beach r i d g e s o r r i v e r banks. P e r m a f r o s t e x i s t s e v e r y w h e r e beneath the land s u r f a c e in the continuous zone which f o r m s a n a r r o w s t r i p along t h e Hudson Bay coast. The m o s t distinctive p e r m a f r o s t f e a t u r e s a r e p a l s a s of varying s i z e t o elevated p e a t p l a t e a u s exceeding 10 f e e t in height covering s e v e r a l a c r e s . They f o r m v e r y d i s - tinctive a i r photo p a t t e r n s and t h e i r o r i g i n a p p e a r s r e l a t e d t o thin snow cover.

DISTRLBUTION O F PERMAFROST

T h e Hudson Bay Lowland l i e s a l m o s t e n t i r e l y within t h e p e r m a f r o s t region of Canada (Brown, 1968) ( F i g u r e 1). The

southern boundary of t h e Lowland extends along t h e fiftieth p a r a l l e l and the southern l i m i t of p e r m a f r o s t i s located a t

approximately latitude 51 ON. F r o m the southern t i p of

J a m e s Bay the Lowland extends in a n o r t h w e s t e r l y d i r e c t i o n t o

latitude 58 ON. About one -half of the p e r m a f r o s t region of the

'

R e s e a r c h officer, Geotechnical Section, Division of Building

R e s e a r c h , National R e s e a r c h Council of Canada, Ottawa, Ontario.

(5)
(6)

Lowland i s in the discontinuous zone and one-half in the con- tinuous zone. The distribution of p e r m a f r o s t i s notable f o r

s e v e r a l r e a s o n s . F i r s t , the m o s t s o u t h e r l y l i m i t of p e r m a - f r o s t in Canada (excluding the w e s t e r n C o r d i l l e r a region) i s at the south end of J a m e s Bay n e a r Moosonee. Second, the d i s - continuous zone i s n a r r o w e r than anywhere e l s e in Canada, being only about 250 m i l e s wide in c o n t r a s t t o about 500 m i l e s in the Mackenzie R i v e r region. T h i r d , the continuous p e r m a - f r o s t zone r e a c h e s i t s m o s t southerly extent in Canada at the n o r t h end of J a r n e s Bay (Brown, 1967).

Within the p e r m a f r o s t region of the Lowland, perenially f r o z e n ground v a r i e s f r o m s c a t t e r e d i s l a n d s in the south t o

continuous in the north. In the southern f r i n g e of the d i s -

continuous zone, p e r m a f r o s t islands v a r y in extent f r o m l e s s than 50 feet t o s e v e r a l a c r e s . The t h i c k n e s s of t h e s e patches v a r i e s f r o m a few i n c h e s to 1 o r 2 feet at the southern l i m i t of the p e r m a f r o s t region t o t e n s of f e e t w h e r e the distribution

becomes widespread in the n o r t h e r n portion of the discontinuous zone. No information i s available on the thickness of p e r m a f r o s t a t any stations in Ontario, but t h i c k n e s s e s of 100 feet have been encountered at Gillarn in n o r t h e a s t e r n Manitoba w h e r e p e r m a - f r o s t i s widespread. Northward, the p e r m a f r o s t i s continuous

reaching depths of 200 f e e t at Churchill. T h e continuous zone i s g e n e r a l l y m u c h thinner in the Lowland than e l s e w h e r e in Canada; it i s confined t o a n a r r o w c o a s t a l s t r i p . Because of i t s proximity t o Hudson Bay, the p e r m a f r o s t , although continuous, i s probably thin ( p e r h a p s only 100 feet o r l e s s in Ontario) and wedges out a t the s h o r e .

All known o c c u r r e n c e s of p e r m a f r o s t in the discontinuous zone o c c u r in peatlands which c o m p r i s e a l l of the t e r r a i n of the Hudson Bay Lowland except r i v e r banks, beach r i d g e s and a few r o c k o u t c r o p s south of Winisk. S e v e r a l of the m a j o r r i v e r s

flowing e a s t w a r d into J a m e s Bay

-

Albany, Attawapiskat and

Ekwan

-

have n o r t h - and south-facing banks. It could be

expected that p e r m a f r o s t might e x i s t in the north-facing banks

of t h e s e r i v e r s but none h a s been r e p o r t e d . In the continuous

zone, p e r m a f r o s t o c c u r s e v e r y w h e r e beneath the land s u r f a c e .

CHARACTERISTICS OF P E W A F R O S T

T r e e growth in the Lowland c o n s i s t s of s c a t t e r e d t o d e n s e s p r u c e , varying in height f r o m 2 t o 40 f e e t , and t a m a r a c k . A l d e r and willow provide the under-growth. A r e a s of burned

(7)

t r e e s a r e p r e v a l e n t e s p e c i a l l y on well d r a i n e d peat p l a t e a u s and p a l s a s . The ground vegetation i s a m o s a i c of Sphagnum,

f e a t h e r and o t h e r m o s s e s , L a b r a d o r t e a , g r a s s and m a r s h sedge in v a r i o u s combinations. The m i c r o - r e l i e f r a n g e s f r o m f l a t t o v e r y hummocky. Individual hummocks v a r y in s i z e t o a m a x i m u m of 3 f e e t high and 4 f e e t wide. V a r i a t i o n s in e l e v a - tion f r o m one a s s o c i a t i o n t o a n o t h e r r a n g e through s e v e r a l feet. P e a t p l a t e a u s r i s i n g 3 t o 4 f e e t above t h e surrounding p o o r l y d r a i n e d a r e a s a r e p r e v a l e n t . P a l s a s up t o 12 f e e t o r m o r e in height o c c u r in l a r g e n u m b e r s i n t h e Hudson Bay Lowland. S u r f a c e and s u b s u r f a c e d r a i n a g e i s v a r i a b l e . Standing w a t e r i s usually a s s o c i a t e d with m a r s h sedge a r e a s and m a n y of the lowest lying Sphagnum a r e a s ; individual h u m m o c k s , peat p l a t e a u s , and p a l s a s a r e d r i e r . Depth t o t h e m i n e r a l s o i l ( t h i c k n e s s of m o s s / l i c h e n and p e a t ) v a r i e s f r o m a m i n i m u m of 1 foot t o d e p t h s exceeding 10 feet. Hustich (1957) h a s a s c r i b e d

an a v e r a g e value of annual p e a t accumulation in t h e Hudson Bay

Lowland of about 1/20 inch b a s e d on n u m e r o u s observations. M i n e r a l s o i l s a r e predominantly fine - g r a i n e d s i l t s and c l a y s .

T h e depth t o t h e p e r m a f r o s t t a b l e r a n g e s f r o m a n o b s e r v e d m i n i m u m of 1 foot t o a m a x i m u m of about 3 feet. T h i s s i t u a - tion p r e v a i l s throughout t h e Lowland f r o m Moosonee in t h e

southeast t o C h u r c h i l l in the northwest. L o c a l d i f f e r e n c e s in

m o i s t u r e content and r e l a t e d t h e r m a l conductivity of the peat c a u s e g r e a t e r v a r i a t i o n s in t h e depth of thaw t h a n regional c l i m a t i c d i f f e r e n c e s . T h e t h i c k n e s s of p e r m a f r o s t v a r i e s f r o m l a y e r s a few i n c h e s t h i c k a t t h e s o u t h e r n l i m i t t o about 200 feet a t Churchill. Ground i c e o c c u r s m a i n l y in h o r i z o n t a l l a y e r s ranging f r o m h a i r l i n e t o about 1 inch in t h i c k n e s s . One excep- t i o n t o t h i s w a s a l a y e r of i c e 3 f e e t t h i c k encountered in t h e p a l s a i n F i g u r e 2. I c e i s a l s o found in the f o r m of s m a l l p e l l e t s and o t h e r r a n d o m inclusions.

M i c r o - r e l i e f in t h e f o r m of hummocks, peat p l a t e a u s , and

f r e q u e n t l y p a l s a s a r e widespread. T h e Sphagnum i s hurrmocky

r e g a r d l e s s of whether o r not p e r m a f r o s t i s p r e s e n t . P e a t p l a t e a u s and p a l s a s always indicate the e x i s t e n c e of p e r m a f r o s t and both t y p e s of f e a t u r e s a p p e a r t o be r e l a t e d in origin and

development. In the Hudson Bay Lowland, n u m e r o u s a r e a s of

coalescing p a l s a s e x i s t which a r e v i r t u a l l y indistinguishable f r o m p e a t plateaus. West of Winisk, f o r e x a m p l e , m a t u r e peat p l a t e a u s with lichen c o v e r ( F i g u r e 3) w e r e o b s e r v e d t o be

s i m i l a r in o r i g i n and a p p e a r a n c e of coalescing p a l s a s in F i g u r e s

(8)

F i g u r e 2

-

Stop No. 5

-

S m a l l youthful p a l s a s containing p e r m a - f r o s t in wet peatland with no p e r m a f r o s t located a t t h e s o u t h e r n l i m i t of discontinuous zone in Hudson

Bay Lowland. The peat in the l a r g e p a l s a in t h e

f o r e g r o u n d i s 5 f t 2 in. thick overlying g r e y clayey s i l t with fine sand. T h e depth t b the p e r m a f r o s t t a b l e in t h e c e n t r e of t h i s p a l s a i s 1 f t 1 in. and the p e r m a f r o s t l a y e r i s 4 ft 2 in. thick. 1 4 September

(9)

F i g u r e 3

-

A e r i a l view f r o m altitude of 500 f t of m a t u r e p a l s a s , c o a l e s c e d p a l s a s and p e a t plateaus i n t e r s p e r s e d with ponds and s m a l l shallow l a k e s in Hudson Bay

Lowland 20 m i l e s w e s t of Winisk. 17 S e p t e m b e r

(10)

F i g u r e 4

-

Stop No. 9

-

M a t u r e c o a l e s c e d p a l s a s f o r m i n g peat p l a t e a u s in Hudson Bay Lowland. Note burned s p r u c e t r e e s and d e n s e cover of L a b r a d o r t e a . Ground s u r f a c e i s v e r y hummocky and c o v e r e d with Sphagnum and lichen below which i s p e a t t o a depth

of 4 ft 9 in. overlying g r e y s i l t y clay with sand and

stones. The depth t o the p e r m a f r o s t table i s 2 ft

8 in. No p e r m a f r o s t o c c u r s in the s e d g e - c o v e r e d

(11)

F i g u r e 5

-

A e r i a l view f r o m altitude of 500 f t of p a l s a s and

I peat plateaus at S t o p N a

9.

Note wet patterned fen

1 with spruce islands in background. 16 September

1

(12)

The peat p l a t e a u s and p a l s a s in the Hudson Bay Lowland a r e the s i t e s of the w o r s t f o r e s t f i r e s b e c a u s e they a r e t h e d r i e s t a r e a s and support the m o s t vigorous t r e e and l i c h e n growth. One peat plateau south of F o r t S e v e r n which e x p e r i - enced a v e r y r e c e n t b u r n w a s 3 f e e t high with r e c e n t l y burned dead s p r u c e up t o 15 f e e t . The ground c o v e r c o n s i s t e d of c h a r r e d Sphagnum and burned lichen, with a few p a t c h e s of unburned Sphagnum. The f i r e had burned the top 1/2 inch of Sphagnum and the top 1 inch of l i c h e n down t o the wet b a s a l l a y e r . T h e depth t o the p e r m a f r o s t t a b l e in the p e a t w a s 1 foot, t h e s a m e a s in the surrounding unburned Sphagnum-covered a r e a s . It a p p e a r e d that t h e unburned peat p r o t e c t e d the p e r m a - f r o s t f r o m t h e h e a t of the f i r e and t h e i n c r e a s e d s o l a r h e a t input due to the b u r n e d black s u r f a c e .

PALSAS

P a l s a s a r e v e r y prevalent in t h e Hudson Bay Lowland. The p a l s a s shown in F i g u r e 2 constitute the m o s t s o u t h e r l y o c c u r r - ence of p e r m a f r o s t . T h e s e p a l s a s a r e s m a l l , being in t h e e a r l y

stage of development. They v a r y in s i z e f r o m a few s q u a r e

f e e t t o t h e l a r g e s t yet s e e n m e a s u r i n g 31 f e e t long by 12 f e e t wide by 2 f e e t high and a r e s u r r o u n d e d by w a t e r . Living vegetation i s a b s e n t except f o r a few willow s h r u b s and sedge p l a n t s , consisting of b a r e sedge peat. S u b s u r f a c e exploration in the l a r g e s t p a l s a r e v e a l e d a l a y e r of peat 5 f e e t 2 i n c h e s thick overlying g r e y clayey s i l t with fine sand down t o t h e 7-feet 4 - i n c h e s depth. Below t h i s depth the soil i s stoney. The depth t o t h e p e r m a f r o s t table v a r i e d f r o m 1 foot 1 inch in the m i d d l e of t h i s p a l s a t o 2 f e e t 1 inch a t t h e w a t e r ' s edge. T h e p e r m a f r o s t c o r e v a r i e s i n t h i c k n e s s f r o m 4 f e e t 2 inches, including a l a y e r of i c e 3 f e e t t h i c k in t h e middle of the p a l s a t a p e r i n g t o 7 i n c h e s a t the w a t e r ' s edge. T h e p e r m a f r o s t wedges out a few i n c h e s beyond the edge of the p a l s a u n d e r the w a t e r . No p e r m a f r o s t o c c u r s in the surrounding a r e a s u n d e r w a t e r .

M a t u r e p a l s a s ( F i g u r e s 4 a n d 5) stand a s high a s 10 f e e t above the surrounding peatland s u r f a c e and support a t r e e growth of s c a t t e r e d s p r u c e up t o 10 feet. The p r e s e n c e of m a n y

burned t r e e s both standing and lying on the ground indicated a p r e v i o u s dense growth of m a t u r e s p r u c e . T h e ground c o v e r c o n s i s t s of a l m o s t continuous l i c h e n and dense L a b r a d o r t e a . The lichen h a s undergone c o n s i d e r a b l e biological oxidation and

(13)

the ground surface i s v e r y hummocky and cracked. The peat

v a r i e s in thickness f r o m 4 f e e t

9

inches t o 2 f e e t in local

hollows overlying g r e y silty clay with a m i x t u r e of sand and stones. The depth to the p e r m a f r o s t table was observed t o

be 2 feet 8 inches but no p e r m a f r o s t was found in the local

hollows. Ice was found in the peat and m i n e r a l soil.

A l a r g e 20-feet high m a t u r e p a l s a was examined between the Ekwan and Attawapiskat R i v e r s about 100 m i l e s west of

J a m e s Bay. The t r e e growth, consisting of spruce up t o

30 f e e t high, was the m o s t vigorous of a l l the p a l s a s examined. The l a r g e number of dead m a t u r e t r e e s lying on the ground indicated previous dense t a l l growth. Several depressions up t o 20 feet in d i a m e t e r and about 12 f e e t deep o c c u r r e d in the p a l s a supporting s c a t t e r e d spruce 2 f e e t high. The ground cover of the p a l s a consisted of hummocky Sphagnum, s c a t t e r e d

lichen and Labrador tea. In the d e p r e s s i o n s the ground cover

was Sphagnum, sedge and ground birch, and the w a t e r stood a t the ground surface. The peat in the p a l s a was about 7 f e e t

i thick a s was that in the depressions overlying g r e y clayey silt

with stones. The depth t o the p e r m a f r o s t table was 2 feet

3 inches in the a r e a s of growing t r e e s and 2 feet 9 inches in

the burned a r e a s . No p e r m a f r o s t was encountered in the

I depressions.

I

In addition t o the p a l s a s described above, m a n y o t h e r s in all

stages of development exist in the Hudson Bay Lowland. Near the coast of J a m e s Bay, between the Albany and Attawapiskat R i v e r s , t h e r e a r e m a n y s m a l l s c a t t e r e d palsas. Inland f r o m J a m e s Bay and south of the Attawapiskat R i v e r , s e v e r a l old p a l s a s , partially destroyed by thawing and slumping, w e r e observed. No newly forming ones w e r e seen in t h i s a r e a south t o M i s s i s s a Lake a t the southern l i m i t of the p e r m a f r o s t s i m i l a r t o those described in F i g u r e 2 n e a r Moosonee. North of the Attawapiskat River, p a l s a s s e e m to exist m o s t l y in the c e n t r e s of shallow ponds. Many a l s o occur in the vicinity of the rock outcrops a t Sutton Lake and Hawley Lake. South of F o r t Severn in the n o r t h e r n p a r t of the discontinuous p e r m a f r o s t zone extensive p a l s a s up to 10 f e e t occur in which the p e r m a f r o s t

probably exceeds 30 feet in thickness. L a r g e coalescing ones

e x i s t n e a r F o r t Severn. Small developing p a l s a s occur in a few l a k e s in the tundra coastal s t r i p on Hudson Bay between

F o r t Severn and Winisk. Northward in Manitoba, l a r g e coalesc- ing lichen-covered peat plateaus and p a l s a s cover m o s t of the t e r r a i n . One unusual f e a t u r e i s the p r e s e n c e of p a r a l l e l s t r i n g s

(14)

of peat plateaus and p a l s a s at York F a c t o r y on the peninsula be- tween the mouths of the Nelson and Hayes Rivers. These fea- t u r e s develop in concentric rows on strand lines a s the penin- sula e m e r g e s due t o isostatic rebound. No p e r m a f r o s t f o r m s in the intervening elongated depressions.

POLYGONS

Polygons and polygonal c r a c k s , another type of feature associated with p e r m a f r o s t , occur widely in the continuous zone. They have been observed from Cape Henrietta M a r i a in the e a s t to Churchill in the northwest. They a r e found in beach ridges, and lake bottoms and, n e a r Churchill, they a r e wide- s p r e a d in peatlands. They appear to be related t o t h e r m a l con- traction of the ground and the development of ice wedges.

AIR PHOTO PATTERNS

The m o s t notable feature of the a i r photographs i s the variety of patterns in the peatlands of the Hudson Bay Lowland. The lack of relief and poor drainage contribute to the jumbled appearance of surface vegetation and other t e r r a i n features. Within t h i s broad framework, the recognition of such p e r m a f r o s t features a s peat plateaus and p a l s a s i s hindered by t h e i r small size on the available photographs, and t h e i r similarity t o other

t e r r a i n features which have no permafrost. Two photographs

show some of the p a t t e r n s including p e r m a f r o s t features of the

Hudson Bay Lowland ( F i g u r e s 6 and 7).

The f i r s t a e r i a l photograph ( F i g u r e 6) was taken about 35 m i l e s northwest at Attawapiskat. The entire a r e a i s peatland in which t h r e e m a i n patterns a r e evident:

1. Medium g r e y with smooth texture covering the central

and southwest portions of the photograph on both sides

of the s t r e a m which flows f r o m west to east. This i s a

low, wet, poorly drained flat sedge-covered a r e a . The black peppery flecks a r e s m a l l pools of water l e s s than 50 feet in diameter. No p e r m a f r o s t o c c u r s in t h i s a r e a .

2 . Fine network of closely spaced d a r k g r e y to black flecks

in a light g r e y mesh-like m a t r i x covering the northwest and e a s t e r n q u a r t e r of the photograph. This type of a r e a t e r m e d "patterned fen with flarks" by ~ j b ' r s (1959b)

(15)

F i g u r e 6

-

Section of RCAF a i r photo A14961 -128 a t Stop NO. 9 in the Hudson Bay Lowland northwest of Attawapiskat.

(16)

F i g u r e 7

-

Section of RCAF a i r photo A14137-65 w e s t of Winisk in t h e Hudson B a y Lowland.

(17)

i s low, wet, poorly drained.and flat, and consists of shallow pools up t o 100 f e e t in d i a m e t e r separated by low n a r r o w sedge -covered peat ridges about 1 foot high. The d a r k g r e y c i r c u l a r a r e a s in the southeast c o r n e r a r e spruce islands up t o s e v e r a l hundred feet in size. No p e r m a f r o s t was encountered in t h i s type of t e r r a i n .

3. Light g r e y c i r c u l a r and i r r e g u l a r l y shaped a r e a s with white patches adjacent to the s t r e a m and bordering P a t t e r n 2 in the southeast portion of the photograph. These a r e a s a r e l a r g e m a t u r e p a l s a s 15 feet high and high peat plateaus and coalesced p a l s a s ( F i g u r e s 4 and 5). The light g r e y tone i s caused by the dense cover of Labrador t e a growing on the lichen cover of the palsas. P e r m a f r o s t does occur in these f e a t u r e s .

The second a e r i a l photograph ( F i g u r e 7) was taken 60 m i l e s west of Winisk n e a r the treeline. The entire a r e a i s peatland in which two main p a t t e r n s a r e evident:

1. Light g r e y t o white with fine t o medium texture. This

p a t t e r n o c c u r s in irregularly-shaped a r e a s varying g r e a t l y in size f r o m s e v e r a l hundred feet to 1/2 mile. These a r e a s a r e peat plateaus, ridges and mounds rising 5 t o 10 feet above the neighbouring ponds and s m a l l lakes. The light g r e y a r e a s support low stunted spruce growing on Sphagnum-lichen, and the white a r e a s a r e lichen. P e r m a f r o s t o c c u r s in t h i s pattern (Figure 3). 2. Network of closely spaced d a r k g r e y t o black i r r e g u l a r l y

shaped flecks and minute spots in a medium g r e y m e s h - like m a t r i x producing a p a t t e r n s i m i l a r to P a t t e r n 2 of

the f i r s t a e r i a l photograph (Figure

6).

This i s also

patterned fen with f l a r k s but no spruce islands occur here. This pattern i s found mainly along the west edge of the photograph but s m a l l a r e a s a r e scattered through- out. It i s unlikely that p e r m a f r o s t e x i s t s in t h i s pattern.

RELATION OF PERMAFROST TO ENVIRONMENTAL FACTORS Climate

The continuous p e r m a f r o s t zone throughout Canada, except in the Hudson Bay Lowland, l i e s north of the 1 7 ° F m e a n annual a i r

(18)

i s o t h e r m which corresponds roughly t o a m e a n annual ground t e m p e r a t u r e of 23°F. In the Lowland, however, the n a r r o w s t r i p along the coast of Hudson Bay a p p e a r s t o lie in the con- tinuous p e r m a f r o s t zone, according to field observations, but in fact i t l i e s south of the 20°F m e a n annual a i r isotherm. This discrepancy m a y be r e l a t e d in s o m e m a n n e r to the f a c t that the a r e a i s situated north of the treeline. On the other hand, f u r t h e r field observations m a y r e v e a l discontinuities in the p e r m a f r o s t placing i t in the discontinuous zone.

T e r r a i n

The m e c h a n i s m of p e r m a f r o s t formation in peat t e r r a i n a p p e a r s t o be related t o changes in the t h e r m a l p r o p e r t i e s of the peat through the y e a r (Brown, 1966; Tyrtikov, 1959). During the s u m m e r the surface l a y e r s of peat become d r y through evaporation. The t h e r m a l conductivity of the peat i s low and warming of the underlying s o i l i s impeded. The lower peat l a y e r s gradually thaw downward and become wet a s the ice l a y e r s in the seasonably f r o z e n l a y e r m e l t . In the autumn t h e r e t e n d s t o be m o r e m o i s t u r e in the surface l a y e r s of the peat because of a d e c r e a s e d evaporation r a t e . When i t f r e e z e s the t h e r m a l conductivity of the peat i s i n c r e a s e d considerably. Thus the peat o f f e r s l e s s r e s i s t a n c e t o the cooling of the underlying soil in winter than t o the warming of i t in s u m m e r . The m e a n ground t e m p e r a t u r e under peat will t h e r e f o r e be lower than under adjacent a r e a s without peat. When conditions under the peat a r e such that the ground t e m p e r a t u r e r e m a i n s below 32°F throughout the y e a r , p e r m a f r o s t r e s u l t s and i s maintained a s long a s the t h e r m a l conditions leading t o t h i s lower t e m p e r a t u r e p e r s i s t .

The o c c u r r e n c e of p e r m a f r o s t in the discontinuous zone a p p e a r s t o be closely related t o drainage. The importance of water conditions i s shown by the absence of p e r m a f r o s t in a r e a s where the w a t e r table i s a t the ground s u r f a c e , even if the ground cover c o n s i s t s of Sphagnum. P e r m a f r o s t o c c u r s , however, in the m i c r o - r e l i e f peat f e a t u r e s such a s mounds, ridges, plateaus and p a l s a s which r i s e above the wet a r e a s . It i s suggested that these f e a t u r e s a r e morphological variations of the s a m e p r o c e s s , i. e . , the s a m e m e c h a n i s m i s responsible f o r the formation of peat plateaus and p a l s a s . The European l i t e r a t u r e a p p e a r s t o

support t h i s contention (PIyavchenko, 1955; Svensson, 1961

-

1962;

Tyrtikov, 1966). They appear t o p a s s through a life cycle of development and degradation and all s t a g e s occur in the Hudson Bay Lowland.

(19)

Initially, t h e s e f e a t u r e s a p p e a r a s low mounds of upwarping of peat protruding above w a t e r l e v e l in the middle of shallow

ponds only a few inches deep ( F i g u r e 2). The m e c h a n i s m of

t h e i r f o r m a t i o n and control of t h e i r distribution i s u n c e r t a i n , but it i s suggested that the pond f r e e z e s t o the bottom in winter and the underlying s a t u r a t e d peat i s domed up at random l o c a - t i o n s by intensive f r o s t action and i c e l e n s growth. When elevated above the pond level, the d r y l a y e r of exposed peat

insulates the underlying f r o z e n m a s s from s u m m e r thawing,

thus m a r k i n g the initiation of a p e r e n n i a l l y f r o z e n o r p e r m a f r o s t

condition. The elevation of the peat s u r f a c e above the g e n e r a l

l e v e l of the surrounding flat l e v e l s u r f a c e devoid of relief exposes it t o winter winds which reduce o r r e m o v e the insulating snow c o v e r . Winter f r o s t penetration i s t h e r e f o r e g r e a t e r than in the surrounding low, flat a r e a s , thus contributing t o f u r t h e r p e r m a - f r o s t accumulation.

A s the peat continues t o accumulate y e a r a f t e r y e a r a c c o m - panied by the i n c r e a s e in p e r m a f r o s t thickness e a c h w i n t e r , the mounds grow and c o a l e s c e t o f o r m plateaus. In the youthful

s t a g e , t h e r e i s l i t t l e o r no living vegetation on the peat surface.

During m a t u r i t y , Sphagnum and other m o s s e s and lichens be

-

come established, along with L a b r a d o r t e a and s p r u c e

( F i g u r e s 3, 4, 5). Old age and degradation begin when the

insulating ground c o v e r r u p t u r e s due to biological oxidation and g e n e r a l d e t e r i o r a t i o n , and thawing p e n e t r a t e s into the u n d e r - lying perennially f r o z e n c o r e . The s u r f a c e of the p a l s a o r peat plateau b e c o m e s v e r y uneven because of differential thawing of the underlying ground i c e and l a r g e blocks of thawed peat b r e a k off the m a r g i n s . It i s not c e r t a i n whether rejuvenation can occur.

The c r i t i c a l f a c t o r s in p a l s a and peat plateau f o r m a t i o n a r e possibly c l i m a t e , w a t e r supply, and snow cover. L i t t l e w o r k h a s been done on the c l i m a t i c r e q u i r e m e n t s f o r the f o r m a t i o n of t h e s e f e a t u r e s but s o m e information i s available in the

Scandinavian l i t e r a t u r e . It h a s been r e c o r d e d in Sweden that p a l s a s o c c u r w h e r e the a i r t e m p e r a t u r e r e m a i n s below 3 2 ° F during m o r e than 200 d a y s p e r y e a r . They a l s o a p p e a r t o be

p r e s e n t only w h e r e the precipitation

-

virtually all in the f o r m of

snow

-

during the p e r i o d of November t o A p r i l i s l e s s than

12 i n c h e s (Lundqvist, 1962). It a p p e a r s f r o m the a i r t e m p e r a t u r e and precipitation d a t a f o r m e t e o r o l o g i c a l s t a t i o n s in the Lowland a r e a that t h e s e c r i t e r i a a r e satisfied.

Drainage conditions and water supply a r e v e r y important f a c t o r s in the development of p a l s a s and peat plateaus. The ponds

(20)

in which t h e y begin t o grow probably should be sufficiently shallow t o f r e e z e t o the bottom in w i n t e r s o t h a t a f r o z e n zone

m a y develop below. The p r o c e s s of growth i s not c l e a r , but

the g r a d u a l updoming of the peat p r o c e e d s p o s s i b l y b e c a u s e of i t s high capillarity, which d r a w s considerable quantities of w a t e r t o the f r e e z i n g f r o n t f r o m the surrounding wet a r e a s . T h e s e conditions o c c u r widely in the Hudson Bay Lowland w h e r e p a l s a s and coalescing p a l s a s f o r m i n g peat p l a t e a u s grow t o heights of 10 t o 15 feet.

Snow c o v e r i s c o n s i d e r e d one of t h e c r i t i c a l f a c t o r s i n p a l s a development once f o r m a t i o n of t h e f e a t u r e h a s begun. According t o Lundqvist (37) the amount of snowfall in t h e region through

t h e w i n t e r m a y not exceed a c e r t a i n quantity

-

i. e . , 12 inches.

In addition, a differentiation o c c u r s i n that t h e snow c o v e r on t h e p a l s a s i s significantly l e s s than on the surrounding t e r r a i n . ~ j b ' r s ' (1959a, 1959b, 1961) s t u d i e s of the origin and d i s t r i b u - t i o n of p a l s a s in t h e Lowland pointed t o the c r i t i c a l r o l e of the snow c o v e r . A detailed ecological study of a p a l s a bog n e a r Winisk showed that snow c o v e r w a s t h i n n e r on p a l s a s than the

surrounding t e r r a i n (Railton, 1968). E v a p o t r a n s p i r a t i o n w a s the m a i n s o u r c e of s u m m e r heat l o s s . P a l s a c o l l a p s e w a s attributed t o d e t e r i o r a t i o n of the vegetation c o v e r by r a i n and wind e r o s i o n causing m e l t i n g of t h e ground i c e .

CONCLUSION

C l i m a t e i s the m o s t i m p o r t a n t f a c t o r influencing the f o r m a t i o n and continued e x i s t e n c e of p e r m a f r o s t . T h i s i s b o r n e out by the location of the m e a n annual a i r i s o t h e r m s r e l a t i v e t o the d i s t r i - bution of p e r m a f r o s t , and i n d i c a t e s the e x i s t e n c e of a b r o a d relationship. South of the 3 0 ° F i s o t h e r m p e r m a f r o s t i s not g e n e r - a l l y found in the Lowland. Between 3 0 ° F and 2 5 ° F i s o t h e r m s , p e r m a f r o s t i s patchy and r e s t r i c t e d t o c e r t a i n t y p e s of t e r r a i n . North of the 25OF i s o t h e r m , p e r m a f r o s t i s w i d e s p r e a d and in f a c t i s continuous along the Hudson B a y c o a s t .

P e r m a f r o s t o c c u r s only in t h e peatlands and peat bogs of t h e Hudson B a y Lowland. Even in t h e peat t e r r a i n , p e r m a f r o s t d o e s not e x i s t w h e r e w a t e r l i e s a t o r n e a r t h e ground s u r f a c e . It i s r e s t r i c t e d t o t h e positive m i c r o r e l i e f peat f e a t u r e s

-

p l a t e a u s and p a l s a s which abound in the Lowland. Drainage i s t h e r e f o r e one of the m a i n t e r r a i n f a c t o r s influencing t h e e x i s t e n c e of p e r m a f r o s t .

(21)

The r o l e of vegetation in the d i s t r i b u t i o n of p e r m a f r o s t i s complex. The t r e e growth, predominantly s p r u c e and t a m m a - r a c k , i s not a n indicator of p e r m a f r o s t distribution because t h e s e t r e e s grow on s i t e s w h e r e p e r m a f r o s t i s both p r e s e n t and a b s e n t . The only d i r e c t c o r r e l a t i o n between t r e e growth and p e r m a f r o s t o c c u r r e n c e i s in t h e extensive t a m a r a c k s t a n d s between the m a j o r r i v e r s in the Hudson Bay Lowland. The a b s e n c e of p e r m a f r o s t h e r e i s due t o t h e l a c k of d r a i n a g e and t h e t a m a r a c k r e f l e c t t h e s e conditions r a t h e r than t h e a b s e n c e of p e r m a f r o s t . The Sphagnum and lichen cannot be u s e d a s i n d i c a t o r s of the e x i s t e n c e of p e r m a f r o s t .

One of the m o s t difficult p r o b l e m s i s explaining the d i s

-

tribution of p e r m a f r o s t p e a t f e a t u r e s in the peatlands and peat bogs. T h e r e d o e s not a p p e a r t o be a n y obvious explanation of why t h e s e f e a t u r e s o c c u r in s o m e peatland a r e a s and not in o t h e r s with a p p a r e n t l y s i m i l a r conditions. L o c a l s m a l l v a r i a - t i o n s i n w i n t e r winds and snow c o v e r m a y be sufficient to t i p the net effect of a l l the e n v i r o n m e n t a l f a c t o r s e i t h e r t o w a r d s o r away f r o m the initiation of t h e s e f e a t u r e s .

R E F E R E N C E S

Brown, R. J . E . , 1966, The influence of vegetation on p e r m a f r o s t P r o c e e d i n g s of the International Conference on P e r m a f r o s t . Brown, R . J . E . , 1967, P e r m a f r o s t m a p of Canada. Division of

Building R e s e a r c h , National Re s e a r c h Council, NRC 9769, and Geological S u r v e y of Canada, M a p 1246A.

Brown, R. J . E . , 1968, P e r m a f r o s t investigations in n o r t h e r n O n t a r i o and n o r t h e a s t e r n Manitoba. National R e s e a r c h Council, Division of Building R e s e a r c h , NRC 10465, 39p. Hustich, I . , 1957, On the phytogeography of the S u b a r c t i c

Hudson B a y Lowland. A c t a G e o g r a p h i c a F e n n . , Vol. 16,

No. 1, p. 1-48.

Lundqvist, J .

,

1962, P a t t e r n e d ground and r e l a t e d f r o s t phenomena i n Sweden. S v e r i g e s Geol. ~ n d e r s b l k n , C 583.

P'yavchenko, N. I.

,

1955, B u g r i s t y e Torfyaniki (Humocky P e a t

Bogs). Akademiya Nauk SSSR, Institut L e s a ( A c a d e m y of S c i e n c e s of t h e USSR, F o r e s t r y I n s t i t u t e , Moscow, 278 p. ( i n R u s s i a n ) .

(22)

Railton, J . B . , 1968, The ecology of p a l s a bogs. M.Sc. T h e s i s , U n i v e r s i t y of Toronto, 89 p.

sjldrs, H., 1959a, Bogs and F e n s in the Hudson B a y Lowland. -4rctic, Vol. 12, No. 1, p. 3-19.

~ j g r s , H . , 1959b, F o r e s t and peatlands a t Hawley L a k e , N o r t h e r n Ontario. Contributions t o Botany, Bull. 171, National M u s e u m of Canada, p. 1-31.

~j:rs, H . , 1961, S u r f a c e p a t t e r n s i n b o r e a l peatlands. Endeavour, Vol. XX, No. 80, p. 217-224.

Svensson, H., 1961 -1962, "Nagra l a k t t a g e l s e r f r d n palsornrdden" ( O b s e r v a t i o n s on p a l s a s . Photographic i n t e r p r e t a t i o n and field s t u d i e s in N o r t h Norwegian f r o s t ground a r e a s ) .

N o r s k G e o g r a f i s k T i d s s k r i s t Bd. XVIII, H. 5-6, p. 212-227. (in Norwegian).

Tyrtikov, A. P., 1959, P e r e n n i a l l y f r o z e n ground and vegetation. P r i n c i p l e s of Geocryology, P. F. Shvetsov, ed., Academy

of S c i e n c e s of the U.S.S.R.. Vol. I, p. 399-421.

National R e s e a r c h Council. Tech. T r a n s l a t i o n 11 63. Tyrtikov, A. P., 1966, F o r m i r o v a n i y e I Razvitiye

Krupnobugristykh Torfyanikov V Severnoy Tayge Zapadnoy S i b i r i ( F o r m a t i o n and development of l a r g e hummocky peat bogs i n the n o r t h e r n t a i g a of W e s t e r n S i b e r i a ) ,

M e r z l o t n y y e I s s l e d o v a n i y a ( P e r m a f r o s t Investigations), Vol. VI, p. 144-154. ( i n R u s s i a n ) .

T h i s p a p e r i s a contribution f r o m the Division of Building Re s e a r c h , National Re s e a r c h Council of Canada, and i s published with the approval of the D i r e c t o r of the Division.

(23)

APPENDIX 1

Investigations of m i c r o c l i m a t e and t e r r a i n f a c t o r s affecting t h e d i s t r i b u t i o n of p e r m a f r o s t in the discontinuous zone have b e e n u n d e r t a k e n a t Thompson, Manitoba, s i n c e 1968. T h i s community i s about 640

lun

n o r t h of Winnipeg in n o r t h c e n t r a l

Manitoba i n the m i d d l e of t h e discontinuous zone. It i s about 160

lun

w e s t of the Hudson Bay Lowland a t the n o r t h e r n erid of

g l a c i a l L a k e A g a s s i z . P e r m a f r o s t o c c u r s in s c a t t e r e d i s l a n d s varying in extent f r o m a few square. m e t r e s t o s e v e r a l h e c t a r e s and in t h i c k n e s s f r o m about 1 t o 15 m o r g r e a t e r , a v e r a g i n g between 2 . 4 and 4 . 5 m (Johnston e t a l . , 1963). The p e r m a f r o s t t a b l e i s g e n e r a l l y encountered anywhere f r o m about 0. 5 t o 2.mbe low the ground s u r f a c e . M u c h i c e , p r i m a r i l y in the f o r m of h o r i z o n t a l l e n s e s up t o 20 c m t h i c k (the a v e r a g e t h i c k n e s s being l e s s t h a n 2. 5 c m ) , i s found throughout the f r o z e n g l a c i o l a - c u s t r i n e s i l t s and c l a y s underlying the a r e a . T e m p e r a t u r e s in the p e r m a f r o s t v a r y f r o m about -0. 5 t o 0°C.

O b s e r v a t i o n s a t Thompson include a i r t e m p e r a t u r e , p r e - cipitation, snow depth, d e n s i t y and t e m p e r a t u r e s , wind s p e e d s a t t h e 1 . 8 m l e v e l , net radiation, e v a p o t r a n s p i r a t i o n , ground h e a t flow a t the 30 c m depth, ground t e m p e r a t u r e s t o 7. 5 m ,

and annual depth of ground f r e e z i n g and thawing. T h e s e

m e a s u r e m e n t s a r e being c a r r i e d out a t four s i t e s located with- in a d i s t a n c e of a few hundred m e t r e s of e a c h o t h e r , two with p e r m a f r o s t and two with none.

Soil p r o f i l e s of t h e f o u r s i t e s a r e shown in F i g u r e A-1. Site A s u p p o r t s d e n s e s p r u c e growing on a 10-cm t h i c k l a y e r of f e a t h e r m o s s and f o r e s t l i t t e r overlying brown clayey s o i l ( g r a i n s i z e a n a l y s i s a t a depth of 15 t o 23 cm: c l a y

-

59 p e r c e n t , s i l t

-

39 p e r c e n t , sand

-

2 p e r cent). T h e r e i s no peat a t t h i s s i t e and no p e r m a f r o s t .

Site B s u p p o r t s open stunted s p r u c e growing on a 10-cm t h i c k l a y e r of Sphagnum o v e r 10 c m of p e a t , 23 c m of black o r g a n i c c l a y (31 p e r cent o r g a n i c content by weight) overlying brown clayey soil ( g r a i n s i z e a n a l y s i s a t a depth of 30 t o 53 cm: clay

-

77 p e r cent, s i l t

-

22 p e r cent, sand

-

1 p e r cent). T h e r e i s no p e r m a f r o s t a t t h i s site.

T h i s m a t e r i a l i s e x t r a c t e d f r o m : Brown, R. J . E . and G. P. Williams, 1972. The F r e e z i n g of P e a t l a n d . National R e s e a r c h Council of Canada, Division of Building R e s e a r c h , NRCC 12881, 24 p.

(24)

FOREST LITTER A N D FEATHER MOSS

0

SPHAGNUM PEAT O R G A N I C CLAY

/

SILT BROWN CLAY FIGURE A - 1

SOIL PROFILES OF SITES AT THOMPSON, MANITOBA

(25)

Site C s u p p o r t s open stunted s p r u c e s i m i l a r t o that a t Site B growing on a n 1 8 - c m thick l a y e r of Sphagnum o v e r 18 c m of peat, 10 c m of black o r g a n i c c l a y (26 p e r cent o r g a n i c content by weight), overlying brown clayey s o i l ( g r a i n s i z e a n a l y s i s a t a depth of 35 t o 60 cm: c l a y

-

8 5 p e r cent, s i l t

-

14 p e r cent, sand

-

1 p e r cent). T h e r e i s p e r m a f r o s t at t h i s s i t e . The p e r m a f r o s t table in 1968 w a s a t a depth of about 48 c m a l m o s t coincident with the b a s e of the o r g a n i c soil, and the p e r m a - f r o s t i s about 2.7 m thick.

Site D s u p p o r t s d e n s e s p r u c e , s i m i l a r t o that a t Site A growing on a 13-cm t h i c k l a y e r of Sphagnum o v e r 18 c m of black o r g a n i c s i l t (77 p e r cent o r g a n i c content by weight) overlying brown clayey soil. G r a i n s i z e a n a l y s i s of the o r g a n i c s i l t is: c l a y

-

28 p e r cent, s i l t

-

62 p e r cent, sand

-

10 p e r cent; in the brown c l a y a t 33 t o 48 c m it is: c l a y

-

87 p e r cent, s i l t

-

12 p e r cent, sand

-

1 p e r cent. T h e r e i s no p e a t a t t h i s s i t e s i m i l a r t o t h a t a t S i t e s B and C , but the organic s i l t h a s a v e r y high o r g a n i c content. The p e r m a f r o s t t a b l e i s a t a depth of about 75 c m and the p e r m a f r o s t e x c e e d s 6 m in t h i c k n e s s .

GROUND FREEZING REGIME

F r o s t depth-time g r a p h s a r e shown f o r e a c h s i t e f o r t h r e e complete f r e e z i n g s e a s o n s (1968 -69, 1969-70, 1970-71) in F i g u r e A-2. At t h e two s i t e s with no p e r m a f r o s t s e a s o n a l f r o s t p e n e t r a t e s t o i t s m a x i m u m depth in l a t e w i n t e r , followed by thawing f r o m the s u r f a c e downward in spring. At the s i t e s with p e r m a f r o s t s e a s o n a l thawing p r o g r e s s e s downward e a c h s u m m e r , reaching the p e r m a f r o s t t a b l e in the e a r l y autumn. T h i s i s followed by s e a s o n a l f r e e z i n g f r o m the s u r f a c e downward t o the p e r m a f r o s t table.

S e v e r a l p a t t e r n s a r e evident on the b a s i s of o b s e r v a t i o n s o v e r t h r e e f r e e z i n g s e a s o n s , f o r t h e r e a r e significant d i f f e r e n c e s in the f r e e z i n g and thawing r e g i m e s a t the four s i t e s . Site A e x p e r i e n c e s c o n s i d e r a b l y d e e p e r f r o s t penetration and a longer p e r i o d of s e a s o n a l f r e e z i n g e a c h y e a r than Site B. Both s i t e s a r e without p e r m a f r o s t and only Site B c a n be c o n s i d e r e d a peatland

s i t e . Both S i t e s C and D a r e i n p e r m a f r o s t a r e a s and s e a s o n a l f r o s t p e n e t r a t e s t o the p e r m a f r o s t table e a c h y e a r . The active l a y e r i s significantly t h i c k e r a t Site C and changes f r o m y e a r t o y e a r . I t a p p e a r s t o r e m a i n constant a t Site D.

(26)

I I I I I 0.6

2

l l I I I ' l l I ' l r , I I " I I I I- L E G E N D 1SNOW COYER I - W - - - S I T E A z - S I T E 8 t C - 0 . 3 ; - - S I T C 0 x 0 -

-

W 1 9 6 9 1 9 7 0

E

o 0 I- Y 4

U FROZEN GROUND O F R O Z E H GROUND O T H A l C D GROUHO 1 2 2

l f l o l l ~ O Y P I I I I FIOII P Q V I ~ ( t h o ~ t d . Gtound I e m m r o l u r t t 32.F I 2 4 s

FIGURE A - 2

S N O W C O V E R A N D GROUND F R E E Z I N G R E G I M E S AT THOMPSON M A N I T O B A

(27)

The r a t e of f r o s t penetration i s m o r e uniform at S i t e s A and B w h e r e t h e r e i s no p e r m a f r o s t than at S i t e s C and D w h e r e p e r m a f r o s t complicates the s e a s o n a l f r e e z i n g of the ground. F r o s t penetration f o r a l l four s i t e s in Table A - I i s p r e s e n t e d f o r the t h r e e f r e e z i n g s e a s o n s . Depths and p e n e t r a -

tion r a t e s a r e g r e a t e r at Site A than at Site B; penetration r a t e s

at both s i t e s a r e g e n e r a l l y two t o t h r e e t i m e s g r e a t e r in the f i r s t p a r t of the winter than in the l a t t e r p a r t , although brief p e r i o d s at lower r a t e s o c c u r at the v e r y beginning. Thawing of the ground begins in the e a r l y spring at about the t i m e the f r o s t p e n e t r a t e s a l m o s t t o i t s m a x i m u m depth. F u r t h e r ground f r e e z i n g of a few c e n t i m e t r e s at m o s t does o c c u r during the following two- t o eight-week p e r i o d but i t s effect in the total f r e e z i n g r e g i m e i s m i n i m a l . The l a s t r e m n a n t of f r o z e n ground d i s a p p e a r s in l a t e s u m m e r about one month l a t e r a t

Site A than a t Site B. At both s i t e s it w a s located at the bottom

of the f r o z e n l a y e r , indicating little o r no thawing f r o m beneath. T h e situation is somewhat different at S i t e s C and D w h e r e p e r m a f r o s t e x i s t s , although that at Site C i s m o r e m a r g i n a l than t h a t a t Site D. A t Site C the t e m p e r a t u r e of the p e r m a f r o s t i s about -O.l0C and t h u s i s v e r y sensitive t o any d i s t u r b a n c e . T h r e e y e a r s of weekly observations have r e s u l t e d in a d r o p in the p e r m a f r o s t t a b l e f r o m the original level of 48 c m t o

1 . 3 5 t o 1 . 5 m . At Site D, w h e r e the t e m p e r a t u r e of the p e r m a - f r o s t i s slightly c o l d e r a t about -0.5"C, the p e r m a f r o s t t a b l e h a s r e m a i n e d steady at a depth of about 0.75 m . Although the f r o s t gauges a t both s i t e s w e r e i n s t a l l e d in t h e f a l l of 1968 the methylene blue liquid in t h e bottom few d e c i m e t r e s of the gauges in the p e r m a f r o s t did not f r e e z e until m i d - w i n t e r .

F r o s t penetration r a t e s a r e g e n e r a l l y m o r e uneven a t S i t e s C and D than at the s i t e s with no p e r m a f r o s t . T h i s w a s p a r t i c u l a r l y t r u e i n 1968-69 and 1969-70 when penetration r a t e s w e r e r a p i d during the f i r s t two o r t h r e e weeks, levelled off in the l a t e fall, and then i n c r e a s e d a s the s e a s o n a l f r e e z i n g plane approached the p e r m a f r o s t table. At Site D the s e a s o n a l f r o s t r e a c h e d the p e r m a f r o s t t a b l e a t the end of D e c e m b e r 1969-70, the m o s t s e v e r e of the t h r e e f r e e z i n g s e a s o n s . T h i s s e a s o n p r o - duced the d e e p e s t f r o s t p e n e t r a t i o n a t the n o n - p e r m a f r o s t s i t e s . At Site C s e a s o n a l f r o s t r e a c h e d the p e r m a f r o s t t a b l e in m i d - F e b r u a r y 1969-70. Ground thawing of the active l a y e r begins a t about t h e s a m e t i m e a s f o r the two s i t e s with no p e r m a f r o s t .

(28)

No P e r m a f r o s t S i t e A S i t e B R a t e of P e n e t r a t i o n , (cm/wesk) 1968

-

69 5 . 3 (29 Oct

-

28 F e b ) 2.0 ( 2 9 Oct - 10 D e c ) 3.0 (1 M a r - 20 M a y ) 4 . 3 (10 Dec - 25 F e b ) 3.0 ( 2 5 F e b - I A p r ) 1969

-

70 5. 5 (10 Nov

-

28 A p r ) 5.0 (17 Nov - 23 M a r ) 1 . 8 (28 A p r

-

I 2 J u n e ) 1 . 8 ( 2 3 M a r - I 2 M a y ) 1970 - 71 5.5 ( I 2 Nov

-

26 F e b ) 4 . 5 ( I 8 Nov

-

26 F e b ) 2.5 (26 F e b - 21 M a y ) 2.0 ( 2 6 F e b - 7 M a y ) D e e p e s t F r o s t P e n e t r a t i o n , c m ( D a t e F i r e t A t t a i n e d ) 1968

-

69 110 (20 M a y 1969) 68 ( 1 5 A p r 1969) 1969 - 70 1 4 3 (12 J u n e 1970) 104 ( I 2 J u n e 1970) 1970 - 71 110 ( 2 3 J u l y 1971) 8 0 ( 7 M a y 1971) Bezinning of G r o u n d T h a w i n g 1968 - 69 21 A p r 1969 1969 - 70 9 M a y 1970 1970 - 71 22 A p r 1971 Thawing of L a s t F r o z e n Ground 1968

-

69 2 3 Aug 1969 1969

-

70 I 2 Sept 1970 1970

-

71 3 Aug 1971 17 A p r 1969 2 M a y 1970 27 A p r 1971 1 8 J u l y 1969 2 Aug 1970 4 J u l y 1971 P e r m a f r o s t S i t e C Site D 8 . 8 (19 Oct - 12 Nov) 6 . 8 (15 Oct - 12 Nov) 1 . 8 ( 3 Dec - 15 J a n ) 0 . 8 ( I 2 N o v - 3 1 D e c ) 27.0 (20 Oct - 27 Oct) 3. 3 (27 Oct - I 2 F e b ) 14. 5 ( 1 4 Oct

-

27 Oct) 1 . 3 ( 2 7 O c t - 1 6 D e c )

,

2 . 5 ( 1 8 Nov - 23 Dec)

'

9 . 0 ( 2 3 Dec - 6 J a n ) S e a s o n a l f r o s t p e n e t r a t e d t o p e r m a f r o s t t a b l e a t 5 3 - c m depth. S e a s o n a l f r o s t p e n e t r a t e d t o p e r m a f r o s t t a b l e a t 1 0 5 - c m depth. S e a s o n a l f r o s t p e n e t r a t e d t o p e r m a f r o s t t a b l e a t 1 2 3 - c m depth. 1 S e a s o n a l f r o s t p e n e t r a t e d t o

$

p e r m a f r o s t t a b l e a t 7 5 - c m

2

depth. S e a s o n a l f r o s t p e n e t r a t e d t o 1 r p e r m a f r o s t t a b l e a t 75-crn T depth.

9

? 7 . S e a s o n a l f r o s t p e n e t r a t e d t o

2

p e r m a f r o s t t a b l e a t 7 5 - c m 0 Z depth. 18 A p r 1969 I M a y 1970 22 A p r 1971 about 1 5 J a n 1969 1 4 F e b 1970 about 23 J a n 1971 18 A p r 1969 28 A p r 1970 26 A p r 1971 about 1 5 J a n 1969 31 D e c 1969 9 J a n 1971

(29)

OBSERVATIONS ON CLIMATE AND TERRAIN FACTORS Observations of c l i m a t i c and t e r r a i n f a c t o r s a r e tabulated

in Table A-11. Net radiation o b s e r v a t i o n s a r e not tabulated.

T h e y w e r e commenced on a continuing b a s i s during the s u m m e r

of 1971. Wind velocities w e r e m e a s u r e d a t the f o u r s i t e s

through the f r e e z i n g s e a s o n s of 1969-70 and 1790-71. A v e r a g e wind s p e e d s a r e v e r y low, l e s s than 1 . 6 l u n / h r c o m p a r e d with an a v e r a g e of a p p r o x i m a t e l y 16 b / h r a t the s t a n d a r d m e t e o r o - logical installation 12 m above ground l e v e l a t the Thompson a i r p o r t .

The m e a n a i r t e m p e r a t u r e f o r the eight-month winter p e r i o d of e a c h of t h e t h r e e f r e e z i n g s e a s o n s w a s slightly higher a t Site A than a t Site B , both s i t e s with no p e r m a f r o s t . The s a m e w a s t r u e f o r the f o u r s u m m e r months. At the p e r m a f r o s t s i t e s the m e a n w i n t e r a i r t e m p e r a t u r e w a s g e n e r a l l y lower a t

Site C than a t Site D. The m e a n s u m m e r t e m p e r a t u r e w a s

consistently lower a t Site D, the lowest of the f o u r . The t h r e e - y e a r a v e r a g e e n c o m p a s s i n g the t h r e e f r e e z i n g s e a s o n s ,

October 1968 t o S e p t e m b e r 1971, was highest a t Site A and -0.3 C deg l e s s a t the o t h e r t h r e e s i t e s , which w e r e virtually the s a m e . T h e s e v a l u e s a r e s i m i l a r t o the value of -3.6"C f o r the s a m e p e r i o d a t t h e m e t e o r o l o g i c a l station a t Thompson.

M e a n ground s u r f a c e t e m p e r a t u r e s followed somewhat the s a m e p a t t e r n during the w i n t e r . Site A had g e n e r a l l y the h i g h e s t v a l u e s of the f o u r s i t e s and Site D the lowest. During the

s u m m e r Site A w a s c o n s i s t e n t l y low and Site B, the other s i t e

with no p e r m a f r o s t , high. The t h r e e - y e a r a v e r a g e encompassing

the t h r e e f r e e z i n g s e a s o n s , October 1968 t o S e p t e m b e r 1971, w a s highest a t Site B and lowest a t Site D.

Ground heat flow m e a s u r e m e n t s a r e available through the two f r e e z i n g s e a s o n s 1969-70 and 1970-71. T h e r e i s c o n s i d e r - 2 ~ n a l y s i s of net r a d i a t i o n i s not yet completed. P r e l i m i n a r y

examination of the d a t a i n d i c a t e s t h a t v a l u e s a r e highest a t

S i t e s B and C ( s p a r s e t r e e growth), somewhat l e s s a t Site A

( d e n s e t r e e growth

-

no p e r m a f r o s t ) and lowest a t Site D

(30)

C L I M A T I C AND T E R R A l N DATA THOMPSON. M A N l T O B A S i t e A S i t e B S i t e C S i t e D A i r T e m p c r n t u r c . 'C W i n t e r - - mean O c t . 1968 - M a y 1969 O c t . 1969 - M a y 1970 Oct. 1970 - M a y 1971 S u m m e r - m e a n - J u n e - Sept 1969 J u n e - S e p t 1970 J u n e - S e p t 1971 A v e r a g e A n n u a l O c t 1968 - S e p t 1971 G r o u n d S u r f a c e T e m p e r a t u r e , 'C W * - m e a n Oct 1968 - M a y 1969 - 4 . 3 - 4 . 1 - 4 . 5 Oct 1969 - M a y 1970 - 4 . 9 -6. 1 - 4 . 4 Oct 1970 - M a y 1971 - 2 . 5 - 4 . 4 - 4 . 2 S w n m e r - m e a n - J u n e - S e p t 1969 5 . 8 1 1 . 9 9 . 5 J u n e - S e p t 1970 8 . 2 11.6 8 . 9 J u n e - S e p t 1971 9.2 1 1 . 9 1 0 . 3 A v e r a p A n n u a l O c t 1968 - S e p t 1971 -0. I 0 . 7 - 1 . 4 Wind S p e e d , h / h r W i n t e r - m e a n O c t 1969 - M a y 1970 0 . 4 0 0 . 3 4 0 . 4 3 Oct 1970 - >May 1971 0 . 6 1 0 . 3 7 0. 9 0 S w n m e r - m e a n J u n e - S e p t 1970 0 . 7 7 0. 51 1. 30 J u n e - S e p t 1971 1 . 3 1 0 . 2 2 0 . 5 4 G r o u n d H e a t F l o w , c a l / c m 2 / h r W i n t e r - m e a n O c t 1969 - M a y 1970 -0.16 - 0 . 1 8 - 0 . 2 3 O c t 1970 - M a y 1971 -0. 22 - 0 . 1 4 - 0 . 1 3 S w n m e r - m e a n J u n e - S e p t 1970 0 . 5 3 0 . 4 8 0 . 6 6 J u n e - S e p t 1971 0 . 5 3 0 . 6 2 0 . 7 4 S u r f a c e O r g a n i c L a y e r . ( c m ) ~ o s s / f o r e s t l i t t e r 1 0 10 17. 5 P e a t 0 1 0 1 7 . 5 O r g a n l c c l a y / s i l t 0 2 3 131) 10 (26) ( p e r c e n t o r g a n i c c o n t e n t by w e i g h t ) T o t a l t h i c k n e s s ( c m ) 1 0 4 3 4 5 Snow on G r o u n d T h i c k n e s s - c m - m e a n Oct 1968 - M a y 1969 29 3 5 38 O c t 1969 - M a y 1970 28 26 29 O c t 1970 - M a y 1971 39 4 2 4 1 Density

-

g m / c c - m e a n O c t 1968 - M a y 1969 0 . 1 9 8 0 . 2 0 6 0 . 2 1 3 O c t 1969 - M a y 1970 0. 211 0 . 1 9 7 0. 1 7 4 O c t 1970 - M a y 1971 0. 179 0. 174 0 . 1 8 0

(31)

able difference in a v e r a g e values f o r heat flow f o r the two y e a r s of o b s e r v a t i o n s . During both winter s e a s o n s Site D had the lowest value ( l e s s heat l o s t to the a t m o s p h e r e ) . During both

s u m m e r s Site C had the highest positive values ( h e a t flow f r o m

the a t m o s p h e r e t o the ground).

The s u r f a c e organic l a y e r i s a n i m p o r t a n t f a c t o r in the f r e e z i n g r e g i m e of the ground. The organic profile a t e a c h

s i t e h a s been d e s c r i b e d and i s tabulated in Table A-11. The

o r g a n i c l a y e r i s t h i c k e r a t S i t e s B and C , 43 and 4 5 c m r e s p e c t i v e l y , and thinner a t S i t e s A and D, 10 and 30 c m r e - spectively.

Snow c o v e r i s one of the m o s t i m p o r t a n t f a c t o r s influencing the f r e e z i n g of the ground. The m e a n thickness of the snow l a y e r h a s been consistently highest a t S i t e s B and C , w h e r e t r e e growth i s s p a r s e . Site D h a s the lowest snow accurnula- tion and the d e n s e s t , t a l l e s t t r e e growth. The p a t t e r n of snow density w a s l e s s c o n s i s t e n t , although values tended to be slightly l o w e r a t Site D than a t the o t h e r s i t e s .

DISCUSSION O F RESULTS

The t h r e e m a j o r f a c t o r s d e t e r m i n i n g the f r e e z i n g and thawing p a t t e r n a t a s i t e a r e :

( 1 ) heat exchange a t the s u r f a c e by radiation, convection and evaporation,

( 2 ) depth and d e n s i t y of snow c o v e r , and ( 3 ) t h e r m a l p r o p e r t i e s of the soil.

The a s s e s s m e n t of the r e l a t i v e influence of t h e s e f a c t o r s i s c o m - plicated by t h e i r c l o s e i n t e r r e l a t i o n s h i p . Often v i r t u a l l y un- m e a s u r e a b l e changes in one of the f a c t o r s o r in the w e a t h e r and

soil p r o p e r t i e s upon which they depend can cause significant d i f f e r e n c e s in s o i l f r e e z i n g o r thawing. A d i s c u s s i o n of the o b s e r v a t i o n s can, t h e r e f o r e , only i l l u s t r a t e i n a qualitative way the i m p o r t a n c e of v a r i o u s v a r i a b l e s , p a r t i c u l a r l y that of the

s u r f a c e o r g a n i c l a y e r s , in the f r e e z i n g and thawing of ground a t t h e s e four s i t e s .

T h e r e a r e not sufficient d a t a on r a d i a t i o n , wind velocity and s u r f a c e m o i s t u r e t o allow d i s c u s s i o n of the o b s e r v e d f r e e z i n g and thawing p a t t e r n s f r o m a s u r f a c e e n e r g y exchange point of view. In w i n t e r , d i f f e r e n c e s in evaporative and convective heat

(32)

l o s s e s a t the f o u r s i t e s tend t o be undetectable; wind v e l o c i t i e s a r e e x t r e m e l y low and a l l s i t e s have g e n e r a l l y the s a m e s u r f a c e conditions. D i f f e r e n c e s in net radiation m a y not be v e r y g r e a t b e c a u s e the g r e a t e r amount of s o l a r r a d i a t i o n r e c e i v e d a t exposed s i t e s could well be offset by higher long-wave radiation l o s s e s t o the a t m o s p h e r e . The f a c t t h a t a v e r a g e a i r t e m p e r a t u r e s during the winter a r e a l m o s t identical a t a l l s i t e s t e n d s t o

support t h i s conclusion. In s u m m e r , d i f f e r e n c e s in s u r f a c e h e a t balance depend to a g r e a t extent on s u r f a c e m o i s t u r e con- ditions which c o n t r o l evaporation. The r e l a t i v e i m p o r t a n c e of evaporation and o t h e r components of s u r f a c e e n e r g y exchange during t h e thaw p e r i o d will become c l e a r e r with continuing m e a s u r e m e n t s o v e r p e r i o d s of s e v e r a l y e a r s .

During t h e w i n t e r , snow c o v e r l a r g e l y c o n t r o l s the amount of h e a t l o s t f r o m the ground and subsequent ground f r e e z i n g a t the f o u r s i t e s . F i g u r e A - 3 shows a v e r a g e calculated heat flow f o r e a c h s i t e f o r e a c h snow s e s s i o n ( 1 November t o 30 A p r i l ) . T h e s e calculations w e r e m a d e by a s s u m i n g s t e a d y - s t a t e con- ditions, and an a v e r a g e snow s u r f a c e t e m p e r a t u r e e q u a l t o t h e a v e r a g e a i r t e m p e r a t u r e . The a v e r a g e t e m p e r a t u r e g r a d i e n t through the snow cover w a s a s s u m e d t o be equal t o t h e difference between a v e r a g e a i r and ground t e m p e r a t u r e s divided by the a v e r a g e depth of t h e snow. T h e t h e r m a l conductivity of the snow w a s calculated f r o m snow density v a l u e s ( W i l l i a m s and Gold, 1958).

The r e s u l t s of the calculations shown in F i g u r e A - 3 indicate that t h e r e w a s c o n s i d e r a b l e v a r i a t i o n in h e a t l o s s through t h e

snow c o v e r f r o m y e a r t o y e a r . Heat l o s s w a s highest a t a l l

s i t e s d u r i n g 1968-69 and lowest during 1970-71. On the a v e r a g e ,

Site A showed t h e l a r g e s t heat l o s s ; S i t e s B and C showed a l m o s t identical heat l o s s e s ; and Site D showed the lowest a v e r a g e h e a t l o s s .

The calculated v a l u e s f o r heat l o s s through the snow cover w e r e checked by c o m p a r i n g t h e m with heat l o s s m e a s u r e d a t t h e

30-cm depth. The t o t a l h e a t l o s s f o r two w i n t e r s e a s o n s (1969-70, 1970-71), m e a s u r e d with t h e h e a t m e t e r s , i s about 15 p e r cent h i g h e r t h a n t h e e s t i m a t e d heat l o s s through the snow c o v e r a t S i t e s A, B and C ( F i g u r e A-3). M e a s u r e d h e a t l o s s a t Site D i s slightly l o w e r than calculated heat l o s s through the snow c o v e r . Considering the u n c e r t a i n t i e s a s s o c i a t e d with m e a s u r e m e n t of h e a t flow by m e a n s of s o i l heat m e t e r s and t h e f a c t that the h e a t m e t e r s w e r e not placed a t the s u r f a c e , the a g r e e m e n t i s quite good.

(33)

A B C D

I

A B C D W I N T E R SUMMER F I G U R E A - 3 S U M M A R Y O F A I R TEMPERATURE, G R O U N D TEMPERATURE A N D H E A T LOSSES A N D G A I N S FOR W I N T E R A N D SUMMER P E R I O D S d11+99+ -6

(34)

D i f f e r e n c e s in h e a t l o s s through t h e snow c o v e r f o r the four s i t e s a r e explained by d i f f e r e n c e s in snow depth and density.

S i t e s B and C have c o m p a r a b l e a v e r a g e snow depths and d e n -

s i t i e s . Site A h a s a g r e a t e r snow depth than Site D , but

higher snow d e n s i t y offsets t o s o m e extent the g r e a t e r snow

depth. If ground t e m p e r a t u r e had been t h e s a m e a t both s i t e s ,

heat l o s s f r o m Site D would have been only slightly h i g h e r t h a n

h e a t l o s s f r o m Site A. The difference in h e a t flow between

S i t e s A and D i s t h u s p r i m a r i l y c a u s e d by d i f f e r e n c e s in ground s u r f a c e t e m p e r a t u r e .

The t h e r m a l p r o p e r t i e s of the s u r f a c e soil l a y e r have a significant influence on h e a t t r a n s f e r t o t h e s u r f a c e . F r o z e n

peat and Sphagnum in the u p p e r 3 0 - c m l a y e r a t S i t e s B and C

should have t h e r m a l conductivities ranging f r o m 0.003 t o 0.005 c a l / c m / s e c o ~ a t high m o i s t u r e contents. T h e s e v a l u e s c o m p a r e with the r a n g e f o r f r o z e n s i l t c l a y a t a v e r a g e m o i s t u r e

content, the m o s t likely conditions a t Site A. Consequently,

a v e r a g e ground t e m p e r a t u r e s a t the t h r e e s i t e s a r e quite s i m i l a r . Deviations f r o m a s s u m e d t h e r m a l conductivities and d i f f e r e n c e s in t h e r m a l g r a d i e n t and snow depth and d e n s i t y probably account f o r d i f f e r e n c e s in a v e r a g e heat l o s s during t h e winter. Site D i s a d r i e r s i t e than S i t e s B and C and if the o r g a n i c l a y e r a t Site D h a s a m a r k e d l y l o w e r m o i s t u r e content the t h e r m a l con- ductivity of the f r o z e n s u r f a c e o r g a n i c l a y e r would p r e s u m a b l y be lower. T h i s combined with the lower s u b s u r f a c e ground t e m - p e r a t u r e s a s s o c i a t e d with t h i s p e r m a f r o s t s i t e m a y account f o r the lower ground t e m p e r a t u r e s and t o t a l heat l o s s .

The heat l o s s f r o m t h e ground s u r f a c e in winter r e s u l t s in the cooling and f r e e z i n g of the soil. A s l a r g e amounts of h e a t m u s t be e x t r a c t e d t o f r e e z e w a t e r in soil, the depth and r a t e of f r o s t p e n e t r a t i o n depend l a r g e l y on the amount of m o i s t u r e p r e -

sent. Site A, the d r i e s t s i t e , h a s a . g r e a t e r depth of f r o s t p e n e t r a -

tion than Site B , which i s poorly drained. The s e a s o n a l fluctua-

tions in the r a t e of f r e e z i n g of the f i r s t few c e n t i m e t e r s of soil a t S i t e s C and D ( T a b l e A-I) a r e probably caused by v a r i a t i o n s in the m o i s t u r e content of t h e s u r f a c e o r g a n i c l a y e r s just p r i o r t o ground f r e e z i n g .

The amount of thawing during t h e s u m m e r d e t e r m i n e s not only the r a t e a t which s e a s o n a l f r o z e n ground m e l t s but a l s o

possible degradation of p e r m a f r o s t . If t h e heat gained by t h e

ground in s u m m e r e x c e e d s the h e a t l o s t in w i n t e r , t h e s u r p l u s h e a t will w a r m t h e ground a t n o n - p e r m a f r o s t s i t e s and m e l t p e r m a - f r o s t a t p e r m a f r o s t s i t e s . The only quantitative information on t h e

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers