• Aucun résultat trouvé

A COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING TWO FRACTIONAL ORDERS

N/A
N/A
Protected

Academic year: 2021

Partager "A COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING TWO FRACTIONAL ORDERS"

Copied!
19
0
0

Texte intégral

(1)

A COUPLED SYSTEM OF FRACTIONAL

DIFFERENTIAL EQUATIONS INVOLVING

TWO FRACTIONAL ORDERS

Zoubir Dahmani, Amele Taieb

LPAM, Faculty SEI, UMAB Mostaganem, Algeria

Abstract In this paper, we study a coupled system of nonlinear Caputo fractional differential equa-tions involving two fractional orders. We establish sufficient condiequa-tions to prove new existence and uniqueness results. Finally, we present two examples illustrating the main results.

Keywords: Caputo derivative, fixed point, differential equation, existence, uniqueness. 2010 MSC: 34A34, 34B10.

1.

INTRODUCTION

In the last few decades, there has been an explosion of research activities on the application of fractional calculus to very diverse scientific fields ranging from the physics of diffusion and advection phenomena, to control systems, finance and eco-nomics. For more details, we refer the reader to [5, 6, 8, 13, 14, 15, 17, 21, 22] and the reference therein. Moreover, the study of fractional order differential equations is also important in various problems of applied sciences, and has attracted the atten-tion of many authors. Considerable work has been done in this field of research, for instance, see [1, 2, 3, 4, 7, 9, 10, 11, 12, 16, 18, 19, 20, 23].

In this paper, we discuss the existence and uniqueness of solution for the following fractional coupled system of nonlinear differential equations:

               Dαx(t) = m P i=1 fi t, x(t), y(t), D α−1x(t), Dα−2x(t), ..., Dα−(n−1)x(t),

Dβ−1y(t), Dβ−2y(t), ..., Dβ−(n−1)y(t)

! , t∈ J,y(t) = Pm i=1 gi t, x(t), y(t), Dα−1x(t), Dα−2x(t), ..., Dα−(n−1)x(t),

Dβ−1y(t), Dβ−2y(t), ..., Dβ−(n−1)y(t)

! , t∈ J, α, β∈ ]n − 1, n[ ,x (0) + Dγx (1) = Dρy (0) + Dρy (1) = 0; γ, ρ∈ ]0, 1[ , nP−2 i=1 x(i)(0) =nP−2 i=1 y(i)(0) = 0, x(1) + Dδx(1) = y(1) + Dσy(1) = 0, δ, σ∈ ]n − 2, n − 1[ , n ∈ N− {1} , (1) 141

(2)

where n∈ N− {1} . The derivatives Dα,Dβ,Dα−k,Dβ−k,k = 1, 2, ..., n− 1, are in the

sense of Caputo and J := [0, 1]. For each i = 1, ..., m, m∈ N∗the functions fiand gi:

J× R2n→ R will be specified later.

2.

BASIC DEFINITIONS AND LEMMAS

In this section, we recall some basic definitions and lemmas which are used through-out this paper [14]:

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0, for a continuous function f on [0,∞[ is defined as:

Jαf (t) = 1 Γ(α) Z t 0 (t− s)α−1f (s) ds, α > 0, t≥ 0, J0f (t) = f (t), t≥ 0, (2) where Γ (α) :=R0∞e−xxα−1dx.

Definition 2.2. The Caputo derivative of order α for a function x : [0,∞) → R, which is at least n-times differentiable can be defined as:

Dαx(t) = 1 Γ(n− α) Z t 0 (t− s)n−α−1x(n)(s) ds = Jn−αx(n)(t), α > 0, (3) for n− 1 < α < n, n ∈ N∗.

Lemma 2.1. For α > 0, the general solution of the fractional differential equation Dαx(t) = 0, is given by

x(t) = c0+c1t + c2t2+... +cn−1tn−1, (4)

where ci∈ R, i = 0, ..., n − 1, n = [α] + 1.

Lemma 2.2. Let α > 0. Then

JαDαx(t) = x(t) + c0+c1t + c2t2+... +cn−1tn−1, (5)

where ci∈ R, i = 0, 1, ..., n − 1, n = [α] + 1.

Lemma 2.3. Let p, q > 0, f ∈ L1([a, b]) . Then JpJqf (t) = Jp+qf (t), DpJpf (t) = f (t), t∈ [a, b]

Lemma 2.4. Let q > p > 0, f ∈ L1([a, b]) . Then DpJqf (t) = Jq−pf (t), t

∈ [a, b] . Lemma 2.5. Let E be Banach space. Assume that T : E → E is completely contin-uous operator. If the set V ={x ∈ E : x = µT x, 0 < µ < 1}is bounded, then T has a fixed point in E.

(3)

We prove the following Lemma:

Lemma 2.6. Suppose that (Gi)i=1,...,m ∈ C ([0, 1] , R) , and consider the problem

   D αx(t) = Pm i=1 Gi(t), t∈ [0, 1] , m ∈ N∗, n− 1 < α < n, n ∈ N− {1} , (6)

with the conditions:

Dγx (0) + Dγx (1) = 0, γ∈ ]0, 1[ , n−2 X i=1 x(i)(0) = 0, n ∈ N∗− {1} , x(1) + Dδx(1) = 0, δ∈ ]n − 2, n − 1[ , n ∈ N− {1} . (6) Then, the integral solution of (6) is given by:

x(t) = m X i=1 t Z 0 (t− s)α−1 Γ(α) Gi(s) ds− m X i=1 1 Z 0 (1− s)α−1 Γ(α) Gi(s) ds −Pm i=1 1 R 0 (1−s)α−δ−1 Γ(α−δ) Gi(s) ds +  Γ(n−γ)(Γ(n−δ)+Γ(n)) Γ(n)Γ(n−δ) − Γ(n−γ)tn−1 Γ(n) Pm i=1 1 R 0 (1−s)α−γ−1 Γ(α−γ) Gi(s) ds. (8) Proof. We have x(t) = m X i=1 t Z 0 (t− s)α−1 Γ(α) Gi(s) ds− c0− c1t− c2t 2 − ... − cn−1tn−1, (9) where ci ∈ R, i = 0, 1, 2, ..., n − 1. For k = 1, 2, ..., n− 1, we obtain x(k)(0) =−k!ck, (10)

and thanks to (7), we have

cn−1= Γ(n− γ) Γ(n) m X i=1 1 Z 0 (1− s)α−γ−1 Γ(α− γ) Gi(s) ds.

(4)

Using (7) and (10) , we obtain

c1=c2=... =cn−2=0.

Applying 2.4 and using the last condition of (7) , we get

c0 = m X i=1 1 Z 0 (1− s)α−1 Γ(α) Gi(s) ds + m X i=1 1 Z 0 (1− s)α−δ−1 Γ(α− δ) Gi(s) ds −Γ(n− γ) (Γ (n − δ) + Γ (n))Γ(n) Γ (n − δ) m X i=1 1 Z 0 (1− s)α−γ−1 Γ(α− γ) Gi(s) ds. Therefore, x(t) = m X i=1 t Z 0 (t− s)α−1 Γ(α) Gi(s) ds− m X i=1 1 Z 0 (1− s)α−1 Γ(α) Gi(s) ds −Pm i=1 1 R 0 (1−s)α−δ−1 Γ(α−δ) Gi(s) ds +  Γ(n−γ)(Γ(n−δ)+Γ(n)) Γ(n)Γ(n−δ) − Γ(n−γ)tn−1 Γ(n) Pm i=1 1 R 0 (1−s)α−γ−1 Γ(α−γ) Gi(s) ds. (11)

Lemma 2.6 is thus proved.

To study (1) , we need to introduce the Banach space:

S :=n(x, y) : x, y∈ C ([0, 1] , R) , Dα−kx, Dβ−ky∈ C ([0, 1] , R) , k = 1, 2, ..., n − 1o endowed with the norm

k(x, y)kS =max kxk , Dα−1x , Dα−2x , ..., Dα−(n−1)x , kyk , Dβ−1y , Dβ−2y , ..., Dβ−(n−1)y ! , (12) where, kxk = sup

t∈J |x(t)| , kyk = supt∈J |y(t)| ,

Dα−kx = sup t∈J Dα−kx(t) ,−ky = sup t∈J−ky(t) , k = 1, 2, ..., n − 1.

3.

MAIN RESULTS

In this section, we prove some existence and uniqueness results to the nonlinear fractional coupled system (1) .

(5)

For the sake of convenience, we impose the following hypotheses:

(H1) : For each i = 1, 2, ..., m, the functions fiand gi : [0, 1]× R2n→ R are

continu-ous.

(H2) : There exist nonnegative real numbers ηij, υij, j = 1, 2, ..., 2n, i = 1, ..., m,

such that for all t∈ [0, 1] and all (x1,x2, ...,x2n) , (y1,y2, ...,y2n)∈ R2n, we have

| fi(t, x1,x2, ...,x2n)− fi(t, y1,y2, ...,y2n)| ≤ 2n X j=1 ηij xj− yj and |gi(t, x1,x2, ...,x2n)− gi(t, y1,y2, ...,y2n)| ≤ 2n X j=1 υij xj− yj .

(H3) : There exist nonnegative constants (Li)i=1,...,mand (Ki)i=1,...,m, such that:

for each t∈ J and all (x1,x2, ...,x2n)∈ R2n,

| fi(t, x1,x2, ...,x2n)| ≤ Li, |gi(t, x1,x2, ...,x2n)| ≤ Ki, i = 1, ..., m.

We also consider the following quantities:

Σ1 = m X i=1  ηi1+ηi2+... + ηi2n, Σ2= m X i=1  υi1+υi2+... + υi2n, A1= Σ1 Γ(α + 1), A2= Σ2 Γ(β + 1), Ak3 = Σ1 1 Γ(k + 1) + Γ(n− γ) Γ(n + k− α) Γ (α − γ + 1) ! , k = 1, 2, ..., n− 1, Ak4 = Σ2 1 Γ(k + 1) + Γ(n− ρ) Γ(n + k− β) Γ (β − ρ + 1) ! , k = 1, 2, ..., n− 1, Mk = 1 Γ(k + 1)+ Γ(n− γ) Γ(n + k− α) Γ (α + 1 − γ), k = 1, 2, ..., n− 1, Nk = 1 Γ(k + 1)+ Γ(n− ρ) Γ(n + k− β) Γ (β + 1 − ρ), k = 1, 2, ..., n− 1, Υ1 = 2 Γ(α + 1)+ 1 Γ(α + 1− δ)+ 1 Γ(α + 1− γ) Γ(n− γ) (Γ (n − δ) + Γ (n)) Γ(n) Γ (n− δ) − Γ(n− γ) Γ(n)

(6)

and Υ2 = 2 Γ(β + 1)+ 1 Γ(β + 1− σ)+ 1 Γ(β + 1− ρ) Γ(n− ρ) (Γ (n − σ) + Γ (n)) Γ(n) Γ (n− σ) − Γ(n− ρ) Γ(n) . For the existence and uniqueness of solution for (1) , the first main result is the following:

Theorem 3.1. Assume that (H2)holds. If the inequality

maxA1,A2,A13,A23, ...,A n−1 3 ,A14,A24, ...,A n−1 4  < 1 (13)

is valid, then system (1) has a unique solution on J. Proof. We define the operator T : S → S by

T (x, y) (t) := (T1(x, y) (t) , T2(x, y) (t)) , t∈ J, such that, T1(x, y) (t) = m P i=1 t R 0 (t−s)α−1 Γ(α) ϕi(s) ds− m P i=1 1 R 0 (1−s)α−1 Γ(α) ϕi(s) ds− m P i=1 1 R 0 (1−s)α−δ−1 Γ(α−δ) ϕi(s) ds +  Γ(n−γ)(Γ(n−δ)+Γ(n)) Γ(n)Γ(n−δ) − Γ(n−γ)tn−1 Γ(n) Pm i=1 1 R 0 (1−s)α−γ−1 Γ(α−γ) ϕi(s) ds (14) and T2(x, y) (t) = m P i=1 t R 0 (t−s)β−1 Γ(β) ψi(s) ds− m P i=1 1 R 0 (1−s)β−1 Γ(β) ψi(s) ds− m P i=1 1 R 0 (1−s)β−σ−1 Γ(β−σ) ψi(s) ds +  Γ(n−ρ)(Γ(n−σ)+Γ(n)) Γ(n)Γ(n−σ) − Γ(n−ρ)tn−1 Γ(n) Pm i=1 1 R 0 (1−s)β−ρ−1 Γ(β−ρ) ψi(s) ds, (15) where ϕi(s) = fi 

s, x(s), y(s), Dα−1x(s), . . . , Dα−(n−1)x(s), Dβ−1y(s), . . . , Dβ−(n−1)y(s) and

ψi(s) = gi



s, x(s), y(s), Dα−1x(s), . . . , Dα−(n−1)x(s), Dβ−1y(s), . . . , Dβ−(n−1)y(s). By lemma 2.4, we obtain Dα−kT1(x, y) (t) = Pm i=1 t R 0 (t−s)k−1 Γ(k) ϕi(s) ds −Γ(nΓ(n+k−γ)tn+k−α−1−α) m P i=1 1 R 0 (1−s)α−γ−1 Γ(α−γ) ϕi(s) ds (16)

(7)

and Dβ−kT2(x, y) (t) = m P i=1 t R 0 (t−s)k−1 Γ(k) Ψi(s) ds −Γ(nΓ(n+k−ρ)tn+k−β)−β−1 m P i=1 1 R 0 (1−s)β−ρ−1 Γ(β−ρ) Ψi(s) ds, (17) where k = 1, 2, ..., n− 1.

We shall prove that T is contractive:

Let (x1,y1) , (x2,y2)∈ S. Then, for each t ∈ J, we have:

|T1(x1,y1) (t)− T1(x2,y2) (t)| ≤ tα Γ(α + 1) ×sup s∈J m X i=1 fi    s, x1(s), y1(s), D α−1 x1(s), D α−2 x1(s), ..., D α−(n−1) x1(s), Dβ−1y1(s), D β−2 y1(s), ..., D β−(n−1) y1(s)    − fi    s, x2(s), y2(s), D α−1 x2(s), D α−2 x2(s), ..., D α−(n−1) x2(s), Dβ−1y2(s), D β−2 y2(s), ..., D β−(n−1) y2(s)    . By (H2) , it follows that kT1(x1,y1)− T1(x2,y2)k ≤ 1 Γ(α+1) m P i=1  ηi1+ηi2+... + ηi2n × max    kx1− x2k , Dα−1 (x1− x2) , D α−2 (x1− x2) , ..., D α−(n−1) (x1− x2) , ky1− y2k , D β−1 (y1− y2) , D β−2 (y1− y2) , ..., Dβ−(n−1)(y1− y2)   . Hence, kT1(x1,y1)− T1(x2,y2)k ≤ A1k(x1− x2,y1− y2)kS . (18)

With the same arguments as before, we can show that

kT2(x1,y1)− T2(x2,y2)k ≤ A2k(x1− x2,y1− y2)kS . (19)

On the other hand, we have Dα−k(T

(8)

 tk Γ(k+1)+ Γ(n−γ)tn+k−α−1 Γ(n+k−α)Γ(α−γ+1)  ×sup s∈J m P i=1 fi    s, x1(s), y1(s), D α−1 x1(s), D α−2 x1(s), ..., D α−(n−1) x1(s), Dβ−1y1(s), D β−2 y1(s), ..., D β−(n−1) y1(s)    − fi    s, x2(s), y2(s), D α−1 x2(s), D α−2 x2(s), ..., D α−(n−1) x2(s), Dβ−1y2(s), D β−2 y2(s), ..., D β−(n−1) y2(s)    , Consequently, Dα−k(T 1(x1,y1)− T1(x2,y2)) ≤ 1 Γ(k + 1) + Γ(n− γ) Γ(n + k− α) Γ (α − γ + 1) !Xm i=1  ηi1+ηi2+... + ηi2n × max    kx1− x2k , Dα−1 (x1− x2) , D α−2 (x1− x2) , ..., D α−(n−1) (x1− x2) , ky1− y2k , D β−1 (y1− y2) , D β−2 (y1− y2) , ..., D β−(n−1) (y1− y2)   . Therefore, Dα−k(T 1(x1,y1)− T1(x2,y2)) ≤ A k3k(x1− x2,y1− y2)kS . (20) Also, we have Dβ−k(T 2(x1,y1)− T2(x2,y2)) ≤ A k4k(x1− x2,y1− y2)kS. (21)

Thanks to (18) , (19) , (20) and (21) , we get

kT (x1,y1)− T (x2,y2)kS ≤ maxA1,A2,A13,A23, ...,A n−1 3 ,A14,A24, ...,A n−1 4  k(x1− x2,y1− y2)kS . (22)

Thanks to (13), we conclude that T is a contractive operator. Therefore, by Banach fixed point theorem, T has a unique fixed point which the solution of the system (1) .

For the existence of solution for (1) , we prove the following theorem:

Theorem 3.2. Assume that the hypotheses (H1)and (H3)hold. Then the system (1)

has at least one solution on J.

Proof. The operator T is continuous on S in view of the continuity of fi and gi

(hypothesis (H1)).

(9)

(i) : First, we prove that T maps bounded sets of S into bounded sets of S . Taking λ > 0, and (x, y)∈ Bλ:=(x, y)∈ S ; k(x, y)kS ≤ λ

, then for each t∈ J, we have: |T1(x, y) (t)| ≤     tα Γ(α+1)+ 1 Γ(α+1)+ 1 Γ(α+1−δ) +Γ(α+11 −γ) Γ(n−γ)(Γ(n−δ)+Γ(n)) Γ(n)Γ(n−δ) − Γ(n−γ)tn−1 Γ(n)     ×sup s∈J m P i=1 fi    s, x(s), y(s), D α−1 x(s), Dα−2x(s), ..., Dα−(n−1)x(s), Dβ−1y(s), Dβ−2y(s), ..., Dβ−(n−1)y(s)

   (23)

Thanks to (H3), we can write

kT1(x, y)k ≤ m X i=1 Li × Γ(α + 1)2 + 1 Γ(α + 1− δ) + 1 Γ(α + 1− γ) Γ(n− γ) (Γ (n − δ) + Γ (n)) Γ(n) Γ (n− δ) − Γ(n− γ) Γ(n) ! . Thus, kT1(x, y)k ≤ Υ1 m X i=1 Li. (24) As before, we have kT2(x, y)k ≤ Υ2 m X i=1 Ki. (25)

On the other hand, for all k = 1, 2, ..., n− 1, we get−kT 1(x, y) (t) ≤  tk Γ(k+1) + Γ(n−γ)tn+k−α−1 Γ(n+k−α)Γ(α+1−γ)  ×sup s∈J m P i=1 fi    s, x(s), y(s), D α−1 x(s), Dα−2x(s), ..., Dα−(n−1)x(s), Dβ−1y(s), Dβ−2y(s), ..., Dβ−(n−1)y(s)

   . This implies that

Dα−kT 1(x, y) ≤ Γ(k + 1)1 + Γ(n− γ) Γ(n + k− α) Γ (α + 1 − γ) !Xm i=1 Li, k = 1, 2, ..., n− 1.

(10)

Hence, Dα−kT 1(x, y) ≤ Mk m X i=1 Li, k = 1, 2, ..., n− 1. (26) Similarly, we have Dβ−kT 2(x, y) ≤ Nk m X i=1 Ki, k = 1, 2, ..., n− 1. (27)

It follows from (24) , (25) , (26) and (27) that:

kT (x, y)kS ≤ max     Υ1 m P i=1 Li, Υ2 m P i=1 Ki,M1 m P i=1 Li,M2 m P i=1 Li, ...,Mn−1 m P i=1 Li, N1 m P i=1 Ki,N2 m P i=1 Ki, ...,Nn−1 m P i=1 Ki    . Thus, kT (x, y)kS <∞.

(ii) : Second, we prove that T is equi-continuous: For any 0≤ t1 <t2≤ 1 and (x, y) ∈ Bλ, we have

|T1(x, y) (t2)− T1(x, y) (t1)| ≤  1 Γ(α+1)  (t2− t1)α+  tα 2 − t α 1  +Γ(α+1)1 (t2− t1)α+ Γ(n)Γ(α+1Γ(n−γ)−γ)  tn−1 2 − t n−1 1  ×sup s∈J m P i=1 fi    s, x(s), y(s), D α−1 x(s), Dα−2x(s), ..., Dα−(n−1)x(s), Dβ−1y(s), Dβ−2y(s), ..., Dβ−(n−1)y(s)

   . Therefore, kT1(x, y) (t2)− T1(x, y) (t1)k ≤ m X i=1 Li tα2 − t1α Γ(α + 1)+ 2 (t2− t1)α Γ(α + 1) + Γ(n− γ) Γ(n) Γ (α + 1− γ)  tn2−1− t1n−1!. (28) We have also kT2(x, y) (t2)− T2(x, y) (t1)k ≤ m X i=1 Ki    t β 2− t β 1 Γ(β + 1)+ 2 (t2− t1)β Γ(β + 1) + Γ(n− ρ) Γ(n) Γ (β + 1− ρ)  t2n−1− t1n−1    . (29) On the other hand,

Dα−kT

(11)

(tk 2−t k 1) Γ(k+1) + 2(t2−t1) k Γ(k+1) + Γ(n−γ) Γ(n+k−α)Γ(α+1−γ)  t2n+k−α−1− tn+k1 −α−1 ×sup s∈J m P i=1 fi    s, x(s), y(s), D α−1 x(s), Dα−2x(s), ..., Dα−(n−1)x(s), Dβ−1y(s), Dβ−2y(s), ..., Dβ−(n−1)y(s)

   . Consequently, for all k = 1, 2, ..., n− 1, we obtain

Dα−kT1(x, y) (t2)− Dα−kT1(x, y) (t1) ≤       t2k−tk 1  Γ(k+1)+ 2(t2−t1) k Γ(k+1) +Γ(n+kΓ(n−γ) −α)Γ(α+1−γ)  t2n+k−α−1− tn+k1 −α−1      m X i=1 Li. (30) Similarly, Dβ−kT 2(x, y) (t2)− Dβ−kT2(x, y) (t1) ≤       tk2−tk 1  Γ(k+1)+ 2(t2−t1) k Γ(k+1) +Γ(n+kΓ(n−ρ) −β)Γ(β+1−ρ)  t2n+k−β−1− tn+k1 −β−1      m X i=1 Ki, (31)

where k = 1, 2, ..., n− 1. Using (28) , (29) , (30) and (31) , we deduce that kT (x, y) (t2)− T (x, y) (t1)kS → 0

as t2 → t1.

Combining (i) and (ii), we conclude that T is completely continuous. (iii) : Finally, we shall prove that the set ̥ defined by

̥:={(x, y) ∈ S, (x, y) = ωT (x, y) , 0 < ω < 1 } is bounded.

Let (x, y) ∈ ̥, then (x, y) = ωT (x, y) , for some 0 < ω < 1. Thus, for each t ∈ J, we have:

x (t) = ωT1(x, y) (t) , y (t) = ωT2(x, y) (t) . (32)

Thanks to (H3) and using (24) and (25) , we deduce that

kxk ≤ ωΥ1 m X i=1 Li, kyk ≤ ωΥ2 m X i=1 Ki. (33)

Using (26) and (27), it yields that Dα−kx ≤ ωMk m X i=1 Li, Dβ−ky ≤ ωNk m X i=1 Ki, (34)

(12)

where k = 1, 2, ..., n− 1.

It follows from (33) and (34) that

k(x, y)kS ≤ ω max     Υ1 m P i=1 Li, Υ2 m P i=1 Ki,M1 m P i=1 Li,M2 m P i=1 Li, ...,Mn−1 m P i=1 Li, N1 m P i=1 Ki,N2 m P i=1 Ki, ...,Nn−1 m P i=1 Ki    . (35) Consequently, k(x, y)kS <∞. (36)

This shows that ̥ is bounded.

By lemma 2.5, we deduce that T has a fixed point, which is a solution of (1) . The third main result is based on Krasnoselskii theorem [15]. We prove the fol-lowing theorem:

Theorem 3.3. Assume that (H1) , (H2)and (H3)hold. If

max Σ1 Γ(α + 1), Σ2 Γ(β + 1), Σ1, Σ1 2!, Σ1 3!, ..., Σ1 (n− 1)!, Σ2, Σ2 2!, Σ2 3!, ..., Σ2 (n− 1)! ! < 1, (37) then the coupled system (1) has at least one solution on J.

Proof. Let us fixe:

θ≥ max     Υ1 m P i=1 Li, Υ2 m P i=1 Ki,M1 m P i=1 Li,M2 m P i=1 Li, ...,Mn−1 m P i=1 Li, N1 m P i=1 Ki,N2 m P i=1 Ki, ...,Nn−1 m P i=1 Ki    . Then, we consider Bθ :=(x, y)∈ S : k(x, y)kS ≤ θ

. On Bθ, we define the operators

P and Q as follows: P (x, y) (t) := (P1(x, y) (t) , P2(x, y) (t)) , Q (x, y) (t) := (Q1(x, y) (t) , Q2(x, y) (t)) , where, P1(x, y) (t) = m P i=1 t R 0 (t−s)α−1 Γ(α) ϕi(s) ds− m P i=1 1 R 0 (1−s)α−1 Γ(α) ϕi(s) ds −Pm i=1 1 R 0 (1−s)α−δ−1 Γ(α−δ) ϕi(s) ds + Γ(n−γ)(Γ(n−δ)+Γ(n)) Γ(n)Γ(n−δ) m P i=1 1 R 0 (1−s)α−γ−1 Γ(α−γ) ϕi(s) ds, (38) P2(x, y) (t) = m P i=1 t R 0 (t−s)β−1 Γ(β) ψi(s) ds− m P i=1 1 R 0 (1−s)β−1 Γ(β) ψi(s) ds −Pm i=1 1 R 0 (1−s)β−σ−1 Γ(β−σ) ψi(s) ds + Γ(n−ρ)(Γ(n−σ)+Γ(n)) Γ(n)Γ(n−σ) m P i=1 1 R 0 (1−s)β−ρ−1 Γ(β−ρ) ψi(s) ds, (39)

(13)

Q1(x, y) (t) =− Γ(n− γ) tn−1 Γ(n) m X i=1 1 Z 0 (1− s)α−γ−1 Γ(α− γ) ϕi(s) ds (40) and Q2(x, y) (t) =− Γ(n− ρ) tn−1 Γ(n) m X i=1 1 Z 0 (1− s)β−ρ−1 Γ(β− ρ) ψi(s) ds. (41) Let (x1,y1) , (x2,y2)∈ Bθ,t∈ [0, 1] . Then, thanks to (H3) , we get

kP1(x1,y1) +Q1(x2,y2)k ≤ Υ1 m X i=1 Li, (42) kP2(x1,y1) +Q2(x2,y2)k ≤ Υ2 m X i=1 Ki. (43)

On the other hand for all k = 1, 2, ..., n− 1, we have Dα−k(P 1(x1,y1) +Q1(x2,y2)) ≤ Mk m X i=1 Li, (44) Dβ−k(P 2(x1,y1) +Q2(x2,y2)) ≤ Nk m X i=1 Ki. (45)

Thanks to (42) , (43) , (44) and (45) , we have

kP (x1,y1) +Q (x2,y2)kS ≤ max     Υ1 Pm i=1 Li, Υ2 m P i=1 Ki,M1 m P i=1 Li,M2 m P i=1 Li, ...,Mn−1 m P i=1 Li, N1 m P i=1 Ki,N2 m P i=1 Ki, ...,Nn−1 m P i=1 Ki    . (46) Therefore, P (x1,y1) +Q (x2,y2)∈ Bθ. (47)

Now, we shall prove that the operator P is contractive. Using the hypothesis (H2) ,

we can write kP1(x1,y1)− P1(x2,y2)k ≤ Γ(α + 1)1 m X i=1  ηi1+ηi2+... + ηi2nk(x1− x2,y1− y2)kS, (48) kP2(x1,y1)− P2(x2,y2)k

(14)

Γ(β + 1)1 m X i=1  υi1+υi2+... + υi2nk(x1− x2,y1− y2)kS, (49)

and for k = 1, 2, ..., n− 1, we have−k(P 1(x1,y1)− P1(x2,y2)) ≤ Γ(k + 1)1 m X i=1  ηi1+ηi2+... + ηi2nk(x1− x2,y1− y2)kS, (50) Dβ−k(P 2(x1,y1)− P2(x2,y2)) ≤ Γ(k + 1)1 υi1+υi2+... + υ2ni k(x1− x2,y1− y2)kS. (51)

From (48) , (49) , (50) and (51) , we deduce that kP (x1,y1)− P (x2,y2)kS ≤ max Γ(α + 1)Σ1 , Σ2 Γ(β + 1), Σ1, Σ1 2!, ..., Σ1 (n− 1)!, Σ2, Σ2 2!, ..., Σ2 (n− 1)! ! × k(x1− x2,y1− y2)kS . (51)

Using (37) , we conclude that P is a contractive operator.

For i = 1, 2, ..., m, the operator Q is continuous in view of the continuity of fi and gi,

(see (H1)). Now, we prove the compactness of the operator Q :

Let t1,t2∈ [0, 1] , t1<t2and (x, y)∈ Bθ. We have

kQ1(x, y) (t2)− Q1(x, y) (t1)k ≤ Γ(n− γ) Γ(n) Γ (α + 1− γ)  tn2−1− tn1−1 (53) and kQ2(x, y) (t2)− Q2(x, y) (t1)k ≤ Γ(n− ρ) Γ(n) Γ (β + 1− ρ)  tn2−1− tn1−1. (54) On the other hand for k = 1, 2, ..., n− 1, we get

Dα−kQ 1(x, y) (t2)− Dα−kQ1(x, y) (t1) ≤ Γ(n + k Γ(n− γ) − α) Γ (α + 1 − γ)  tn+k2 −α−1− tn+k1 −α−1, (55) Dβ−kQ 2(x, y) (t2)− Dβ−kQ2(x, y) (t1) ≤ Γ(n + kΓ(n− ρ) − β) Γ (β + 1 − ρ)  t2n+k−β−1− tn+k1 −β−1. (56)

(15)

The right hand sides of (53) , (54) , (55) and (56) are independent of (x, y) and tend to zero as t1 → t2, so Q is relatively compact on Bθ. Then by Ascolli-Arzela Theorem,

the operator Q is compact. Therefore by Krasnoselskii Theorem [15], we conclude that system (1) has a solution. Theorem 3.3 is thus proved.

Corolar 3.1. Assume that (H1) , (H2)and (H3)hold and

max (Σ1, Σ2) < 1, (57)

then the coupled system (1) has at least one solution on J.

4.

EXAMPLES

We present two examples to illustrate the main results. Example 4.1. Consider the following system:

                                 D134 x (t) =

|x(t)|+|y(t)|+ D94x(t) + D45x(t) + D14x(t) + D83y(t) + D35y(t) + D23y(t) 16π2t2+1+|x(t)|+|y(t)|+

D

9

4x(t) + D54x(t) + D14x(t) + D 83y(t) + D53y(t) + D23y(t)  +32π12e    

sin x (t) + sin y (t) +cos D

9

4x(t)+cos D54x(t)+cos D14x(t) 2π

+cos D

8

3y(t)+cos D53y(t)+cos D23y(t) e2t    , t∈ [0, 1] , D113y (t) = 1 8π3et+2(t2+1)    x(t)+D 9 4x(t)+D54x(t)+D14x(t) 1+ x(t)+D94x(t)+D54x(t)+D14x(t) + y(t)+D 8

3y(t)+D53y(t)+D23y(t) 1+ y(t)+D83y(t)+D53y(t)+D23y(t)

   +16πt22et+1        

sin x(t)+sin y(t)+sin  D94x(t)  −sin  D54x(t)  1+ sin x(t)+sin y(t)+sin

 D94x(t)  −sin  D54x(t) + sin  D14x(t)  +cos  D83y(t)  +cos  D53y(t)  −cos D23y(t) 1+ sin  D14x(t)  +cos  D83y(t)  +cos  D53y(t)  −cos D23y(t)         , t∈ [0, 1] , D14x (0) + D 1 4x (1) = D 5 7y (0) + D57y (1) = 0, x′(0) + x′′(0) = y′(0) + y′′(0) = 0, x (1) + D83x (1) = y (1) + D104y (1) = 0. (58) We have: n = 4, m = 2, α = 134, β = 113, γ = 14, ρ = 57, δ = 83, σ = 104,J = [0, 1] .

(16)

Also, f1(t, x1,x2,x3,x4,x5,x6,x7,x8) = |x1| + |x2| + |x3| + |x4| + |x5| + |x6| + |x7| + |x8| 16π2 t2+1 +|x 1| + |x2| + |x3| + |x4| + |x5| + |x6| + |x7| + |x8|, (59) f2(t, x1,x2,x3,x4,x5,x6,x7,x8) = 1 32π2e  sin x1+sin x2+

cos x3+cos x4+cos x5

2π +

cos x6+cos x7+cos x8

e2t  . (60) For t ∈ [0, 1] and (x1,x2,x3,x4,x5,x6,x7,x8) , (y1,y2,y3,y4,y5,y6,y7,y8) ∈ R8, we have: | f1(t, x1,x2,x3,x4,x5,x6,x7,x8)− f1(t, y1,y2,y3,y4,y5,y6,y7,y8)| ≤ 1 16π2 |x1− y1| + 1 16π2 |x2− y2| + 1 16π2 |x3− y3| + 1 16π2 |x4− y4| +16π12|x5− y5| + 1 16π2 |x6− y6| + 1 16π2|x7− y7| + 1 16π2 |x8− y8| (61) and | f2(t, x1,x2,x3,x4,x5,x6,x7,x8)− f2(t, y1,y2,y3,y4,y5,y6,y7,y8)| ≤ 1 32π2e|x1− y1| + 1 32π2e|x2− y2| + 1 64π3e|x3− y3| + 1 64π3e|x4− y4| +64π13e|x5− y5| + 1 32π2e|x6− y6| + 1 32π2e|x7− y7| + 1 32π2e|x8− y8| . (62)

So, we can take:

η11=η12= η13 =η14=η15= η16 =η17=η18= 1 8π2, (63) η21 =η2262=η27=η28= 1 32π2e, η 2 3 =η 2 4=η 2 5= 1 64π3e. (64) We have also g1(t, x1,x2,x3,x4,x5,x6,x7,x8) = 1 8π3et+2 t2+1 |x1+x3+x4+x5| 1 +|x1+x3+x4+x5| + |x2+x6,x7,x8| 1 +|x2+x6,x7,x8| ! (65) and g2(t, x1,x2,x3,x4,x5,x6,x7,x8) = t2 16π2et+1 (66)

× 1 +sin x1+sin x2+sin x3− sin x4 |sin x1+sin x2+sin x3− sin x4|

+ sin x5+cos x6+cos x7− cos x8 1 +|sin x5+cos x6+cos x7− cos x8|

! .

For t ∈ [0, 1] and (x1,x2,x3,x4,x5,x6,x7,x8) , (y1,y2,y3,y4,y5,y6,y7,y8) ∈ R8, we

can write

(17)

≤ 1 8π3e2 |x1− y1| + 13e2 |x2− y2| + 13e2 |x3− y3| + 13e2 |x4− y4| +13e2|x5− y5| + 1 8π3e2|x6− y6| + 1 8π3e2|x7− y7| + 1 8π3e2|x8− y8| , (67) |g2(t, x1,x2,x3,x4,x5,x6,x7,x8)− g2(t, y1,y2,y3,y4,y5,y6,y7,y8)| ≤ 16π12e|x1− y1| + 1 16π2e|x2− y2| + 1 16π2e|x3− y3| + 1 16π2e|x4− y4| + 1 16π2e|x5− y5| + 1 16π2e|x6− y6| + 1 16π2e|x7− y7| + 1 16π2e|x8− y8| . (68) Hence, υ11=υ12= υ13=υ14=υ15=υ16 =υ17=υ18= 1 8π3e2, (69) υ21 =υ22= υ23=υ24=υ25= υ26=υ27 =υ28 = 1 16π2e. (70) Therefore, Σ1=0.5066, Σ2 =0.00638, (71) A1 =0.006135, A2 =0.000432, (72) A13=0.091296, A23=0.048554, A33=0.383993, (73) A14=0.009723, A24=0.005699, A34=0.002138. (74) Thus, maxA1,A2,A13,A23,A33,A14,A24,A34  < 1. (75)

And by Theorem 3.1, we conclude that the system (58) has a unique solution on [0, 1].

Example 4.2. We consider the following system:                    D52x (t) = e t 2π+sin(x(t)+y(t))+cos  D32x(t)+D12x(t)  +cos  D32y(t)+D12y(t)  + etsin(x(t)+y(t)) 5+cos  D32x(t)+D12x(t)  +cos  D32y(t)+D12y(t) , t∈ [0, 1] , D52y (t) = (t+1) sin  x(t)+D32x(t)+D12x(t)  2π+cos 

y(t)+D32y(t)+D12y(t)

 +

3t2cosD32y(t)+D12y(t)cos(x(t)+y(t))

e−sinD32x(t)+D12x(t)  , t∈ [0, 1] , D34x (0) + D 3 4x (1) = 0, D 5 6y (0) + D 5 6y (1) = 0, x′(0) = y′(0) = 0, x (1) + D85x (1) = 0, y (1) + D 3 2y (1) = 0. (76)

(18)

We have: n = 3, m = 2, α = β = 52, γ = 34, ρ = 65, δ = 85, σ = 32,J = [0, 1] , and then

f1(t, x1,x2,x3,x4,x5,x6) =

et

2π + sin (x1+x2) + cos (x3+x4) + cos (x5+x6)

, (77) f2(t, x1,x2,x3,x4,x5,x6) = etsin (x1+x2) 5 + cos (x3+x4) + cos (x5+x6) , (78) g1(t, x1,x2,x3,x4,x5,x6) = (t + 1) sin (x1+x3+x4) 2π + cos (x2+x5+x6) , (79) g2(t, x1,x2,x3,x4,x5,x6) = 3t2cos (x5+x6) cos (x1+x2) e− sin (x3+x4) . (80) It is clear that | f1(t, x1,x2,x3,x4,x5,x6)| ≤ e 2π− 3, (80) | f2(t, x1,x2,x3,x4,x5,x6)| ≤ e 3, |g1(t, x1,x2,x3,x4,x5,x6)| ≤ 2 2π− 1, |g2(t, x1,x2,x3,x4,x5,x6)| ≤ 3 e− 1.

The functions f1, f2,g1 and g2are continuous and bounded on [0, 1]× R6. So, by

Theorem 3.2, the system (76) has at least one solution on [0, 1].

References

[1] A. Anber, S. Belarbi, Z. Dahmani: New Existence And Uniqueness Results For Fractional Differ-ential Equations, An. St. Univ. Ovidius Constant., (2013), pp. 33-41.

[2] S. Belarbi, Z. Dahmani: Existence Of Solutions For Multi-Points Fractional Evolution Equations, Appl. Math., Vol. 9, (2014), pp. 416 – 427.

[3] M. Benchohra, S. Hamani, S.K. Ntouyas: Boundary Value Problems For Differential Equations With Fractional Order And Nonlocal Conditions, Nonlinear Anal., 71, (2009), pp. 2391-2396. [4] M.E. Bengrine, Z. Dahmani: Boundary Value Problem For Fractional Differential Equations, Int.

J. Open Problems Compt. Math., 5(4), (2012), pp.7-15.

[5] T.A. Burton: A Fixed-Point Theorem Of Krasnoselskii, App. Math. Lett., Vol. 11, No. 1, (1998), pp. 85-88.

[6] Z. Cui, P. Yu, Z. Mao: Existence Of Solutions For Nonlocal Boundary Value Problems Of Nonlin-ear Fractional Differential Equations, Advances In Dynamical Systems And Applications., 7(1), (2012), pp. 31-40.

[7] Z. Dahmani, L. Tabharit: Fractional Order Differential Equations Involving Caputo Derivative, Theory And Applications of Mathematics & Computer Science., 4 (1), (2014), pp. 40–55. [8] R. Gorenflo, F. Mainardi: Fractional Calculus: Integral And Differential Equations Of

Frac-tional Order, Fractals And FracFrac-tional Calculus In Continuum Mechanics, Springer-Verlag Vi-enna, (1997), pp. 291-348.

(19)

[9] M. Houas, Z. Dahmani: New Results For A Coupled System Of Fractional Differential Equations, Ser. Math. Inform., Vol. 28, No. 2, (2013), pp. 133-150.

[10] M. Houas, Z. Dahmani: New Fractional Results For A Boundary Value Problem With Caputo Derivative, Int. J. Open Problems Compt. Math., 6(2), (2013), pp. 30-42.

[11] M. Houas, Z. Dahmani, M. Benbachir: New Results For A Boundary Value Problem For Differ-ential Equations Of Arbitrary Order, International Journal Of Modern Mathematical Sciences., 7(2), (2013), pp. 195-211.

[12] M. Houas, Z. Dahmani: New Results For A Caputo Boundary Value Problem, American Journal Of Computational And Applied Mathematics., 3(3), (2013), pp. 143-161.

[13] A.A. Kilbas, S.A. Marzan: Nonlinear Differential Equation With The Caputo Fractional Deriva-tive In The Space Of Continuously Differentiable Functions, Differ. Equ., 41(1), (2005), pp. 84-89.

[14] M.A. Krasnoselskii, Amer. Math. Soc. Transl. 10 (2), (1958), pp. 345-409.

[15] R. Lakshmikantham, A.S. Vatsala: Basic Theory Of Fractional Defferential Equations, Nonlinear Anal., (2008), pp. 2677-2682.

[16] M. Li, Y. Liu: Existence And Uniqueness Of Positive Solutions For A Coupled System Of Non-linear Fractional Differential Equations, Open Journal Of Applied Sciences., (3), (2013), pp. 53-61.

[17] F. Mainardi: Fractional Calculus: Some Basic Problems In Continum And statistical mechanics, Fractals And Fractional Calculus In Continuum Mechanics., (1999).

[18] J. Nieto, J. Pimente: Positive Solutions Of A Fractional Thermostat Model, Boundary Value Prob-lems., 1(5), (2013), pp. 1-11.

[19] S.K. Ntouyas: Existence Results For First Order Boundary Value Problems For Fractional Dif-ferential Equations And Inclusions With Fractional Integral Boundary Conditions, Journal Of Fractional Calculus And Applications., 3(9), (2012), pp. 1-14.

[20] N. Octavia: Nonlocal Initial Value Problems For First Order Differential Systems, Fixed Point Theory, Vol. 22, No. 1, (2009), pp. 64-69.

[21] L. Podlubny: Fractional Differential Equations, Academic Press, New York, (1999). [22] D.R. Smart: Fixed point Theorems, Cambridge University Press, (1980).

[23] W. Yang: Positive Solutions For A Coupled System Of Nonlinear Fractional Differential Equa-tions With Integral Boundary CondiEqua-tions, Comput. Math. Appl., Vol. 63, (2012), pp. 288-297.

Références

Documents relatifs

Once again, Baybars stood out for his feats of arms at the side of the sultan al-Malik al-Muẓaffar Quṭuz during the victory of the Mamluk troops over the Mongols

Une généralisation de la structure de modèles de Reedy, qui dans ce travail est construite pour les sections d’une famille convenable des catégories de modèles sur une catégorie

Dans le cadre d’un marché du travail frictionnel comme celui analysé, une taxe progressive peut avoir des effets positifs sur le fonctionnement du marché, en particulier elle peut

Armstrong ​et al ​ report no effect of white light on the activity of Chlamydomonas reinhardtii ​ ( ​Cr ​ ) and ​Clostridium acetobutylicum (​Ca ​

In particular, by modeling the behavior of fiscal policy through a feedback rule similar to monetary Taylor rules, Bohn established a simple, elegant condition on the feedback effect

The FTIR spectrum of the protein after maturation (Fig- ure 1A, MeH-HydA and Table S2) displayed sharp peaks corresponding to CN - and CO vibrations typical of those

Simulated I d (V ds ) characteristics in the off-state, showing the off- state current and the breakdown voltage of the normally-on HEMT and the normally-off HEMT with

Sur le même exemple, nous avons comparé les contraintes moyennes (totale ou hydrostatiques par phase) obtenues après convergence de l’algorithme EF 2 avec celles fournies par la