• Aucun résultat trouvé

Oceanic Dynamics under Location Uncertainty: Towards a consistent stochastic modeling

N/A
N/A
Protected

Academic year: 2021

Partager "Oceanic Dynamics under Location Uncertainty: Towards a consistent stochastic modeling"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-02708028

https://hal.inria.fr/hal-02708028

Submitted on 1 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Oceanic Dynamics under Location Uncertainty: Towards a consistent stochastic modeling

Long Li, Werner Bauer, Etienne Mémin

To cite this version:

Long Li, Werner Bauer, Etienne Mémin. Oceanic Dynamics under Location Uncertainty: To-

wards a consistent stochastic modeling. Workshop Conservation Principles, Data and Uncertainty

in Atmosphere-Ocean Modelling, Apr 2019, Potsdam, Germany. �hal-02708028�

(2)

Oceanic Dynamics under Location Uncertainty

Towards a consistent stochastic modelling

Fluminance Group

Inria Rennes France & Universit´e Rennes 1 France

Long Li Werner Bauer Etienne Mémin

(3)

Objective

Why stochastic modeling ?

Why consistent model ?

Take into account small-scale / unresolved processes

Uncertainty Quantification, Ensemble Forecasts

Both scales must respect appreciate physical laws

Losing consistency may provide wrong statistics

(4)

Outline

3 Summary

4

2 Experimental Evaluations

Structure—preserving of Rossby wave

Ensemble forecasting verification of SQG MU

Time—statistics of wind—driven circulation

1 Governing Equations

Location Uncertainty Principles

Barotropic Quasi—Geostrophic Model under LU

(5)

homogeneous / heterogeneous

Location Uncertainty Principles

small-scale unresolved large-scale

resolved

dX t = u(X t , t)dt + (X t , t)dB t

Stochastic flow :

a = 4 T = E ⇥

dB t ( dB t ) T

/dt

Variance tensor :

space-time white noise symmetric

kernel correlated in space

uncorrelated in time

Functional process :

(x, t)dB t = Z

D

˘ (x, y, t)dB t (y)dy

multiplicative noise

subgrid diffusion corrected drift

u 1

2 r · a

Balanced Energy

d t ✓ + u ? · r ✓dt + dB t · r ✓ 1

2 r · (a r ✓)dt = 0 D t ✓ = 4

Transport of a random tracer : ( r · = 0 )

d dt

Z

D

1

2 ✓ 2 = 0

( r · u ? = 0 )

( Mémin 2014; Resseguier et al. 2017 )

(6)

Barotropic Quasi–Geostrophic Model under LU ( Resseguier et al. 2017; Li et al. 2019 )

Evolution of the potential vorticity with source processes : D t q = S 1 ( r u)dt + S 2 ( r u)dB t

Evolution of the stream function :

q = /L 2 R + f

Strong incompressible constraints :

u = r ? , dB t = r ? 'dB t , r · u ? = 0 Conservation of total energy : d

dt Z

D

1 2

h kr k 2 + ( /L 2 R ) 2 i

= 0

Transport of a prognostic passive tracer : D t q 0 = 0

Conservation of tracer energy : d

dt Z

D

1

2 (q 0 ) 2 = 0

h Sketch : Z

D

dB t · r (q f ) = Z

D

S 2 ( r u) dB t i

(7)

Outline

3 Summary

4

2 Experimental Evaluations

Structure—preserving of Rossby wave

Ensemble forecasting verification of SQG MU

Time—statistics of wind—driven circulation

1 Governing Equations

Location Uncertainty Principles

Barotropic Quasi—Geostrophic Model under LU

(8)

Structure–preserving of Rossby wave

Flowchart : q

( Potential Vorticity )

q′

( Passive Tracer )

Illustration of conservations :

Passive Tracer Tracer Energy Total Energy

ψ

( Stream Function )

(9)

Ensemble forecasting verification of SQG MU

Time

Initial uncertainty Forecast uncertainty Model

PIC

LU

Illustration of ensemble prediction systems :

(10)

Ensemble forecasting verification of SQG MU

Reliability — Ensemble Spread match MSE of the Ensemble Mean :

( Resseguier et al. 2019 )

(11)

Ensemble forecasting verification of SQG MU

LU

homogeneous

PIC

homogeneous

LU

heterogeneous

PIC

heterogeneous

Day 10 Day 20 Day 30 Reliability

Model

Reliability — Ranked Histogram of Ensemble Members :

( Resseguier et al. 2019 )

(12)

Time–statistics of wind–driven circulation

DNS 256 ⇥ 512 with Re = 450 and Ro = 0.0016

(13)

Time–statistics of wind–driven circulation

DNS 256 ⇥ 512 LU 32 ⇥ 64 LES LU 32 ⇥ 64

Truth

(14)

Outline

3 Summary

4

2 Experimental Evaluations

Structure—preserving of Rossby wave

Ensemble forecasting verification of SQG MU

Time—statistics of wind—driven circulation

1 Governing Equations

Location Uncertainty Principles

Barotropic Quasi—Geostrophic Model under LU

(15)

Summary

A consistent stochastic model :

Physical conservation laws satisfied Better ensemble spread represented

Time-averaged profil well described on coarse mesh

Future works :

Multi-layers QG model under LU

( Q-GCM Projects : Hogg et al. 2003 )

Data Assimilation with Particle Filters

( Cotter et al. 2018 )

(16)

Thanks for Your Attention !

(17)

Ensemble of random stream functions

Homogeneous parameterization

low-pass band filter ? white noise

(18)

Heterogeneous parameterization

y( m )

x(m)

t = 0 d ay s

0 2 4 6 8

x 10 5 0

5

10 x 10 5

1 0.5 0

0.5 x 10 1 3

Neighbor Centered neighbor

Random selection

y( m )

x(m) t = 0 d ay s

0 2 4 6 8

x 10

5

0

5 10 x 10

5

1 0.5 0 0.5 x 10 1

3

y( m )

x(m) t = 0 d ay s

0 2 4 6 8

x 10

5

0

5 10 x 10

5

1 0.5 0 0.5 x 10 1

3

y( m )

x(m) t = 0 d ay s

0 2 4 6 8

x 10

5

0

5 10 x 10

5

1 0.5 0 0.5 x 10 1

3

y( m )

x(m) t = 0 d ay s

0 2 4 6 8

x 10

5

0

5 10 x 10

5

1 0.5 0 0.5 x 10 1

3

y( m )

x(m) t = 0 d ay s

0 2 4 6 8

5

0 5 10 x 10

5

1 0.5 0 0.5 x 10 1

3

Global ensemble

Local ensemble :

SVD

Noise

Références

Documents relatifs

Section 4 discusses the numerical results for an inviscid test case with homogeneous

A statistical comparison with establi- shed reference data sets shows that the models under location uncertainty, with a special reference to the local variance based models (StSp

Valentin Resseguier, Etienne Mémin, Bertrand Chapron, Pierre Dérian.. To cite

Southern channel ocean (Hogg and Blundell, 2006) Atmosphere–ocean coupled mode (Hogg et al., 2003). Multiple scale ocean model (combines planetary and quasi–geostrophic physics)

The diffusion modes analysis developed in the present paper identifies critical regions of the wake flow: the anisotropy exhibits mainly the pivotal location of the shear layers

Key-words: Forward-backward SDEs, stochastic differential games, maximum principle, model uncertainty, optimal portfolio, jump diffusions.. ∗ Center of Mathematics for

This doctoral thesis deals with the problem defined in the previous sec- tion and presents as main contributions: (i) the development of a mechanical- mathematical model to describe

Useful in uncertainty quantification (UQ) : provide more reliable ensemble forecasts (EF) and more effiecient spread for ensemble data assimilation (v.s.. perturbations of