• Aucun résultat trouvé

Neutron occupancy of the 0d5/2 orbital and the N = 16 shell closure in 24O

N/A
N/A
Protected

Academic year: 2021

Partager "Neutron occupancy of the 0d5/2 orbital and the N = 16 shell closure in 24O"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: in2p3-01090228

http://hal.in2p3.fr/in2p3-01090228

Submitted on 12 Jun 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Neutron occupancy of the 0d5/2 orbital and the N = 16

shell closure in 24O

K. Tshoo, Y. Satou, C.A. Bertulani, H. Bhang, S. Choi, T. Nakamura, Y.

Kondo, S. Deguchi, Y. Kawada, Y. Nakayama, et al.

To cite this version:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Neutron

occupancy

of

the

0d

5

/

2

orbital

and

the

N

=

16 shell

closure

in

24

O

K. Tshoo

a

,

,

Y. Satou

b

,

C.A. Bertulani

c

,

H. Bhang

b

,

S. Choi

b

,

T. Nakamura

d

,

Y. Kondo

d

,

S. Deguchi

d

,

Y. Kawada

d

,

Y. Nakayama

d

,

K.N. Tanaka

d

,

N. Tanaka

d

,

Y. Togano

d

,

N. Kobayashi

e

,

N. Aoi

f

,

M. Ishihara

g

,

T. Motobayashi

g

,

H. Otsu

g

,

H. Sakurai

g

,

S. Takeuchi

g

,

K. Yoneda

g

,

F. Delaunay

h

,

J. Gibelin

h

,

F.M. Marqués

h

,

N.A. Orr

h

,

T. Honda

i

,

T. Kobayashi

j

,

T. Sumikama

j

,

Y. Miyashita

k

,

K. Yoshinaga

k

,

M. Matsushita

l

,

S. Shimoura

l

,

D. Sohler

m

,

J.W. Hwang

b

,

T. Zheng

n

,

Z.H. Li

n

,

Z.X. Cao

n

aRareIsotopeScienceProject,InstituteforBasicScience,Daejeon305-811,RepublicofKorea bDepartmentofPhysicsandAstronomy,SeoulNationalUniversity,Seoul151-742,RepublicofKorea cTexasA&MUniversity-Commerce,POBox3011,Commerce,Texas75429,USA

dDepartmentofPhysics,TokyoInstituteofTechnology,Tokyo152-8551,Japan eDepartmentofPhysics,UniversityofTokyo,Tokyo113-0033,Japan fResearchCenterforNuclearPhysics,OsakaUniversity,Osaka567-0047,Japan gRIKENNishinaCenter,Saitama351-0198,Japan

hLPC-Caen,ENSICAEN,UniversitédeCaen,CNRS/IN2P3,14050Caencedex,France iDepartmentofPhysics,RikkyoUniversity,Tokyo171-8501,Japan

jDepartmentofPhysics,TohokuUniversity,Miyagi980-8578,Japan kDepartmentofPhysics,TokyoUniversityofScience,Chiba278-8510,Japan lCenterforNuclearStudy,UniversityofTokyo,Saitama351-0198,Japan

mInstituteforNuclearResearchoftheHungarianAcademyofSciences,POBox51,H-4001Debrecen,Hungary nSchoolofPhysicsandStateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing100871,China

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received17June2014

Receivedinrevisedform9October2014 Accepted13October2014

Availableonline18October2014 Editor:D.F.Geesaman

One-neutron knockout from 24O leading to the first excited state in 23O has been measured for a

protontargetatabeamenergyof62MeV/nucleon.Thedecayenergyspectrumoftheneutronunbound state of 23O was reconstructed fromthe measured fourmomenta of the 22O fragment and emitted

neutron. A sharppeakwas foundat Edecay=50±3 keV, corresponding toan excitedstatein23Oat

2.78±0.11 MeV,asobserved inpreviousmeasurements.The longitudinalmomentumdistributionfor thisstatewasconsistentwithd-waveneutronknockout,providingsupportfora assignmentof5/2+. TheassociatedspectroscopicfactorwasdeducedtobeC2S(0d

5/2) =4.1±0.4 bycomparingthemeasured

crosssection(

σ

exp1n=61±6 mb)withadistortedwaveimpulseapproximationcalculation.Suchalarge

occupancyfortheneutron0d5/2orbitalisinlinewiththeN=16 shellclosurein24O.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

The neutron drip-line nucleus 24O, which has been studied extensively in recent years [1–14], is now considered a doubly-closed-shell nucleus. In particular, the high excitation energy of the first 2+ state [7] andsmall quadrupole transition parameter

[14]are strongindicatorsofan N

=

16 sphericalshellclosure. In addition, Kanungoet al. [8] found a large spectroscopic factor –

*

Correspondingauthor.

E-mailaddress:tshoo@ibs.re.kr(K. Tshoo).

C2S

(

1s1/2

)

=

1

.

74

±

0

.

19 –forone-neutronknockoutfrom24O re-flectinganalmostcompleteoccupancyofthe1s1/2orbital.

In this Letter we report on the spectroscopic factor for d5/2 neutronremovalfrom24O. Thefirstexcitedstateof23O,whichis neutronunbound[15,13,16],waspopulatedbyone-neutron knock-out from 24O with a proton target. The excitation energy, cross section,andlongitudinalmomentumdistributionweredetermined andallowedthe0d5/2neutron-holenatureofthisstatetobe iden-tified. The large spectroscopic factordeduced forthis state is in linewiththe

N

=

16 shellclosurein24O.

http://dx.doi.org/10.1016/j.physletb.2014.10.033

(3)

20 K. Tshoo et al. / Physics Letters B 739 (2014) 19–22

Fig. 1. (Color online.) Schematic view of the experimental setup. The experiment was performed at the RIPS facility [17] at RIKEN.TheexperimentalsetuphasbeendescribedinRefs.[14,18], andisdepictedinFig. 1.Thesecondary 24Obeamwas produced using a 1.5 mm-thick Be production target and a 95 MeV/nu-cleon 40Ar primary beam of

40 pnA. The average intensity of the 24O beam was

4 particles/sec.The momentum of the sec-ondary beam was determined particle-by-particle by measuring thepositionatthedispersivefocusF1ofRIPSwithaparallelplate avalanche counter.The energyloss (



E) andtime-of-flight (TOF) weremeasuredusing350μm-thicksiliconand500μm-thick plas-ticscintillator detectors, respectively, atthe achromatic focus F2. The liquid-hydrogen(LH2) target [19] was installed atthe achro-matic focus F3.The effective target thicknessandthe mid-target energyof24Owere159

±

3 mg

/

cm2 and62 MeV/nucleon, respec-tively.The 24Obeamincident onthetarget was tracked particle-by-particle by using two multi-wiredrift chambers installed just upstream of the target. The target was surrounded by an array consistingof48 NaI(Tl)crystals (DALI) todetect

γ

rays from de-excitationofthefragments.

The

B

ρ

-TOF-



E method wasemployedtodeterminemassand charge ofthefragment followingreactions ofthe 24Obeamwith the LH2 target. The magnetic rigidity (B

ρ

) was determined from thepositionandangleinformationmeasuredwithtwomulti-wire driftchambersplacedattheentranceandexitofthedipole mag-net.TheTOFofthefragmentwasmeasured withtheplastic scin-tillator charged particle hodoscope which also gave energy loss information.Thebeamvelocitydecayneutronwasdetectedusing aplasticscintillatorcounterarrayplacedsome4.7 mdownstream ofthetarget,equippedwithachargedparticlevetocounter.A neu-trondetectionefficiencyof25

±

1% at64 MeVwasmeasuredfora 2 MeVeethresholdinaseparate7Li

(

p

,

n

)

measurementperformed duringtheexperiment.

Thedecayenergyspectrumof23O∗ wasreconstructedfromthe measuredfourmomentaof22Oandtheemittedneutron.The de-cayenergyEdecay isexpressedas:

Edecay

=



(

Ef

+

En

)

2

− |

pf

+

pn

|

2

− (

Mf

+

Mn

),

(1) where

E

f

(

En

)

,pf

(p

n

)

,and

M

f

(

Mn

)

arethetotalenergy, momen-tum, and mass of 22O (neutron), respectively. Fig. 2 shows the decayenergyspectrumintermsofcrosssection (d

σ

/

dEdecay) af-tercorrecting forthe detection efficiencies andacceptances. The backgroundcontributionwassubtracted hereby usingdatataken withan empty target. The errorbars are statisticalonly. The ge-ometrical acceptancewas estimated usinga MonteCarlo simula-tiontakingintoaccount thebeamprofile,geometryofthesetup, experimental resolutions, and multiple scattering of the charged particles.Theexperimentalenergyresolutionwas estimatedtobe



Edecay

0

.

52



Edecay(MeV)inFWHM.

Thedecayenergyspectrumwasdescribedusingoneresonance forthepeakat Edecay

=

50

±

3 keV andaMaxwelliandistribution forthe non-resonant continuum [20]. The peak observed has an

Fig. 2. Thecrosssection,dσ/dEdecay,obtainedbymeasuringaneutronin

coinci-dencewith22O.Theerrorbarsarestatisticalonly.Thedottedanddot-dashedlines

aretheresultsofthefitsforaresonanceatEdecay=50±3 keV andanon-resonant

continuumcomponent[20],respectively.Thedecaypathfromthefirstexcitedstate of23Otothegroundstateof22Oisrepresentedintheinset.

Table 1

Theexcitationenergiesofthefirsttwostatesin23Oandthespectroscopicfactors

forneutronremovalfrom24OarecomparedwiththeresultsoftheUSDBandWBT

shell-modelcalculations.

Energy (MeV) Spectroscopic factor C2S

Exp. USDB WBT Exp. USDB WBT

1/2+ 0.0 0.0 0.0 1.74±0.19a 1.81 1.73

5/2+ 2.78±0.11 2.59 2.72 4.1±0.4 5.67 5.52

a FromRef.[8].

asymmetriclineshapeowing toitsproximitytothreshold,andits widthisfullydominatedby theexperimentalresolution.The cor-responding excitation energy is Ex

=

2

.

78

±

0

.

11 MeV,given the separationenergyof

S

n

(

23O

)

=

2

.

73

±

0

.

11 MeV[21–23].Sinceno

γ

-ray lines were observed for the 22O

n channel, we assumed that 22Oisinthegroundstate.As such,thelocation ofthe reso-nanceisingoodagreementwithpreviousexperiments[15,16].

The one-neutron knockout cross section to the resonance at Edecay

=

50 keV wasdeterminedtobe

σ

exp1n

=

61

±

6 mb,after sub-tractingthenon-resonantcontinuum.Thequotederrorarisesfrom theuncertaintyinthechoiceofthefunctionalformdescribingthe non-resonant continuum(8%),statisticaluncertainty(4%),neutron detectionefficiency(3%),andthetargetthickness(2%).

Thesingle-particleconfigurationsforthegroundstatesof23,24O are expectedtobe

ν

(

0d5/2

)

6

ν

(

1s1/2

)

1 and

ν

(

0d5/2

)

6

ν

(

1s1/2

)

2, re-spectively, in the shell-model picture (see, e.g., Refs. [8,24]), and suggestthat thefirstexcited stateof23Opresentedhere(neutron hole state) is very likely to be populated by the 0d5/2 neutron knockout. Calculations using the USDB interaction [25] in the sd modelspace,aswellasWBT[26]interactioninthe

spsdp f model

space, predictthat thespin-parityofthisstate is J π

=

5

/

2+ ( Ta-ble 1).

The one-neutron knockout cross section, above a few tens MeV/nucleon energy, can be decomposed intothe single-particle cross section (

σ

sp) relatedto the reaction and the spectroscopic factor(C2S) reflectingthenucleonoccupancy[27],asfollows:

σ

1n

=



nlj



A A

1



Λ C2S



,

nlj



σ

sp



nlj

,

Seffn



,

(2)

where J π is thespin-parityofthefinalstateoftheresidue(core); nls denote thequantumnumbersoftheknocked-outneutron;

S

eff n is the effective separation energywhich corresponds the sumof the neutron separation energy of the projectile and the excita-tion energyof thecore; A is the massnumberof theprojectile;

(4)

Fig. 3. Longitudinalmomentumdistributionfor23O(seetext).Theerrorbarsare statisticalonly.Thesolidanddashedlinesrepresentthecalculatedlongitudinal mo-mentumdistributionsnormalizedtothepeakofthemeasureddistributionforthe knockoutofneutronsinthe0d5/2and1s1/2orbitals,respectively.Thedistributions

wereconvolutedwiththeexperimentalresolution.

Thesingle-particle crosssection assuming aspectroscopic fac-torofunity was calculatedusingthe distortedwave impulse ap-proximation(DWIA) calculation forthe quasifree (p

,

pn)

reaction as described in Ref. [29]. The calculation employed the eikonal approximation for the distorted wave functions of incoming and outgoingreactionchannels.Theeffectivenucleon–nucleon interac-tionM3Y [30]along withtheCoulomb potential wasadoptedfor the real partof the optical potential. The nucleon–nucleus cross sectioninnuclearmatterdevelopedinRefs. [31–33]andthe den-sitiesoftheprojectile,orcore, foldedwiththe matterdensityof protonwere employedtointroducetheimaginarypartofthe op-ticalpotential.

Thewavefunctionsofsingle-particleneutronorbitsaroundthe corewerecalculatedusingtheWoods–Saxonpotentialinthe man-nerasdescribedinRef.[34].TheSkyrme(SkX)Hartree–Fock(HF) calculation [35] was employed to deduce the root-mean-squared (rms)radius

r

HF ofeach single-particleorbitintheprojectile.The code nushell[36]wasusedforthiscalculation.TheHFrmsradius of24Owas

r

HF

=

3

.

434 fm forthe0d5/2orbital.Thereducedradius r0wasdeterminedsothatthecalculatedsingle-particlewave func-tionwithinthepotentialwelladoptingadiffusenessof

a

0

=

0

.

7 fm satisfies

r

sp

=

A

/(

A

1

)

rHF atthe HFpredictedbindingenergy. Thereducedradiuswascalculatedtobe1.171fmforthe0d5/2 or-bital.Withthis

r

0,thedepthofthepotentialwellwasfurther ad-justedtoreproduce Seff

n .The

S

effn wascalculatedforthe2.78-MeV statetobe6.97 MeVbyadopting Sn

(

24O

)

=

4

.

19

±

0

.

14 MeV[21]. The single-particle cross section was calculated to be

σ

sp

=

13

.

5 mb, from which we deduced the spectroscopic factor C2Sexp

(

0d5

/2

)

=

4

.

1

±

0

.

4 byusingEq.(2).Theone-neutron knock-out crosssection was calculated to be

σ

th

1n

(

0d5/2

)

=

83

.

1 mb by employing the shell-model spectroscopic factor of C2Sth

=

5

.

67 obtainedusingtheUSDBinteraction.The reductionfactordefined as Rs

=

σ

exp1n

/

σ

th1n was derived tobe Rs

=

0

.

73

±

0

.

07 whichis consistent with the systematics in Refs. [37,34]. Moreover, a re-duction factorof Rs

=

0

.

84

±

0

.

10 may be deduced forinclusive one-neutron knockout at 51 MeV/nucleon from the neighboring N

=

14 closedsub-shellnucleus22O[38].

Inthecore

(

23O

)

+

n system description,thewidthofthe longi-tudinalmomentum(p) distributionofthecoreis directlylinked to the single-particle wave function of the knocked-outneutron, andcanbe utilized to identifyits orbital angularmomentum (l). Wehavereconstructedherethelongitudinalmomentum distribu-tionof23O∗fromthemeasuredmomentaofthe22Ofragmentand neutron.

The p distribution for the first excited state of 23O in the laboratory frame is displayed in Fig. 3. The error bars are sta-tisticalonly. The widthofthe distribution was determined to be 356

±

28 MeV

/

c (FWHM) byaGaussianfit.Theexperimental

dis-Fig. 4. (Coloronline.) Spectroscopicfactorsofthe lowest1/2+ and 5/2+ states, C2S(1s

1/2)(a)andC2S(0d5/2)(b),ineven–evenN=16 isotones.The

experimen-tallydeterminedspectroscopicfactors(datapoints)takenfromRefs.[8,40,41]were derivedfrom theneutronknockoutreactionsonaberylliumtarget. Thepresent resultisshownbythered-filledcircle.TheresultsoftheUSDBshell-model calcu-lationarerepresentedbythedashedlines.Thegraybandsindicatetheresultsof thecalculationsincludingareductionfactor Rs,wheretheupperandlowerlimits

ofthebandscorrespondto0.9and0.7,respectively.

tribution is compared in Fig. 3 with the DWIA calculations. The resultsofthecalculationfortheremovalof0d5/2 (solidline)and 1s1/2 (dashed line) neutrons are shownin Fig. 3, where the cal-culateddistributionswereconvolutedwiththemomentum resolu-tion.Themomentumresolutionwasdeterminedtobe195 MeV

/

c (FWHM)usingtheMonteCarlosimulationtakingintoaccountthe momentum spread of the 24O beam, range difference of incom-ingandoutgoingparticlesinsidetheLH2target,Coulombmultiple scatteringeffects,andthedetectorresolutions. Thewidthsof the calculateddistributions forthe0d5/2 and1s1/2 knocked-out neu-trons were to be 334 and 270MeV/c (FWHM), respectively. The resultfor0d5/2 neutronknockoutreproduceswellthemomentum distribution,supportingthespin-parity assignmentof J π

=

5

/

2+. Itshouldbenotedthatthisstatehasalsobeenmeasuredvia two-protonandone-neutronremoval[15] andprotoninelastic scatter-ing[16].

Theexcitation energyandthespectroscopicfactorforneutron removalfrom24Oarecomparedwiththeresultsoftheshell-model calculationsusingtheUSDBandWBTinteractionsinTable 1.Both calculationsreproducethe energyandalsothe spectroscopic fac-torassumingareductionfactorof

R

s

0

.

7–0

.

9 suggestedbyGade etal.[37,34].We note thatthe USDBinteractionsuccessfully de-scribestheenergies ofthefirstexcitedstatesandthe quadrupole transitionparametersof22,24OreportedinRefs.[14,39].

Fig. 4showstheprotonnumberdependencyofthe experimen-tally determined and calculated (dashed lines) spectroscopic fac-tors for the even–even N

=

16 isotones. While the spectroscopic factor for the

ν

1s1/2 orbital gradually increases in moving from Z

=

12 to 8,thatforthe

ν

0d5/2orbitaldramaticallyrisesatZ

=

8. ThistrendisreasonablywellreproducedbytheUSDBshellmodel calculations. Significantly, the C2S

(

0d5/2

)

for 24O is much larger thanthoseofotherisotones,indicatingalargeneutronoccupancy ofthe0d5/2 orbital.Theseresultsareinlinewithan N

=

16 sub-shellclosurein24O.

(5)

22 K. Tshoo et al. / Physics Letters B 739 (2014) 19–22

behaviourmayprovideabenchmarktotestmoresophisticated nu-clearstructure models,aswell asreaction mechanisms.Recently, forexample,Grinyeretal.[42]haveinvestigatedthequenchingof thespectroscopic factorsin 10Be and10Cfor one-neutron knock-out andfound that an ab initio structure calculation, takingboth 3-body forcesandcontinuum effects intoaccount, well describes thereduction.

In summary,we haveinvestigated the occupancy of the neu-tron0d5/2 orbital in24Oviaone-neutronknockoutfrom24Owith a proton target. The excitation energy of the first excited state of23O was measured tobe 2

.

78

±

0

.

11 MeV and thespin-parity was assigned, based on the longitudinalmomentum distribution, tobe J π

=

5

/

2+.The large correspondingspectroscopicfactor of C2Sexp

(

0d

5/2

)

=

4

.

1

±

0

.

4 supportsthepictureofan

N

=

16 spher-icalshellclosurein24O.

Acknowledgements

We would like to thank the accelerator operations staff of RIKEN for providing the 40Ar beam. This work is supported by the Grant-in-Aid for Scientific Research (No. 19740133) from MEXT Japan, the WCU program and Grant 2010-0024521 of the NRF Korea, the Rare Isotope Science Project of Institute for Ba-sic Science funded by Ministry of Science and NRF of Korea (2013M7A1A1075765), DOE grants No. DE-FG02-08ER41533 and No. DE-FG02-10ER41706, and the French–Japanese LIA (IN2P3-RIKEN).

References

[1]A.Ozawa,etal.,Phys.Rev.Lett.84(2000)5493.

[2]R.Kanungo,I.Tanihata,A.Ozawa,Phys.Lett.B528(2002)58.

[3]M.Stanoiu,etal.,Phys.Rev.C69(2004)034312.

[4]B.A.Brown,W.A.Richter,Phys.Rev.C72(2005)057301.

[5]A.Volya,V.Zelevinsky,Phys.Rev.Lett.94(2005)052501.

[6]C.R.Hoffman,etal.,Phys.Rev.Lett.100(2008)152502.

[7]C.R.Hoffman,etal.,Phys.Lett.B672(2009)17.

[8]R.Kanungo,etal.,Phys.Rev.Lett.102(2009)152501.

[9]T.Otsuka,etal.,Phys.Rev.Lett.87(2001)082502.

[10]T.Otsuka,etal.,Phys.Rev.Lett.95(2005)232502.

[11]T.Otsuka,etal.,Phys.Rev.Lett.105(2010)032501.

[12] Ø.Jensen,etal.,Phys.Rev.C83(2011)021305(R),http://dx.doi.org/10.1103/ PhysRevC.83.021305,http://link.aps.org/doi/10.1103/PhysRevC.83.021305. [13] C.R.Hoffman,et al., Phys. Rev.C 83(2011)031303(R), http://dx.doi.org/10.

1103/PhysRevC.83.031303,http://link.aps.org/doi/10.1103/PhysRevC.83.031303. [14]K.Tshoo,etal.,Phys.Rev.Lett.109(2012)022501.

[15]A.Schiller,etal.,Phys.Rev.Lett.99(2007)112501.

[16]Y.Satou,etal.,Few-BodySyst.54(2013)287.

[17]T.Kubo,etal.,Nucl.Instrum.MethodsB70(1992)309.

[18]Y.Satou,etal.,Phys.Lett.B728(2014)462.

[19]H.Ryuto,etal.,Nucl.Instrum.MethodsA555(2005)1.

[20]F.Deák,etal.,Nucl.Instrum.MethodsA258(1987)67.

[21]M.Wang,etal.,Chin.Phys.C36(2012)1603.

[22]B.Jurado,etal.,Phys.Lett.B649(2007)43.

[23]N.A.Orr,etal.,Phys.Lett.B258(1991)29.

[24]D.Cortina-Gil,etal.,Phys.Rev.Lett.93(2004)062501.

[25]B.A.Brown,W.A.Richter,Phys.Rev.C74(2006)034315.

[26]E.K.Warburton,B.A.Brown,Phys.Rev.C46(1992)923.

[27]P.G.Hansen,J.A.Tostevin,Annu.Rev.Nucl.Part.Sci.53(2003)219.

[28]A.E.L.Dieperink,T.deForest,Phys.Rev.C10(1974)543.

[29]T.Aumann,C.A.Bertulani,J.Ryckebusch,Phys.Rev.C88(2013)064610.

[30]G.Bertsch,etal.,Nucl.Phys.A284(1977)399.

[31]C.A.Bertulani,C.DeConti,Phys.Rev.C81(2010)064603.

[32]E.Clementel,C.Villi,IlNuovoCimento2(1955)176.

[33]C.A.Bertulani,Braz.J.Phys.16(1986)380.

[34]A.Gade,etal.,Phys.Rev.C77(2008)044306.

[35]B.A.Brown,Phys.Rev.C58(1998)220.

[36]B.A.Brown,W.D.M.Rae,MSU-NSCLreport,2007.

[37]A.Gade,etal.,Phys.Rev.Lett.93(2004)042501.

[38]E.Sauvan,etal.,Phys.Rev.C69(2004)044603.

[39]E.Becheva,etal.,Phys.Rev.Lett.96(2006)012501.

[40]J.R.Terry,J.L.Lecouey,Nucl.Phys.A734(2004)469.

[41]J.R.Terry,etal.,Phys.Lett.B640(2006)86.

Références

Documents relatifs

After having exposed this factors, we have opted to display the role of television and movies, who was behind any movement, any protest .Television helped swell the movement

On peut aussi v´erifier qu’une repr´esen- tation elliptique est combinaison lin´eaire de repr´esentation temp´er´ees ayant toutes mˆeme support cuspidal ´etendu puisque

L’évolution des pratiques agricoles en relation avec la mise en œuvre d’une riziculture durable..

Suite ` a la mˆeme analyse que pour 14 Be, les distributions d’´energie relative f n et nn pour les deux ´etats observ´es dans 16 Be ont ´et´e compar´ees aux simulations

Measurements of the beta-decay half-lives of neutron-rich nuclei (Mg–Ar) in the vicinity of the N = 28 shell closure are reported. Some 22 half-lives have been determined, 12 of

When some of the gaps get reduced, open shell configurations, usually two neutron excitations across the neutron closure, take advantage of the availability of open shell protons

increasing in the regions above closed neutron shells where the neutron binding energy is extremely low or in the region of nuclei with large neutron excess.. The nucleus

Although the number of experimental data points is reduced to three (four) out of ve for the rst (second) resonnance, an attempt to extract the angular momentum and the