• Aucun résultat trouvé

K, Rb) compounds: = Comparative (X Ab initio calculations study of Optical cubic, and orthorhombic structures of XCaCl Optik

N/A
N/A
Protected

Academic year: 2021

Partager "K, Rb) compounds: = Comparative (X Ab initio calculations study of Optical cubic, and orthorhombic structures of XCaCl Optik"

Copied!
8
0
0

Texte intégral

(1)

Abderrahim Hadj Larbi

a,b,c,∗

, Said Hiadsi

a

, Moufdi Hadjab

b,c

, M.A. Saeed

d,e

aLaboratoiredeMicroscopeElectroniqueetSciencesdesMatériaux,Universitéd’OrandesSciencesetdelaTechnologieMohamed Boudiaf,DépartementdeGéniePhysique,BP1505,Elm’naouar,Oran,Algerie

bResearchCenterinIndustrialTechnologiesCRTI,P.O.Box64,Cheraga,16014,Algiers,Algeria

cThinFilmsDevelopmentandApplicationsUnit(UDCMA),Setif,Algeria

dDepartmentofPhysics,FacultyofScience,UniversitiTeknologiMalaysia,Skudai,81310,JohorBahru,Malaysia

eDivisionofScienceandTechnology,UniversityofEducation,Lahore,Pakistan

a rt i c l e i n f o

Articlehistory:

Received26February2018 Accepted28March2018

Keywords:

DFT FP-LAPW Perovskites Opticalparameters Scintillators

a b s t ra c t

ThestudypredictstheopticalpropertiesofcubicandorthorhombicstructuresofXCaCl3

(X=K,Rb)perovskitecompoundsthroughelectronicbandstructurecomputationwithin theframeworkofdensityfunctionaltheory(DFT).Thegroundstatefunctionsarecomputed employingfullpotentiallinearizedaugmentedplanewave(FP-LAPW)method.Improved bandgapvaluesandtheelectronicaswellasopticalpropertieswerecalculatedbyTranand BlahamodifiedBecke–Johnson(mBJ)functional.Thestudiedcompounds’densityofstates revealsthatCl-pstatesdominatethevalenceband.Tounderstandtheopticalproperties, andpredictingtheopticallyisotropicnatureofthesematerials,therealandimaginaryparts ofdielectricfunction,refractiveindex,absorptioncoefficient,andenergylossspectraare plotted.Thepresentstudyshowsagreatpotentialutilizationinceramicscintillators.

©2018ElsevierGmbH.Allrightsreserved.

1. Introduction

Overthepastfewdecades,therehasbeenahugeincreaseinthequantityofhalidescintillatorsbecauseoftheirdesired properties:highlightyield,energyresolution,fastdecay,thermalstability.Itcanbeusedasdetectorsofradiationindifferent technologicaldevices,andformedicaldiagnostics[1–6].InorganichalideperovskitesofthetypeABX3(A=alkali,B=alkali- earth,X=halide)typeiswidelyusedscintillators,andplayingagreatpartinthedevelopmentofdevicesfordetectionof ionizingradiation.ItwasfoundthatKCaCl3,andRbCaCl3 alkali-halidecrystalsshowedsimilartransitionpatterns,being cubicattemperatureabove635CforKCaCl3,300CforRbCaCl3,andorthorhombicstructuresatroomtemperatureforthe bothcompounds[7,8].Inrecentyears,variousapproachesandworkshavebeenpublished,whereasthepropertiesofcubic structuresofKCaCl3,andRbCaCl3perovskiteswerecalculated[9,10].Theluminescencepropertiesofvariousimpuritiesin thesecompoundswerealsoinvestigated[11–16].Astudywasconductedtoknowthebehaviorofanotherhalideperovskites KCaF3,RbCaF3[17].

Accordingtoauthors’bestknowledge,notheoreticalcalculationsoftheorthorhombicstructureofKCaCl3,andRbCaCl3 compoundswerecarriedoutusingabinitioapproach.Theobjectiveofthepresentcomparativestudyistounderstandthe

Correspondingauthorat:LaboratoiredeMicroscopeElectroniqueetSciencesdesMatériaux,Universitéd’OrandesSciencesetdelaTechnologie MohamedBoudiaf,DépartementdeGéniePhysique,BP1505,Elm’naouar,Oran,Algerie.

E-mailaddress:Abderrahim.hadjlarbi@univ.usto.dz(A.HadjLarbi).

https://doi.org/10.1016/j.ijleo.2018.03.128

0030-4026/©2018ElsevierGmbH.Allrightsreserved.

(2)

Fig.1.Crystalstructureforcubic,andorthorhombicstructuresofXCaCl3(X=K,Rb)compounds.

opticalpatternsoftransitioninorthorhombicandcubicperovskitesXCaCl3,whereX=K,Rbthroughthecalculationsofthe structural,electronic,andopticalproperties.

2. Computationaldetails

WeemployedtheFP-LAPWmethod,basedondensityfunctionaltheory(DFT)[18,19],implementedinthepackage Wien2k[20],toperformallcalculations.First,weusedthegeneralizedgradientapproximation(GGA-PBE)tooptimize crystalstructuresandcomputeelectronicbands[21].Furthermore,weappliedthemBJapproximationformoreaccuracyin calculationofbandsstructuresandopticalproperties[22].Theplanewavecut-offenergyis−6Rydtoseparatethevalence andcorestates.ThematrixsizeRmt×Kmax=9,whereKmaxistheplane’swavecutoff,Rmtisthesmallestofallatomicsphere radii.TheradiiofK,Rb,ClandCaatomicsphereweresetto2.4,2.4,2.4and2.2a.u.,respectively.Themaximumnumber lforpartialwavesinsidethemuffin-tinsphereswasexpandeduptolmax=10.Thek-integrationovertheBrillouinzone wasselectedbyusingMonkhorst-Packmethod[23].Wehaveused10×10×10kmeshintheirreduciblewedgeoftheBZ forthecubicstructure,and11×7×11fortheorthorhombicstructure.Theself-consistentcalculationisconsideredtobe convergedwhenthetotalenergydifferenceislessthan0.0001Ryd.Theelectronicconfigurationsforallchemicalatomsare asfollows:3s23p64s1forK,4s24p65s1forRb,3s23p64s2forCa,and3s23p5forCl.

3. Resultsanddiscussion 3.1. Structuralproperties

TheXCaCl3(X=K,Rb)compoundsinvestigatedherehavecubicstructureofspacegroupPm-3m(no.221)athightem- perature,andorthorhombic structurePnma(no.62)ata lowertemperature[7,8].Thecrystalstructuresareshown in Fig.1.

Table1

OptimizedinternalatomicpositionsfromtotalenergyminimizationusingFP-LAPWforcubic,andorthorhombicstructures.

(a)Cubicstructures

KCaCl3 RbCaCl3

Atom x y z x y z

X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ca 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Cl 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000

(b)Orthorhombicstructures

KCaCl3 RbCaCl3

Atom x y z x y z

X 0.4371 0.2500 0.0155 0.4419 0.2500 0.0164

Ca 0 0 0 0 0 0

Cl1 0.1984 0.0506 0.3043 0.2060 0.0420 0.2945

Cl2 0.5328 0.2500 0.6005 0.5152 0.2500 0.5820

(3)

Othercalc. a(Ao) 5.410[9] 5.420[10]

b(Ao) 5.410 5.420

c(Ao) 5.410 5.420

==(o) 90 90 90 90

B(GPa) 23.830[9] 26.080[10]

B’ 4.296[9] 3.850[10]

Table3

CalculatedbandgapofXCaCl3(X=K,Rb)compoundsineVusingPBE,andTB-mBJfunctionals.

KCaCl3(Cubic) RbCaCl3(Cubic) KCaCl3(Ortho) RbCaCl3(Ortho)

PBE 4.811 4.921 5.531 5.452

TB-mBJ 7.125 7.003 7.287 7.132

Othercalc. 4.734[9] 5.03[10]

Fig.2. Bandstructureandtotaldensityofstates(TDOS)calculatedforcubicandorthorhombicstructuresofKCaCl3,andRbCaCl3,usingTB-mBJfunctional.

(4)

Fig.3.Partialdensityofstates(PDOS)calculatedforcubicandorthorhombicstructuresofKCaCl3,andRbCaCl3,usingTB-mBJfunctional.

Fig.4. Real(upperpanel)andimaginary(lowerpanel)partsofdielectricconstantscalculatedforcubicandorthorhombicstructuresofKCaCl3,andRbCaCl3, usingTB-mBJfunctional.

(5)

Fig.5.Refractiveindex(n),andextinctioncoefficients(k)forcubicandorthorhombicstructuresofKCaCl3,andRbCaCl3.

First,weoptimizedthelatticeparameters,andusingGGA-PBEapproximationtorelaxtheinternalatomicpositions (Table1).Inordertorelaxtheatomicpositions,theexperimentallatticeparameterswereusedasinputandthenatomic positionswereoptimizedbyminimizingtheforcesonatoms.Tocalculatethelatticeconstants,bulkmodulus(B0)and pressurederivativeofthebulkmodulus(B0),theBirch–Murnaghan’sequationofstate[24]wasusedandcomputedvalues oftheseparametersalongwiththepreviousstudiedexperimentalandtheoreticalonesaregiveninTable2.Thestudied latticeparametersagreewellwiththepreviousones[9,10].

Thepresentcomputedresults(Table2)agreewellwiththeprevioustheoreticalcalculationandexperimentalmea- surements.Tothebestofauthors’knowledge,notheoreticalandexperimentaldataoforthorhombicstructuresofthese compoundsavailabletocomparewiththepresentwork.

3.2. Electronicproperties

Withtheoptimizedstructures,wecalculatedthebandstructureofthecubicandorthorhombicperovskites,XCaCl3(X=K, Rb),usingtwofunctionals(PBE,TB-mBJ).Thebandstructures,usingTB-mBJalone,areshowninFig.1,andtherelatedband gapsaregiveninTable3(forbothfunctional).

Fromthetable,itcanbeseenthatTB-mBJvaluesaresuperiorcomparedtotheunder-estimatedPBE-GGAcalculations.For theorthorhombicstructures,andduetothelackofanypreviousexperimentalortheoreticalinvestigations,nocomparison ispossible.Theresultsrevealthatallstudiedcompoundsareinsulatorshavingindirectbandgapbetweenthevalenceband maximumatRsymmetrypointandtheconductionbandminimumat symmetrypointforthecubicstructures,anda directbandgap−fortheorthorhombicstructures.

Fig.2showsthedensitiesofstatesofcubicandorthorhombicXCaCl3(X=K,Rb)withTB-mBJapproximation.Forthecubic phaseofKCaCl3,thebottommostvalencebandisextendedfrom−12.9to−12.4eVandmainlycorrespondstoCl-sstates hybridizedwithCa-pandK-p.Thesecondregionfrom−12to−11.8eVisformedprimarilyfromtheK-pstateshybridized withCl-sstates.ThethirdregionthatisnearertoFermilevel,rangingaround−2.2eVto0eVhavepredominantlyCl-p characterwithverylesscontributionfromtheCa-sandCa-p.ForRbCaCl3 (cubicphase),thebottomregionisextending around−12.9to−12.4eVdominatedmostlybyCa-pstates.Thetopmostbandregionspreadingfrom−2.1to0eVisbecause ofhybridizationoftheCl-p,Ca-p,andCa-sstates(lesscontributionfromCa)(Fig.3).

(6)

Fig.6. AbsorptionspectraforcubicandorthorhombicstructuresofKCaCl3,andRbCaCl3.

FortheorthorhombicphaseofKCacl3,thebottommost,middle,andtopofthevalencebandsarearound−12.7to−12.2eV,

−11to−10.7eV,and−1.8to0eV,respectively.ThebottomregionisdominatedbytheCl-sstateswithlesscontribution fromtheCa-p,andK-pstates,whilethemiddleregionisdominatedbyK-phybridizedwiththeCl-sandCl-pstates.For thetopofthevalencebandregion,thecontributionismainlyfromthehybridizationofCl-p,Ca-s,Ca-p,K-p,K-sstates(the contributionislessfromCaandK).IncaseofRbCaCl3,thebottomofthevalencebandregionextendsfrom−12.7to−12.3eV andisdominatedmostlybytheCl-sstateshybridizedwiththeCa-p,andRb-pstates.Themiddleofthevalencebandregion, extendsfrom−8.1to−7.8eV,isdominatedbytheRb-pstateshybridizedwiththeCl-p,andCl-sstates.Theregionnearthe Fermilevelspreadingfrom−1.8to0eV,isduetohybridizationoftheCl-p,Ca-p,Ca-s,Rb-pandRb-d(lesscontributionfrom CaandRb).

Forthebothstructures(thecubic,andtheorthorhombic),conductionbandisessentiallydominatedbyRb-dstatesfor theRbCaCl3compounds,andhybridizedwithK,Ca,andClfortheKCaCl3.

Inthecaseofcubicphase,andamongthebandregions,thelowestbandisdominatedbyCl-sstatesinthetwocompounds (KCaCl3,andRbCaCl3),andthecontributionofX-p(X=K,Rb)statesinthemiddleregioncanbeseenonlyinKCaCl3.Thetop ofthevalencebandiscreatedmostlyofCl-p,whereasCa-pandCa-sstatesarepresentinKCaCl3,andRbCaCl3.

Inthecaseoforthorhombicphaseofthebothcompounds,Cl-sstatesaredominantinthelowestbandregion,andX-p (X=K,Rb)statesinthemiddleregionwiththepresenceofthechlorinestates.Forthetopmostregion,thetwocompounds havemainlythesamecharacterhavingcontributionmostlyofCl-pbecauseofthehighelectronegativityofchlorinewhen comparedtootherelements.

3.3. Opticalproperties

Theunderstandingoftheopticalpropertiesofthesecompoundsisthesecondstepafterstudyingitselectronicstructure.

Inthissection,weusedtheTB-mBJfunctionaltocalculatetheopticalpropertiesofthestudiedcompoundsbecauseofthe enhancedband-gapvalues.Thecalculationsneedadensemeshofkpoints,weuse21×21×21forthecubicstructure, and14×9×14fortheorthorhombicstructure.Tothebestofourknowledge,therearenoexperimentaldataavailableto compareourresults.

(7)

Fig.7.Electronenergylossfunctionforcubic,andorthorhombicstructuresofKCaCl3,andRbCaCl3.

Thereisadirectrelationbetweenthecomplexdielectricfunctionandtheenergybandstructureofsolids.Theoptical propertiesofXCaCl3(X=K,Rb)aredescribedbythecomplexdielectricfunctionε=ε1+iε2[25].Fig.4showsthecalculated real(dispersive)partε1andtheimaginary(absorptive)partε2asafunctionofthephotonenergy.

Intheimaginarypartofthedielectricconstantε2,whichisrelatedtotheelectronictransitionsfromtheoccupiedto theunoccupiedstates[26].Fig.4(a,andb)showsasetofpeaksfrom8.11eVto15.73eV,and8.02eVto15.96eVforcubic structureofKCaCl3,andRbCaCl3respectively.ThesepeaksarisemainlyduetothetransitionfromCl-pstatestoconduction band.Atahigherenergy,andduetothetransitionfromCl-s,andX(X=K,Rb)-pstatestohigherenergylevelsofconduction band,weobservepeaksaround23eV–27.44eV,and19.56eV–27.42eVforKCaCl3,andRbCaCl3respectively(Fig.4a,b).For theorthorhombicstructure,wecansee(Fig.4c,andd)peaksfrom7.77eVto16.30eVforKCaCl3,and7.71eVto16.33for RbCaCl3.ThesepeaksalsoarisefromthetransitionofCl-pstatestoconductionband.Athigherenergy,weobservepeaks around22.67–27.30eV,and19.30–27.30eVforKCaCl3,andRbCaCl3respectively,whichalsomaybeduetothetransition fromCl-s,andX(X=K,Rb)-pstatestohigherenergylevelsofconductionband.

InFig.5,wecanseetherefractiveindex(forallcompounds),alongthethreedifferentdirections.Thestaticrefrac- tiveindicesn(0) arefoundtobeequalto1.52,and1.50forthecubicstructureofXCaCl3(X=K,Rb),respectively.Forthe orthorhombicstructure,theFig.5(b)showstheisotropicnatureinthelowenergyrangeofthesecompounds,andwefound thatthecalculatedn(0) areequalto1.53,and1.54(averagevaluesalongthethreedirections)forKCaCl3,andRbCaCl3respec- tively.Thevaluesoftherefractiveindicesarefoundtopursueanoppositedirectiontothebandgapfortheorthorhombic structuresofthesecompounds(bandgapdecreasesfromKCaCl3toRbCaCl3).Onthecontrary,itfollowsasametrendtothe bandgapforthecubicstructures.

Theabsorptioncoefficient˛(Fig.6)iscalculatedfromthedielectricfunction(wecanseethattheimaginarypartε2in Fig.4isproportionaltotheabsorptioncoefficient˛),andobservedintherangearound7–30eV(intheultraviolet),itshows whencompoundsabsorbtheincidentbeam.Wenoticethattherearehighabsorptionspeaksathighenergies.Forthecubic structuresofthesecompounds,theopticalgapisaround7.2eV,belowthisvaluethereisnoresponsefromthesematerials, whereasfortheorthorhombicstructures,theopticalgapisaround7.3eV.

TheelectronenergylossspectraL(Fig.7)representtheenergylossperunitlengthofthefastelectronacrossthecom- pound.Weobserve,athighenergies,peaksaround28.7eVforthecubicstructuresofKCaCl3andRbCaCl3,29.1eVforthe orthorhombicstructures.Atenergiesaround15.6–26.3eV,wecanseetwobroadpeaksforKCaCl3,andonepeakforRbCaCl3

(8)

compounds.Thesenotablepeaksaredefinedasplasmonpeaks,whichrepresentthechargecollectiveoscillationsofthefree electronsinthecrystal.

Fromtheopticalinvestigationoftheorthorhombicstructureofbothcompounds,wecanseetheisotropicnatureinthe lowenergyregionthoughbeingstructurallyanisotropicwhichisnecessaryfortheceramicscintillators.

4. Conclusions

Inthiswork,wehavestudiedthestructural,electronic,andopticalpropertiesofthecubicandorthorhombicstructureof XCaCl3(X=K,Rb),applyingtheFP-LAPWmethodintheframeworkofDFT.First,weinvestigatedthestructuralpropertiesof thecompoundsincubicandorthorhombicphases,withtherelaxationoftheinternalatomicpositions.Ourresultsagreewell withtheexperimentaldata,andothertheoreticalcalculations.Second,wecalculatedtheelectronicandopticalpropertiesof thesematerialswithTB-mBJfunctionalwhichimprovetheresultscomparedtotheGGA-PBEapproximation.Thetopmost regionofthevalencebandforthebothcompounds,andforthecubicandorthorhombicstructureisdominatedbyCl-p states.Finally,theopticalresultsrevealtheisotropicnatureofthesecompoundsthoughbeingstructurallyanisotropicin thecaseoftheorthorhombicstructures,whichisnominatedtobebettercandidatesfortheceramicscintillators.

References

[1]W.W.Moses,ScintillatorRequirementsforMedicalImaging,LawrenceBerkeleyNatl.Lab.,1999.

[2]P.A.Rodnyi,Progressinfastscintillators,Radiat.Meas.33(2001)605–614.

[3]M.J.Weber,Inorganicscintillators:todayandtomorrow,J.Lumin.100(2002)35–45.

[4]G.Shwetha,V.Kanchana,Opticalisotropyinstructurallyanisotropichalidescintillators:Abinitiostudy,Phys.Rev.B86(2012)115209.

[5]M.J.Weber,Scintillation:mechanismsandnewcrystals,Nucl.Instrum.MethodsPhys.Res.Sect.A:Accel.Spectrom.Detect.Assoc.Equip.527(2004) 9–14.

[6]P.Lecoq,Developmentofnewscintillatorsformedicalapplications,Nucl.Instrum.MethodsPhys.Res.Sect.A:Accel.Spectrom.Detect.Assoc.Equip.

809(2016)130–139.

[7]M.Midorikawa,Y.Ishibashi,Y.Takagi,OpticalanddilatometricstudiesofKCaCl3andRbCaCl3crystals,J.Phys.Soc.Jpn.46(1979)1240–1244.

[8]M.Midorikawa,A.Sawada,Y.Ishibashi,AstudyofRamanscatteringinRbCaCl3,J.Phys.Soc.Jpn.48(1980)1202–1205.

[9]A.A.Mousa,First-principlesstudyofstructural,electronicandopticalpropertiesoftheKCaX3(X=FandCl)compounds,Int.J.Mod.Phys.B28 (2014)1450139.

[10]A.A.Mubarak,Theelastic,electronicandopticalpropertiesofRbCaX3(X=F,Cl)compounds,Int.J.Mod.Phys.B28(2014)1450192.

[11]J.R.Raipurkar,R.G.Atram,P.L.Muthal,S.M.Dhopte,S.V.Moharil,LuminescenceofYb2+inRbCaCl3,J.Lumin.134(2013)456–458.

[12]J.R.Raipurkar,R.G.Atram,P.L.Muthal,S.M.Dhopte,S.V.Moharil,Luminescenceofsome3dactivatorsinRbCaCl3,J.Lumin.136(2013)365–368.

[13]A.S.Voloshinovskii,V.B.Mikhailik,O.T.Antonyak,M.S.Mikhailik,P.A.Rodnyi,E.N.Mel’chakov,I.Munro,C.Mythen,D.Shaw,G.Zimmerer, PeculiaritiesofexcitationofCe-emissionincoreregionofchlorineperovskites,Radiat.Meas.29(1998)251–255.

[14]Y.Chornodolskyy,G.Stryganyuk,S.Syrotyuk,A.Voloshinovskii,P.Rodnyi,Featuresofthecore–valenceluminescenceandelectronenergyband structureofA1−xCsxCaCl3(A=K,Rb)crystals,J.Phys.Condens.Matter19(2007)476211.

[15]P.A.Rodnyi,Efficiencyandyieldspectraofinorganicscintillates,Radiat.Meas.29(1998)235–242.

[16]N.V.Rebrova,A.Y.Grippa,A.S.Pushak,T.E.Gorbacheva,V.Y.Pedash,O.G.Viagin,V.L.Cherginets,V.A.Tarasov,V.V.Vistovskyy,A.P.Vas’kiv,Crystal growthandcharacterizationofEu2+dopedRbCaX3(X=Cl,Br)scintillators,J.Cryst.Growth466(2017)39–44.

[17]L.Li,Y.-J.Wang,D.-X.Liu,C.-G.Ma,M.G.Brik,A.Suchocki,M.Piasecki,A.H.Reshak,Comparativefirst-principlescalculationsoftheelectronic, optical,elasticandthermodynamicpropertiesofXCaF3(X=K,Rb,Cs)cubicperovskites,Mater.Chem.Phys.188(2017)39–48.

[18]P.Hohenberg,W.Kohn,Inhomogeneouselectrongas,Phys.Rev.136(1964)B864–B871,http://dx.doi.org/10.1103/PhysRev.136.B864.

[19]W.Kohn,L.J.Sham,Self-consistentequationsincludingexchangeandcorrelationeffects,Phys.Rev.140(1965)A1133–A1138, http://dx.doi.org/10.1103/PhysRev.140.A1133.

[20]P.K.S.Blaha,K.Schwarz,G.Madsen,D.Kvasnicka,J.Luitz,WIEN2k:AnAugmentedPlaneWavePlusLocalOrbitalsProgramForCalculatingCrystal Properties,Tech.Univ.Wien,Wien,2001.

[21]J.P.Perdew,K.Burke,M.Ernzerhof,Generalizedgradientapproximationmadesimple,Phys.Rev.Lett.77(1996)3865–3868, http://dx.doi.org/10.1103/PhysRevLett.77.3865.

[22]F.Tran,P.Blaha,Accuratebandgapsofsemiconductorsandinsulatorswithasemilocalexchange-correlationpotential,Phys.Rev.Lett.102(2009) 226401,http://dx.doi.org/10.1103/PhysRevLett.102.226401.

[23]H.J.Monkhorst,J.D.Pack,SpecialpointsforBrillouin-zoneintegrations,Phys.Rev.B13(1976)5188–5192, http://dx.doi.org/10.1103/PhysRevB.13.5188.

[24]F.D.Murnaghan,Thecompressibilityofmediaunderextremepressures,Proc.Natl.Acad.Sci.U.S.A.30(1944)244–247.

[25]J.S.Toll,Causalityandthedispersionrelation:logicalfoundations,Phys.Rev.104(1956)1760–1770,http://dx.doi.org/10.1103/PhysRev.104.1760.

[26]H.Ehrenreich,M.H.Cohen,Self-consistentfieldapproachtothemany-electronproblem,Phys.Rev.115(1959)786–790, http://dx.doi.org/10.1103/PhysRev.115.786.

[27]H.Seifert,H.Fink,G.Thiel,J.Uebach,ThermodynamischeundstrukturelleUntersuchungenandenVerbindungenderSystemeKCl/MCl2(M Ca,Cd, Co,Ni),ZeitschriftFürAnorg.UndAllg.Chemie520(1985)151–159.

[28]M.A.C.Castro,Estabilidadestructuralyquimicadehalurocompuestosbinariosyternaries,1996.

[29]R.Allmann,W.Pies,A.Weiss,d8386,XIV.5.1simpleoxo-compoundsofberyllium(oxoberyllates),in:K.-H.Hellwege,A.M.Hellwege(Eds.),Key Elem.B,Al,Ga,In,Tl-Be,Springer,Berlin,Heidelberg,1980,pp.325–326,http://dx.doi.org/10.1007/1020155143.

Références

Documents relatifs

Abstract: The study predicts the optical properties of cubic and orthorhombic structures of XCaCl3 (X = K, Rb) perovskite compounds through electronic band structure computation

phase of a similar compound, triethylenediamine N(CH2CH2)3N (TEDA) has been investigated by X-ray diffraction [6] ; it was suggested that molecules at each lattice

Abstract. 2014 We have made the first measurements of the polar modes in the cubic phase of the ferroelectric perov- skite KNbO3 by infrared reflectivity

An application of Ti-K X-ray absorption edges and fine structures to the study of substoichiometric titanium carbide TiC1-x... An application of Ti-K X-ray absorption edges and

Surface MAFS has now become a well-established technique for the rather precise determination of adsorbate-substrate nearest neighbour bondlengths using procedures

Probably only this mixing causes initial absorption in ionic and covalent crystals, because in spectra of water soluted ions [4] without the effect of the crystal-

After presenting a number of elements relating to Mordell’s mathematical youth and his (problematic) writing, we analyze the 1914 paper by following the three approaches he

derivative as seen from the temperature dependence of the susceptibility /8/, fits the Hall constant /Ill, fits the Junod value of the electronic spe- cific heat 171, fits the