• Aucun résultat trouvé

Superresolution microscopy of the volume phase transition of pNIPAM microgels

N/A
N/A
Protected

Academic year: 2021

Partager "Superresolution microscopy of the volume phase transition of pNIPAM microgels"

Copied!
6
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

A:

Physicochemical

and

Engineering

Aspects

jo u r n al ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f a

Superresolution

microscopy

of

the

volume

phase

transition

of

pNIPAM

microgels

Gaurasundar

M.

Conley

a

,

Sofi

Nöjd

b

,

Marco

Braibanti

a

,

Peter

Schurtenberger

b

,

Frank

Scheffold

a,∗

aDepartmentofPhysics,UniversityofFribourg,CheminduMusée3,1700Fribourg,Switzerland bPhysicalChemistry,DepartmentofChemistry,LundUniversity,22100Lund,Sweden

h

i

g

h

l

i

g

h

t

s

•Superresolutionmicroscopyapplied tostudythestructureofmicrogel col-loids.

•Microgel radial density profiles revealedinrealspace.

•Workset’sthestagefortheuseof superresolutionmicroscopyin mate-rialsresearch.

•dSTORM may allow for nanoscale characterization of distinct poly-mericsubunitsin3D.

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19January2016

Receivedinrevisedform3March2016 Accepted4March2016

Availableonline22March2016 Keywords:

Superresolutionmicroscopy dSTORM

Microgels pNIPAM

a

b

s

t

r

a

c

t

HierarchicalpolymerstructuressuchaspNIPAMmicrogelshavebeenextensivelystudiedfortheirability toundergostructuralandphysicaltransformationsthatcanbecontrolledbyexternalstimulisuchas temperature,pHorsolventcomposition.However,adirectthree-dimensionalvisualizationofindividual particlesin-situhassofarbeenhinderedbyinsufficientresolution,withopticalmicroscopy,orcontrast, withelectronmicroscopy.Inrecentyearssuperresolutionmicroscopytechniqueshaveemergedthatcan providenanoscopicopticalresolution.Herewereportonthein-situsuperresolutionmicroscopyof dye-labelledsubmicronsizedpNIPAMmicrogelsrevealingtheinternaldensityprofileduringswellingand collapseofindividualparticles.UsingdirectSTochasticOpticalReconstructionMicroscopy(dSTORM)we demonstratealateralopticalresolutionof30nmandanaxialresolutionof60nm.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Polymermicrogelsareahybridbetweenacolloidanda poly-merandthecombinationofthesetwoclassesofmaterialsoffers

∗ Correspondingauthor.

E-mailaddress:Frank.Scheffold@unifr.ch(F.Scheffold).

anumberofadvantages[1].Thewell-definedshapeandsizeofa colloidprovidescontroloverthemicrostructurallengthscalesand responsetimeswhilethepolymericnatureoffersphysico-chemical controlparametersthatcanbesensitivetoexternalstimuli.The mostwidelystudiedmaterialofthiskindisbasedonthepolymer poly(N-isopropylacrylamide)(pNIPAM)[1].Itcanbecross-linked duringsynthesistoobtainmicrogelparticleswithasizethatcanbe controlledintherange100–1000nm.Thevastintereststemsfrom

http://dx.doi.org/10.1016/j.colsurfa.2016.03.010

0927-7757/© 2016TheAuthors. Publishedby ElsevierB.V. This isan openaccess articleunder theCC BY-NC-NDlicense (http://creativecommons.org/licenses/ by-nc-nd/4.0/).

(2)

thefactthatthepolymeristhermosensitivewithalower-critical solutiontemperatureofapproximately32◦Cinwater[2],which isclosetophysiologicalconditions.Thevolumephasetransition ofthemicrogelscanalsobeinducedbyadditionofalcohols[3,4]

andbychangesinpHwhichoffersaplethoraofpossibilitiesfor thedesignofstimuliresponsivematerialsandforsensingand sub-stancereleaseapplications[5–12].Ithasalsobeenarguedthatthe polymercollapseisreminiscentoftheproteinfoldingmechanism

[13–15].Despitetheoverwhelminginterestadirectvisualization ofthevolumephasetransitionofindividualparticlesin-situhasso farbeenlacking.

Thesizeofmicrogelparticlesistypicallyamicrometreorless and therefore conventional light microscopy cannot resolve its internalstructure.Transmissionelectronmicroscopy(TEM)is nor-mallyonlyappliedtodriedandcollapsedmicrogels[16].Inone studycryo-TEMhasbeenappliedtoswollenpolystyrene-pNIPAM core–shell particles at a singletemperature [17]. This method, althoughcumbersomeandsufferingfromlowcontrast,mighthave potentialforthecharacterizationoftheinternaldensityprofileof pNIPAMmicrogels.EquallymodernsynchrotonbasedX-ray nan-otomography,witharesolutioninthe50nmrange,couldin princi-plebeused[18].ScatteringmethodsusingX-ray,neutronsandlight dohavetherequiredresolvingpowerandhavethusbeenemployed frequently[7,19,20].Howevertheyonlyprovideinformationabout radiallyaveragedpropertiesofanensembleofparticlesandthus informationonasinglepartlevelisnotaccessible.

In recent years superresolution microscopy techniques have emergedthatinprinciplecanprovidenanoscopicoptical resolu-tion[21–28].Despitetheiroverwhelmingpopularityinthefieldof bioimagingrelativelyfewsuccessfulexamplesfortheirapplication inmaterialssciencesareknown[29–31].Herewereportonthe in-situsuperresolutionmicroscopyofpNIPAMmicrogelsrevealingthe internaldensityprofileduringswellingandcollapseofindividual particlesinducedbyadditionofcontrolledamountsofmethanolto thesolvent[19].

2. Experimental

2.1. Microgelsynthesisandlabelling

The microgels are synthesized by free radical precipitation polymerizationin a batch reactor using N-isopropylacrylamide (Acros Organics, 99%), NIPAM, as the monomeric unit and N-(3-aminopropyl)methacrylamide hydrochloride (Polysciences), APMA, asa co-monomer. Theco-monomer is usedin orderto incorporatefreeaminegroupsintothemicrogelsthatarefurther usedas conjugationpoints forthe fluorescentbiomarkerAlexa Fluor647.N,N-Methylenebis(acrylamide) (Sigma–Aldrich, 99%), BIS,isusedasacross-linker.NIPAMisre-crystalizedinhexaneand allotherchemicalsareusedasreceived.NIPAM(1.460g)andBIS (0.103g)aredissolvedin85gofH2O.APMA(0.0066g)isdissolved

in10gofH2O.5goftheAPMAsolutionisaddedtothereactor

andthereactionmixtureislefttode-gasunderanargon atmo-spherefor40minbeforethetemperatureisraisedto70◦C.The initiator, 2,2-Azobis(2-methylpropionamidine) dihydrochloride (Sigma–Aldrich,97%,0.0365g)isdissolvedin5gofH2Opriorto

additiontothereactionmixture.Inordertoobtainaconstantratio betweenNIPAMmonomersandtheco-monomerwecontinuously addAPMAataconstantratethroughoutthesynthesisfollowing a similar procedure suggested recently by Still and coworkers

[32].Threeminutesaftertheinitiatorisaddedtheinjectionpump is started, injecting the remaining 5g of APMA solution at an additionrateof0.5ml/min.Thereactionmixtureiskeptat70◦C for4hbeforeit is lefttocooldownover nightunder constant stirring.Thesuspensionisthencleanedbyfourcentrifugationand re-dispersion cyclesin order to remove unreactedspecies. The

resultingmicrogelshaveadegreeofcross-linkingof4.9mol%and a co-monomer concentration of 0.27mol% assuming complete consumption of allcomponents. It is knownhowever that the crosslinkerBISisconsumedfasterthanNIPAMwhichleadstoa heterogeneouscrosslinking-densityinPNIPAMmicrogels[20].The continuousadditionoftheAPAMduringthesynthesisassuresthat theconjugationpointsforthefluorophoresaredistributed homo-geneously.To labelthemicrogels wemix themwithanexcess amountoffluorescentdyeAlexaFluor647inwaterinsideaclean Eppendorfvial.Wethenplaceitonaslowlyoscillatingplatform atroomtemperaturefor2h.Atleastthreecyclesofcentrifugation andresuspensionarethenperformedtoremoveunreacteddye. 2.2. SamplepreparationfordSTORM

Typicalexperimentslastseveralminutesthusrequiring immo-bilizationofthesample.Toachievethisweirreversiblyadsorbthe particlesbyplacingadropofmicrogelsuspensionbetweentwo glasscoverslips,spreadingitintoathinlayer,thenplacingitin theovenat55◦Cuntiltheyaredry.Thecoverslipsarepreviously treatedwithpiranhasolution(amixtureofsulfuricacid(H2SO4)

andhydrogenperoxide(H2O2))tocleanthemthoroughly.The

par-ticlesare thenresuspended intheappropriate water–methanol solutionandfoundtobeimmobileforthedurationofthe exper-iments.ThesolutionalsocontainsCysteamine(Sigma–Aldrich)at 50mMconcentrationandthepHisadjustedto8usingHCl.These stepsareessentialtoachieveblinkingoffluorophores[28].In prin-ciple,toachieveoptimalblinkingandthereforethehighestpossible resolutiononeshouldalsoaddoxygenscavengerssuchasGLOX

[28,33]totheimagingsolution.Wedecidedtoonlyinclude cys-teamineinordertokeepthesystemsaspureaspossible,preserving themicrogeldeswellingbehaviourattheexpenseoffluorophore brightnessandphotostability.

2.3. Staticanddynamiclightscattering

We use a commercial light scattering goniometer (ALV, Germany) for the characterization of the size of the microgel particlesinsuspension.Agreenlaserwavelength(=532nm)is selectedbecauseitisonlyveryweaklyabsorbedbyfluorophores presentinthemicrogelstructure. Weextractthedynamiclight scatteringhydrodynamicradiusRhfromastandardfirstcumulant

fitoftheintensitycorrelationfunctionatthreedifferentscattering angles40◦,50◦ and 60◦.The viscosityof themixture hasbeen takenfrompublishedvalues[34].Theradiusandpolydispersity measuredbymeansofstaticlightscatteringareobtainedbyfitting thescatteredintensityasafunctionofthescatteringvectorqto thefuzzyspheremodel[20].Thecontributionofback-reflected light at high scattering angles is taken into account with an additionaladjustableparameterasdescribedinRef.[35].Toavoid aggregation of the microgelsat higher temperatureswe lower theCysteaminecontentto20mMuntilthesuspensionisfound stable.ToverifythatCysteaminehasnoinfluenceonparticlesize wealsoperformmeasurementsatdifferentconcentrations,before theonsetofaggregation.Wefindthatsizedoesnotdependonthe Cysteamineconcentration.

2.4. dSTORMsuperresolutionmicroscopy

WeapplydirectSTochasticOpticalReconstructionMicroscopy (dSTORM)forsuperresolutionimagingasdescribedin[28].Tothis endweusea897NikonTiEclipseinvertedmicroscope,equipped withanEMCCDcamera(AndoriXonUltra) and atotal internal reflection fluorescence (TIRF) arm to achieve a highly inclined illuminationsituationwithlimitedfluorescencebackgroundnoise. The illuminationisprovided by a powerfulred laser(Coherent

(3)

Genesis1Wat639nm)andaweakervioletone(Toptica120mW at405nm),bothcoupledintoasinglemodefibreintotheTIRFarm. Thelightisfocusedonthebackapertureofahighnumerical aper-tureandmagnificationobjective(NA1.49and100×magnification), collimatingthebeam.Illuminationwiththeredlaserisusedto achievesparsefluorophoreblinkingwhilethevioletlaserisused inordertotunethedensityofblinkingmolecules.Anextrazoom lensisplacedbeforethecameratoachieveafinalpixelsize corre-spondingtoanedgelengthof104nmatthegivenmagnification.A dichroicfilterwithacentralwavelengthof700nmandbandwidth of75nmisplacedinthedetectionpathway(ET700/75,Chroma).

For every image we reconstruct we acquire 60,000 frames with8–10msexposuretimeandEMgainsetto300.Weobtain 3000–5000fluorophorelocalizationsperparticlewithtypicallyone totwothousandphotonsdetectedperlocalization.Thethousands of images are then analyzed using the open source software ThunderSTORMwhichdetermines,foreveryfluorescentspot,the position,brightnessandlocalizationprecision[36].Wekeeponly pointsthatare localizedwithaprecisionbelow 15nm.To cor-rectfor residualsmalldriftstheimagestack is subdividedinto 20 subsets, each is used to reconstruct an image, then those imagesare crosscorrelated todeterminedriftinformation. The samesoftwareisalsousedtoreconstructsuperresolutionimages

[36].Three-dimensionalimagingisperformedusingthemethod ofastigmatism[21]whichweimplementusingtheadaptiveoptics microscopeadd-onMicAO(ImagineOptic,France).WiththeMicAO inplacethepointspread functionchangesshape dependingon theaxialpositionofthefluorescentemitter.Wecalibrateforthis byimagingfluorescentbeads(100nmdiameter,Tetraspeck, Ter-mofisher)scannedthroughthefocalplane.Duetotherefractive indexmismatchbetweenthesampleandtheglassa focalshift ispresentandmustbecorrectedfor.Asshownin[37],sincethe sampleiswithin1.5␮mofthecoverslipsurface,itissufficientto rescaleallaxialpositionsbyafactorof0.57whenusingthesame optics.Wedeterminethenanoscopicresolutionfromthe distribu-tionofmeasuredlocalizationsobtainedbythesamefluorophore. Althoughthefluorophorepositionisimmobileitstillgives stochas-ticallyspreadlocalizationswhichcanbemodelledbyaGaussian

[21,27].Thefullwidthhalfmaximum(FWHM)thengivesusthe lateralresolution which wedeterminetobe30nm onaverage. Wenotethatfitting2Dfor thecollapsedmicrogelswitha box

profileofconstantdensityequallyyieldsaresolutionof30nm. Theaxialresolution is estimatedtoabout60nm butthis value doesnot enter ourquantitativeanalysisandthus hasnotbeen determinedwiththesameaccuracy.ForcomparisontheFWHMof thediffractionlimitedfluorescentspotsisapproximately350nm whichmeansthatinourconfigurationtheresolutionofthe cor-respondingwidefieldmicroscopyisaboutanorderofmagnitude lowerthandSTORM.

3. Resultsanddiscussion

3.1. Lightscatteringcharacterizationofmicrogelparticles

We preparedilute pNIPAM microgel particle suspensions at roomtemperature(T=22◦C)inamixtureofwaterandmethanol. Purewaterisagoodsolventforpoly(N-isopropylacrylamide)at theselectedtemperatureand themicrogels arehighlyswollen. Methanolischosenasadeswellingagentbecauseitoffersa con-venienthandletoinducethevolumephasetransitionbychanging the solvent composition. Moreover, deswelling with methanol doesnotrequiresettingaccuratelydifferenttemperaturesinthe microscopesamplechamber.Addingsomepercentileofmethanol induces deswelling until the particles are maximally collapsed foramethanolcontentof30%[3,4,38].Wefirstapplystatic(SLS)

Fig.1.StaticanddynamiclightscatteringcharacterizationofdilutepNIPAM micro-gelsuspensions.(a)Symbols:Staticlightscatteringcurvesfordifferentmethanol contents.Curvesareshiftedforclarity.Dashedlines:Fitwiththefuzzyspheremodel forasizepolydispersityof7%.(b)Tableofresultsobtainedforthehydrodynamic radiusRhfromDLSandR,surfextractedfromthefitoftheSLSdatashownin

panel(a).

anddynamic light scattering(DLS)tocharacterizethemicrogel particles in-situ for different solvent compositions. As we add methanolwe observea shiftof theminimumof thescattering curveI(q)towardslargervaluesofqandanincreaseofthescattered intensity,Fig.1.Theseobservationsshowthatthemicrogel par-ticlesdeswell.Wecanmodelthescatteringcurvesquantitatively in the weak scattering or Rayleigh-Gans-Debye approximation consideringanisotropicdensitydistribution.Tothisendwefitthe experimentaldatawiththe‘fuzzysphere’modelofStiegeretal.

[20]takingintoaccountpolydispersityandinternalreflectionsin thelightscatteringcuvette.Themodelisderivedbyconvoluting theboxprofileofahomogeneoussphere,radiusR,witha Gaus-sian,standarddeviationsurf.InFourierspacetheconvolutionis

representedbyaproductandtheintensitydistributiontakesthe simple form I(q)∝



3[sin(qR)−qRcos(qR)]/exp(−(surfq)2/2)



2

. Thesimplicityofthisexpressionistoalargeextentresponsible for the success of this model although it hasbeen recognized early-onthatthemodelisnotentirelysatisfactoryasitdoesnot predictadecaytozerodensityatafinitedistance[1].Alternative modelsforthedensitydistributionhavebeensuggestedsuchas anantisymmetricparabolicshell[39],alinearshellprofile[40]or adensecorecoveredbyabrush[41,42].Thelatterdescribeswell theonsetofparticle-particleinteractionsbutuntilnowhasonly beendiscussedforabrushwithconstantdensity[41,43].

Inpracticewefindthefitofthefuzzyspheremodeltothelight scatteringdataexcellentasshowninFig.1.Weobservethatthe particlecoreradiusRshrinksfrom215nmto171nm.Atthesame timetheshellofabout2surf∼50nmthicknesscollapsestonearly

zero.Fromdynamiclightscattering(DLS)onthesamesampleswe obtainthehydrodynamicradiusoftheparticlesRh.Assuggestedin

previousstudieswefindthatR+2surf≈Rh[20].

3.2. dSTORMimagingofmicrogelparticles

WeperformdSTORM [28]measurementsbyhomogeneously illuminating the sample at 639nm under nearly total internal

(4)

Fig.2. dSTORMsuperresolutionmicroscopyofpNIPAMmicrogelsatT=22◦C.(a)

Standardwidefieldfluorescencemicroscopyimageoftheswollenmicrogelparticles. (b)dSTORMimageofthesamesample.(c)dSTORMofthedeswellingofthemicrogel particlesuponadditionofmethanol.(d)3Dimageoftheswollenmicrogelparticles withouttheadditionofmethanol.Gridsizeis300nm,scalebar600nm.Theinset showsanenlargedviewofthedensitydistributioninsideanindividualparticle. dSTORMlateralresolutionis∼30nmandaxialresolutionis∼60nm.

reflectionconditions.Additionalilluminationat405nmisadded whennecessarytomaintainasufficientdensityofblinking fluo-rophores.InFig.2(b)and(c),weshowatypicaldSTORMimages.For comparisonwealsoshowanimagetakenwithconventional wide-fieldmicroscopyunderthesameconditionsinFig.2(a).Foreach dSTORMimageweacquire60,000frameswithan8–10ms expo-sure,resultinginmeasurementtimesof8–10min.Foreachframe, imagesofsinglefluorophoresarefitto2DGaussians,determining thex–yposition,intensityandlocalizationprecision.Fromthiswe determinealateralresolutionof30nm(FWHM).Severalmethods areavailabletoobtainthree-dimensionalsuperresolutionimages

[21,44–47],outofthosewechosethatofastigmatism,duetoits relativesimplicityandavailabilityofsoftwareforanalysis.With

thismethodthepointspreadfunctionisdistortedinacontrolled way,encodingaxialpositioninformationintoitsshape.Previous calibrationofthedistortionallowsforthereconstructionof three-dimensionalimages,asshowninFig.2.Withthismethodtheaxial resolutionislowerthanintheplaneandisestimatedtobe60nm, stillanorderofmagnitudebetterthanconfocalmicroscopy.Such 3Dimagingonthenanoscalemightnotbecrucialformoreorless isotropicmicrogelsbutwillbecomeofkeyimportancewhenever theparticlearchitectureismorecomplexsuchasforellipsoidal particlesorheterogeneousstructures[48–50].Inourexperiments wedonotobserveananisotropyoftheparticlesandwetherefore decidedtotakeadvantageofthehigherlateralresolutionforthe quantitativeanalysisoftheradialdensitydistributioninsidethe microgelparticle.Alldensityprofilesarethusmodelledbasedon the2Dprojectionofdetectedsitesontheplaneofobservation.

3.3. Microgeldensityprofiles

InFig.3weshowthemeasuredensembleaveraged2D den-sityprofiles2D(r)forthreedifferentsolventcompositions.Note

Fig.3. dSTORManalysisofthemicrogelradialdensityprofile.(a)Symbols: Mea-sured2Ddensityprofiles(averageoveraboutonehundredparticles).Dashedlines: FitwiththefuzzyspheremodelwithacoreradiusR,ashellparametersurfanda

fixeddSTORMresolutionof30nm(FWHM).Inset:Measured2Ddensityprofilefrom widefieldfluorescencemicroscopyimagesofswollenpNIPAMmicrogelsasshown inFig.2(a).ThedashedlineiscalculatedusingR=231nm,surf=30nmtakenfrom

Table1(b)andaresolutionof350nm(FWHM).(b)3Dradialdensityprofiles cor-respondingtothefitsshownin(a).(c)DistributionofsizeR+2surfobtainedfrom

fittingthedensityprofileofindividualparticles.Averagesize=291nm,standard deviation=9nm(MeOH=0%).(d)Tableofresultsforthemeanparticlecoreradius andshelldeterminedbydSTORM.

(5)

thatduetotheprojectionahomogeneousspherewithradiusR appearsas2D(r)∝



(R2r2);rR.Moreoverwehavetoinclude

thefiniteresolution30nm(FWHM)inouranalysis.Nextwefit imagesoftheswollenmicrogelswhilekeepingconstant.Weapply thefuzzyspheremodelbyStiegeretal.[20]thatwehadusedto modelthestaticlightscatteringcurves,Fig.1.Theadjustablefit parametersarethecoreradiusRandthesmearingparametersurf

whichcorrespondstoabouthalfthethicknessofthefuzzyshell.In 3Dthemodelpredictsadensitydistribution(r)erfc(rR,surf). Forthefitweconvolutethisfunctiontotakeaccountforthefinite resolution=30nm,projectittotheplaneandadjustR,surfuntil

weobtainabestfit(seealsosupportinginformation).Theresults areshown inFig.3(a)asdashedlines. Thecoreradiusandthe smearingparametersurfextractedfromthefitareinquantitative

agreementwiththescatteringresults.Thecorrespondingradial densityprofilesin3DareshowninFig.3(b).Foracomparisonwe alsoshowameasured2Ddensityprofilesobtainedfromstandard widefieldmicroscopy,Fig.2(a).Witharesolution of350nm (FWHM)wefindthisdatainagreementwiththepredictions calcu-latedbasedonthelightscatteringresults(dashedline).Thelargely inferiorresolution howeverdoesnotpermitameaningful inde-pendentanalysisoftheradialdensityprofile.InFig.3(c),weshow theresultsfortheparticlesizeobtainedbyanalysingthedensity profilesofindividualmicrogels.Fromthisdatawecanextractthe polydispersity(standarddeviationdividedbythemean)ofthe par-ticlesize∼R+2surfandfindavalueof3.1%.Thisvalueissomewhat

smallerthantheoneobtainedfromstaticlightscattering,Fig.1.We believethisdiscrepancyisduetothefailureoftheRayleighGans Debyeapproximationinlightscatteringduetothefiniterefractive indexcontrastevenforthelowdensityswollenmicrogels[19].The latterresultisahintforthepowerofavisualizationoftheindividual microgels:itallowsadirectreal-spaceinterpretationofthe exper-imentalresultsandthusinmanycasescanprovidemoreaccurate information.

4. Summaryandconclusions

Insummarywecoulddemonstratethesuccessfulapplication ofdSTORMsuperresolutionmicroscopytostimuli-responsive pNI-PAMmicrogels.ForthemicrogelsstudiedthedSTORMresultsare inquantitativeagreementwithstaticanddynamiclight scatter-ing.Ourresultscanserveasabenchmarkandopenthepathway forfutureapplicationstowardsmorecomplexpolymerand micro-gelarchitectures.Anisotropic,deformedorcore–shellmicrogelsas wellasmicrogelsthataredopedordecoratedwithmetal nanoparti-clescanbestudied[49,50].Suchsystemsaredifficultorimpossible tocharacterizein-situwithconventionaltechniques.Moreovera generalizationofourapproachusingmulticolordSTORM[51]can beappliedinanextstepforthenanoscalecharacterizationand co-localizationoffunctional,chemicallydistinctsubunitsofcolloidal particles.

Acknowledgements

ThisworkwassupportedbytheSwissNationalScience Foun-dationthroughprojectnumber149867,andthroughtheNational Centre of Competence in Research Bio-Inspired Materials. We acknowledge financial support by the Adolphe Merkle Foun-dation.We thank IsabelleSpühler, Georges Brügger, Veronique Trappe and Davide Calzolari for fruitful discussions. PS grate-fullyacknowledgessupportfromtheEuropeanResearchCouncil (ERC-339678-COMPASS)andtheSwedishResearchCouncil (621-2014-4037).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.colsurfa.2016.03. 010.

References

[1]A.Fernandez-Nieves,H.Wyss,J.Mattsson,D.A.Weitz,MicrogelSuspensions: FundamentalsandApplications,JohnWiley&Sons,2011.

[2]C.Wu,X.Wang,Globule-to-coiltransitionofasinglehomopolymerchainin solution,Phys.Rev.Lett.80(18)(1998)4092.

[3]F.M.Winnik,H.Ringsdorf,J.Venzmer,Methanol-waterasaco-nonsolvent system for poly(n-isopropylacrylamide), Macromolecules 23 (8) (1990) 2415–2416.

[4]R.O.Costa,R.F.Freitas,Phasebehaviorofpoly(n-isopropylacrylamide)inbinary aqueoussolutions,Polymer43(22)(2002)5879–5885.

[5]A.FernandezdelasNieves,H.Wyss,J.Mattson,D.A.Weitz(Eds.),Microgel Suspensions:FundamentalsandApplications,2011.

[6]M.J.Snowden,B.Z.Chowdhry,B.Vincent,G.E.Morris,Colloidalcopolymer microgelsofn-isopropylacrylamideandacrylicacid:pH,ionicstrengthand temperatureeffects,J.Chem.Soc.FaradayTrans.92(24)(1996)5013–5016.

[7]M.Ballauff,Y.Lu,Smartnanoparticles:preparation,characterizationand appli-cations,Polymer48(7)(2007)1815–1823.

[8]I.Berndt,W.Richtering,Doublytemperaturesensitivecore–shellmicrogels, Macromolecules36(23)(2003)8780–8785.

[9]M.R.Islam,A.Ahiabu,X.Li,M.J.Serpe,Poly(n-isopropylacrylamide) microgel-based optical devicesfor sensingand biosensing, Sensors 14(5) (2014) 8984–8995.

[10]A.Sánchez-Iglesias,M.Grzelczak,B.Rodríguez-González,P.Guardia-Giros,I. Pastoriza-Santos,J.Pérez-Juste,M.Prato,L.M.Liz-Marzán,Synthesisof mul-tifunctionalcompositemicrogelsviainsituNigrowthonpNIPAM-coatedAu nanoparticles,ACSNano3(10)(2009)3184–3190.

[11]R.Contreras-Cáceres,S.Abalde-Cela,P.Guardia-Girós,A.Fernández-Barbero, J.Pérez-Juste,R.A.Alvarez-Puebla,L.M.Liz-Marzán,Multifunctional micro-gelmagnetic/opticaltrapsforSERSultradetection,Langmuir27(8)(2011) 4520–4525.

[12]C.M.Nolan,M.J.Serpe,L.A.Lyon,Thermallymodulatedinsulinreleasefrom microgelthinfilms,Biomacromolecules5(5)(2004)1940–1946.

[13]C.M.Dobson,A.Fersht,ProteinFolding,CambridgeUnivPress,1996.

[14]G.Graziano,Onthetemperature-inducedcoiltoglobuletransitionof poly-n-isopropylacrylamideindiluteaqueoussolutions,Int.J.Biol.Macromol.27(1) (2000)89–97.

[15]H.Chen,J.Li,Y. Ding,G. Zhang,Q. Zhang,C.Wu,Foldingandunfolding ofindividualpNIPAM-g-PEOcopolymerchainsindiluteaqueoussolutions, Macromolecules38(10)(2005)4403–4408.

[16]C. Dagallier,H.Dietsch,P.Schurtenberger,F. Scheffold,Thermoresponsive hybridmicrogelparticleswithintrinsicopticalandmagneticanisotropy,Soft Matter6(10)(2010)2174–2177.

[17]J.J.Crassous,C.N.Rochette,A.Wittemann,M.Schrinner,M.Ballauff,M. Drech-sler,Quantitativeanalysisofpolymercolloidsbycryo-transmissionelectron microscopy,Langmuir25(14)(2009)7862–7871.

[18]P.J.Withers,X-raynanotomography,Mater.Today10(12)(2007)26–34.

[19]M.Reufer,P.Dıaz-Leyva,I.Lynch,F.Scheffold,Temperature-sensitive poly(n-isopropyl-acrylamide)microgelparticles:alightscatteringstudy,Eur.Phys.J. E28(2)(2009)165–171.

[20]M.Stieger,W.Richtering,J.S.Pedersen,P.Lindner,Small-angleneutron scat-teringstudyofstructuralchangesintemperaturesensitivemicrogelcolloids, J.Chem.Phys.120(13)(2004)6197–6206.

[21]B.Huang,W.Wang,M.Bates,X.Zhuang,Three-dimensionalsuper-resolution imagingbystochasticopticalreconstructionmicroscopy,Science319(5864) (2008)810–813.

[22]B.Huang,M.Bates,X.Zhuang,Superresolutionfluorescencemicroscopy,Annu. Rev.Biochem.78(2009)993.

[23]S.W.Hell,Far-fieldopticalnanoscopy,Science316(5828)(2007)1153–1158.

[24]C.G.Galbraith,J.A.Galbraith,Super-resolutionmicroscopyataglance,J.Cell Sci.124(10)(2011)1607–1611.

[25]E.Betzig,G.H.Patterson,R.Sougrat,O.W.Lindwasser,S.Olenych,J.S. Bonifa-cino,M.W.Davidson,J.Lippincott-Schwartz,H.F.Hess,Imagingintracellular fluorescent proteins at nanometerresolution, Science 313 (5793) (2006) 1642–1645.

[26]S.W. Hell, Microscopy and its focal switch, Nat. Methods 6 (1) (2009) 24–32.

[27]M.Heilemann,S.vandeLinde,M.Schüttpelz,R.Kasper,B.Seefeldt,A. Mukher-jee,P.Tinnefeld,M.Sauer,Subdiffraction-resolutionfluorescenceimaging withconventionalfluorescentprobes,Angew.Chem.Int.Ed.47(33)(2008) 6172–6176.

[28]S.vandeLinde,A.Löschberger,T.Klein,M.Heidbreder,S.Wolter,M.Heilemann, M.Sauer,Directstochasticopticalreconstructionmicroscopywithstandard fluorescentprobes,Nat.Protoc.6(7)(2011)991–1009.

[29]S.Habuchi,S.Onda,M.Vacha,Molecularweightdependenceofemission intensityandemittingsitesdistributionwithinsingleconjugatedpolymer molecules,Phys.Chem.Chem.Phys.13(5)(2011)1743–1753.

(6)

[30]H.Aoki,K.Mori,S.Ito,Conformationalanalysisofsinglepolymerchainsin threedimensionsbysuper-resolutionfluorescencemicroscopy,SoftMatter8 (16)(2012)4390–4395.

[31]A.J.Berro,A.J.Berglund,P.T.Carmichael,J.S.Kim,J.A.Liddle,Super-resolution opticalmeasurementofnanoscalephotoaciddistributioninlithographic mate-rials,ACSNano6(11)(2012)9496–9502.

[32]T. Still, K. Chen, A.M. Alsayed, K.B. Aptowicz, A. Yodh, Synthesis of micrometer-sizepoly(n-isopropylacrylamide)microgelparticleswith homo-geneouscrosslinkerdensityanddiametercontrol,J.ColloidInterfaceSci.405 (2013)96–102.

[33]G.T.Dempsey,J.C.Vaughan,K.H.Chen,M.Bates,X.Zhuang,Evaluationof fluorophoresforoptimalperformanceinlocalization-basedsuper-resolution imaging,Nat.Methods8(12)(2011)1027–1036.

[34]D.R.Lide,CRCHandbookofChemistryandPhysics,CRCpress,2004.

[35]T.Zemb,P.Lindner,Neutrons,X-raysandLight:ScatteringMethodsAppliedto SoftCondensedMatter,North-Holland,2002.

[36]M.Ovesn‘y,P.Kˇrí ˇzek,J.Borkovec,Z. ˇSvindrych,G.M.Hagen,ThunderSTORM:a comprehensiveImageJplug-inforPALMandSTORMdataanalysisand super-resolutionimaging,Bioinformatics30(16)(2014)2389–2390.

[37]B.P.Bratton,J.W.Shaevitz,Simpleexperimentalmethodsfordeterminingthe apparentfocalshiftinamicroscopesystem,PLOSONE10(8)(2015)e0134616.

[38]I.Bischofberger,D.Calzolari,P.DeLosRios,I.Jelezarov,V.Trappe,Hydrophobic hydrationofpoly-n-isopropylacrylamide:amatterofthemeanenergeticstate ofwater,Sci.Rep.(2014)4,Articlenumber:4377.

[39]I.Berndt,J.S.Pedersen,W.Richtering,Structureofmultiresponsive“intelligent” core–shellmicrogels,J.Am.Chem.Soc.127(26)(2005)9372–9373.

[40]T.Mason,M.Lin,Densityprofilesoftemperature-sensitivemicrogelparticles, Phys.Rev.E71(4)(2005)040801.

[41]F.Scheffold,P.Díaz-Leyva,M.Reufer,N.B.Braham,I.Lynch,J.L.Harden, Brush-likeinteractionsbetweenthermoresponsivemicrogelparticles,Phys.Rev.Lett. 104(12)(2010)128304.

[42]G.Romeo,M.P.Ciamarra,Elasticityofcompressedmicrogelsuspensions,Soft Matter9(22)(2013)5401–5406.

[43]J.U.Kim,M.W.Matsen,Compressionofpolymerbrushes:quantitative com-parisonofself-consistentfieldtheorywithexperiment,Macromolecules42 (9)(2009)3430–3432.

[44]M.F.Juette,T.J. Gould,M.D.Lessard,M.J. Mlodzianoski,B.S.Nagpure,B.T. Bennett, S.T. Hess, J. Bewersdorf, Three-dimensional sub-100nm resolu-tionfluorescencemicroscopyofthicksamples,Nat.Methods5(6)(2008) 527–529.

[45]S.R.P.Pavani,M.A.Thompson,J.S.Biteen,S.J.Lord,N.Liu,R.J.Twieg,R.Piestun, W.Moerner,Three-dimensional,single-moleculefluorescenceimagingbeyond thediffractionlimitbyusingadouble-helixpointspreadfunction,Proc.Natl. Acad.Sci.U.S.A.106(9)(2009)2995–2999.

[46]J.Deschamps,M.Mund,J.Ries,3Dsuperresolutionmicroscopybysupercritical angledetection,Opt.Express22(23)(2014)29081–29091.

[47]G.Shtengel,J.A.Galbraith,C.G.Galbraith,J.Lippincott-Schwartz,J.M.Gillette, S.Manley,R.Sougrat,C.M.Waterman,P.Kanchanawong,M.W.Davidson,etal., Interferometricfluorescentsuper-resolutionmicroscopyresolves3Dcellular ultrastructure,Proc.Natl.Acad.Sci.U.S.A.106(9)(2009)3125–3130.

[48]M.Karg, I. Pastoriza-Santos, J. Pérez-Juste, T. Hellweg, L.M. Liz-Marzán, Nanorod-coated PNIPAM microgels: thermoresponsive optical properties, Small3(7)(2007)1222–1229.

[49]J.-F.Dechézelles,V.Malik,J.J.Crassous,P.Schurtenberger,Hybridraspberry microgelswithtunablethermoresponsivebehavior,SoftMatter9(10)(2013) 2798–2802.

[50]J.J.Crassous,A.M.Mihut,L.K.Månsson,P.Schurtenberger,Anisotropic respon-sivemicrogelswithtuneableshapeandinteractions,Nanoscale7(38)(2015) 15971–15982.

[51]A.Lampe,V.Haucke,S.J.Sigrist,M.Heilemann,J.Schmoranzer,Multi-colour directstorm with red emitting carbocyanines, Biol. Cell 104 (4) (2012) 229–237.

Figure

Fig. 1. Static and dynamic light scattering characterization of dilute pNIPAM micro- micro-gel suspensions
Fig. 2. dSTORM superresolution microscopy of pNIPAM microgels at T = 22 ◦ C. (a) Standard widefield fluorescence microscopy image of the swollen microgel particles.

Références

Documents relatifs

The essential aim of this preliminary surface self-diffusion study is not as usual to obtain data for a metal (gold) which has not yet been studied by a tip evolution

STRUCTURES BY MEANS OF ELECTRON MICROSCOPY AND ELECTRON DIFFRACTION.. - L'utilite de la microscopie Blectronique et de la diffraction electronique dans l'ktude des transitions

The evolution of a third order (nonlinear) elastic constant is studied across the mechanical instability that accompanies the liquid–liquid demixing transition of aqueous

In order to determine in-situ and simultaneously the CO 2 sorption and swelling of elastomers by supercritical CO 2 , we have used an FTIR microscope combined with a

After removing thecooling source the bands of NiAs phase reduce gradually in width by the inverse process but not all traces of the transformation disappear; a number of

The membrane permeability measurement is simple and is done by flowing water at different flow rates though the membrane filter using the syringe pump and measuring the corresponding

Textural descriptors

Under this condition, the dis- tance between the nanorod and the substrate (noted z 0 ) is critical and should be considered as an additional fit- ting parameter in the model.