• Aucun résultat trouvé

R N and W is a real-valued even distribution.

N/A
N/A
Protected

Academic year: 2023

Partager "R N and W is a real-valued even distribution. "

Copied!
26
0
0

Texte intégral

(1)

ANDRÉDELAIRE

Abstrat. Weonsidera GrossPitaevskii equation witha nonloal inter-

ationpotential. Weprovidesuientonditions onthepotential suhthat

thereexistsarangeofspeedsinwhihnontrivialtravelingwavesdonotexist.

1. Introdution

1.1. The problem. We onsider nite energy traveling waves for the nonloal

GrossPitaevskiiequation

(1.1)

i∂ t u − ∆u − u(W ∗ (1 − | u | 2 )) = 0, u(x, t) ∈ C , x ∈ R N , t ∈ R .

Here

denotes the onvolutionin

R N

and

W

is a real-valued even distribution.

The aim of this work is to provide suient onditionson the potential

W

suh

that these traveling waves are neessarilyonstant for a ertain rangeof speeds.

Equation(1.1)isHamiltoniananditsenergy

E(u(t)) = 1 2

Z

R N

|∇ u(t) | 2 dx + 1 4

Z

R N

(W ∗ (1 − | u(t) | 2 ))(1 − | u(t) | 2 ) dx

isformallyonserved. Atravelingwaveofspeed

c

thatpropagatesalongthe

x 1

-axis

isasolutionoftheform

u c (x, t) = v(x 1 − ct, x ), x = (x 2 , . . . , x N ).

Henetheprole

v

satises

(NTW

c

)

ic∂ 1 v + ∆v + v(W ∗ (1 − | v | 2 )) = 0

in

R N

andbyusingomplexonjugation,weanrestritusto thease

c ≥ 0

. Note that

anyonstant(omplex-valued)funtion

v

ofmodulusoneveries(NTW

c

) ,sothat

werefertothemasthetrivialsolutions.

Notiethat,intheasethat

W

oinideswiththeDiradeltafuntion,(NTW

c

)

reduesto thelassialGrossPitaevskiiequation

(TW

c

)

ic∂ 1 v + ∆v + v(1 − | v | 2 ) = 0

in

R N .

Equation(TW

c

)hasbeenintensivelystudiedin thelastyears. Wereferto[3℄for asurvey. Fromnowonwesupposethat

N ≥ 2

andwereallthefollowingresults.

2000 Mathematis Subjet Classiation. 35Q55; 35Q40; 35Q51; 35B65; 37K40; 37K05;

81Q99.

Keywordsandphrases. NonloalShrödingerequation,GrossPitaevskiiequation,Traveling

waves,Pohozaevidentities,Nonzeroonditionsatinnity.

TheauthorisgratefultoF.BéthuelforinterestingandhelpfuldisussionsandtoP.Gravejat

forhisollaborationinprovingProposition5.3.

(2)

Theorem 1.1 ([8, 6, 16, 17℄). Let

v ∈ H loc 1 ( R N )

be a nite energy solution of

(TW

c

). Assumethat oneof the following aseshold

(i)

c = 0

.

(ii)

c > √ 2

.

(iii)

N = 2

and

c = √ 2

.

Then

v

isaonstant funtion ofmodulusone.

Theorem 1.2 ([6, 5,10, 4, 24℄). There is some nonempty set

A ⊂ (0, √ 2)

suh

that for all

c ∈ A

there exists a nononstant nite energy solution of (TW

c

) .

Furthermore, assume that

N ≥ 3

. Then there exists a nononstant nite energy

solution of (TW

c

)for all

0 < c < √ 2

.

Itwouldbereasonabletoexpettogeneralizeinsomewaythesetheoremstothe

nonloal equation (NTW

c

) . The aim of this paper is to investigate the analogue ofTheorem1.1in theases(i)and(ii). Beforestatingourpreise results,wegive

somemotivation abouttheritialspeed.

1.2. Physial motivation. As explained in [13℄, (1.1) an be onsidered as a

generalizationof theequation

(1.2)

i ~ ∂ t Ψ(x, t) = ~ 2

2m ∆Ψ(x, t) + Ψ(x, t) Z

R N | Ψ(y, t) | 2 V (x − y) dy,

in

R N × R ,

introdued by Gross [18℄ and Pitaevskii [27℄ to desribe the kineti of a weakly

interatingBosegasofbosonsofmass

m

,where

Ψ

isthewavefuntiongoverningthe ondensateintheHartreeapproximationand

V

desribestheinterationbetween

bosons.

In the most typial approximation,

V

is onsidered asa Dira delta funtion.

Thenthismodelhasappliationsinseveralareasofphysis,suh assuperuidity,

nonlinear optis and BoseEinstein ondensation [21, 20, 23, 11℄. It seems then

natural to analyze equation (1.2) for more general interations. Indeed, in the

studyofsuperuidity,supersolidsandBoseEinsteinondensation,dierenttypes

ofnonloalpotentialshavebeenproposed [7,2,14,29,28,22,30,12, 9,1℄.

Let us now proeed formally and onsider a onstant funtion

u 0

of modulus

one. Sine(1.1)isinvariantbyahangeofphase,weanassume

u 0 = 1

. Thenthe

linearizedequationof (1.1)at

u 0

isgivenby

(1.3)

i∂ t u ˜ − ∆˜ u + 2W ∗ Re(˜ u) = 0.

Writing

u ˜ = ˜ u 1 + i˜ u 2

andtakingrealandimaginarypartsin(1.3),weget

− ∂ t u ˜ 2 − ∆˜ u 1 + 2W ∗ u ˜ 1 = 0,

∂ t u ˜ 1 − ∆˜ u 2 = 0,

fromwhere wededuethat

(1.4)

tt 2 ˜ u − 2W ∗ (∆˜ u) + ∆ 2 u ˜ = 0.

Byimposing

u ˜ = e i(ξ.x wt)

,

w ∈ R

,

ξ ∈ R N

,asasolutionof (1.4), weobtainthe dispersionrelation

(1.5)

(w(ξ)) 2 = | ξ | 4 + 2c W (ξ) | ξ | 2 ,

(3)

where

W c

denotesthe Fouriertransformof

W

. Supposing that

c W

is positiveand

ontinuousattheorigin,wegetin thelongwaveregime,i.e.

ξ ∼ 0

,

w(ξ) ∼ (2c W (0)) 1/2 | ξ | .

Consequently,inthisregimeweanidentify

(2c W (0)) 1/2

asthespeedofsoundwaves

(alsoalledsonispeed),sothatweset

c s (W ) = (2c W (0)) 1/2 .

Thedispersionrelation(1.5)wasrstobservedbyBogoliubov[7℄onthestudyof

BoseEinsteingasandunder somephysialonsiderationsheestablishedthatthe

gasshouldmovewithaspeedlessthan

c s (W )

topreserveitssuperuidproperties.

FromamathematialpointofviewandomparingwithTheorems1.1and1.2,this

enouragesustothink thatthenonexisteneofanontrivialsolutionof (NTW

c

)is

relatedtotheondition

(1.6)

c > c s (W ).

Atually,inSubsetion1.4weprovideresultsinthisdiretionandinSubsetion1.5

wespeifythedisussionforsomeexpliitpotentials

W

whiharephysially rele-

vant.

1.3. Hypotheses on

W

. Letusintroduethespaes

M p,q ( R N )

oftempereddis-

tributions

W

suhthat thelinearoperator

f 7→ W ∗ f

isboundedfrom

L p ( R N )

to

L q ( R N )

. Wewillusethefollowinghypotheseson

W

.

(H1)

W

isareal-valuedeventemperateddistribution.

(H2)

W ∈ M 2,2 ( R N )

. Moreover,if

N ≥ 4

,

(1.7)

W ∈ M N/(N − 1), ∞ ( R N ) ∩ M 2N/(N − 2), ∞ ( R N ) ∩ M 2N/(N − 2),2N/(N − 2) ( R N ).

(H3)

c W

isdierentiablea.e. on

R N

andfor all

j, k ∈ { 1, . . . , N }

the map

ξ → ξ j ∂ k W c (ξ)

isboundedandontinuousa.e. on

R N

.

(H4)

c W ≥ 0

a.e. on

R N

.

(H5)

c W

isoflass

C 2

inaneighborhoodoftheoriginand

W c (0) > 0.

Reall that theondition

W ∈ M 2,2 ( R N )

isequivalentto

c W ∈ L ( R N )

(see e.g.

[15℄). Therefore (H4) makessense provided that (H2) holds. It is provedin [13℄

that under the assumptions (H1), (H2) and (H4) the Cauhy problem for (1.1)

withnonzeroonditionat innityisglobally well-posed. Atually,ondition(1.7)

ismorerestritivethat theoneusedin[13℄in dimension

N ≥ 4

,butweneeditto

ensuretheregularityofsolutions. Morepreisely,inSetion2weprovethatunder

thehypothesis(H2), thesolutionsof (NTW

c

)aresmoothandsatisfy

| v(x) | → 1, ∇ v(x) → 0,

as

| x | → ∞ .

On the other hand, by Lemma 2.3, (1.7) is at least fullled for

W ∈ L 1 ( R N ) ∩ L N ( R N )

.

Assumption(H2)alsoimpliesthat

E(v)

isnitein theenergyspae

E ( R N ) = { ϕ ∈ H loc 1 ( R N ) : 1 − | ϕ | 2 ∈ L 2 ( R N ), ∇ ϕ ∈ L 2 ( R N ) } .

(4)

Furthermore,if (H4)alsoholds,thenbythePlanherelidentity

E(v) = 1 2

Z

R N

|∇ v | 2 + 1 4(2π) N

Z

R N

W c | 1 \ − | v | 2 | 2 ≥ 0.

InSubsetion1.5weshowseveralexamplesofdistributions

W

satisfyingtheon-

ditions(H1)(H5).

1.4. Statementof the results.

Theorem 1.3. Assume that

W

satises (H1)(H5). Let

c > c s (W )

and suppose

that thereexistonstants

σ 1 , . . . , σ N ∈ R

suhthat (1.8)

W c (ξ) + α c

X N k=2

σ k ξ k ∂ k c W (ξ) − σ 1 ξ 1 ∂ 1 W c (ξ) ≥ 0,

fora.a.

ξ ∈ R N ,

and

(1.9)

X N k=2

σ k + min

− σ 1 − 1, σ 1 − 1

α c + 2 , 2α c σ j + σ 1 − 1

≥ 0,

for all

j ∈ { 2, . . . , N }

,where

α c := c 2 /(c s (W )) 2 − 1

. Then nontrivial solutions of

(NTW

c

)in

E ( R N )

donotexist.

ToapplyTheorem1.3weneedtoverifytheexisteneoftheonstants

σ 1 , . . . , σ N

satisfying(1.8)and(1.9). Toavoidthistask,weprovidetwoorollarieswherethe

onditions for thenonexistene of travelingwaves are expressed only in terms of

W

.

Corollary 1.4. Assumethat

W

satises (H1)(H5) andalsothat

(1.10)

W c (ξ) ≥ max

1, 2 N − 1

X N

k=2

| ξ k ∂ k W c (ξ) | + | ξ 1 ∂ 1 c W (ξ) | ,

for a.a.

ξ ∈ R N .

Suppose that

c > c s (W )

. Then nontrivial solutions of (NTW

c

) in

E ( R N )

do not

exist.

Corollary 1.5. Assumethat

W

satises (H1)(H5). Supposethat

(1.11)

c s (W ) < c ≤ c s (W ) 1 + inf

ξ ∈R N

(N − 1)c W (ξ) P N

k=2 | ξ k ∂ k c W (ξ) |

! 1/2

,

for a.a.

ξ ∈ R N .

Then nontrivial solutionsof (NTW

c

) in

E ( R N )

do notexist.

Conerningthestatiwaves,wehavethefollowingresult.

Theorem1.6. Assumethat

W

satises (H1)(H4). Supposethat

c = 0

andthat

(1.12)

ξ j ∂ j W c (ξ) ≤ 0,

for a.a.

ξ ∈ R N ,

forall

j ∈ { 1, . . . , N } .

Thennontrivialsolutionsof (NTW

c

)in

E ( R N )

donotexist.

Note that in the ase

W = aδ

,

a > 0

,

c W = a

and so that

∇ c W = 0

. Then

onditions(1.10), (1.11)and (1.12)hold. Therefore,invokingCorollary1.4or1.5

andTheorem1.6weobtainthenonexisteneofnontrivialsolutionsforall

(1.13)

c ∈ { 0 } ∪ ( √

2a, ∞ ).

(5)

Inpartiular,onsidering

a = 1

,wereoverTheorem1.1intheases(i)and(ii).

Sofar, in viewof (H5), wehaveassumed that

c W

is regularin aneighborhood of the origin, whih in partiular allows us to dene

c s (W )

. However there are

interesting examples of kernels provided by the physial literature suh that

c W

is not ontinuous at the originand then

c s (W )

is not properly dened. For this

reasonwewillworkwithamoregeneralgeometrionditionon

W c

. Morepreisely,

denotingby

{ e k } k ∈{ 1,...,N }

the anonialunitaryvetorsof

R N

, weintroduethe funtion

(1.14)

w j (ν 1 , ν 2 ) := c W (ν 1 e 1 + ν 2 e j ), (ν 1 , ν 2 ) ∈ R 2 , j ∈ { 2, . . . , N } ,

andtheset

Γ j,c := { ν = (ν 1 , ν 2 ) ∈ R 2 : | ν | 4 + 2 w j (ν ) | ν | 2 − c 2 ν 1 2 = 0 } .

ThenTheorem1.3anbegeneralizedifwereplae(H5)bytheondition

(H6) Forall

j ∈ { 2, . . . , N }

and

c > 0

, thereexist

δ > 0

andtwofuntions

γ + j,c

and

γ j,c

,dened ontheinterval

(0, δ)

, suh thattheset

Γ j,c ∩ B(0, δ)

has

Lebesguemeasurezero,

γ j,c ± ∈ C 1 ((0, δ))

,and

γ j,c + (t) > 0, γ j,c (t) < 0, (t, γ j,c ± (t)) ∈ Γ j,c ,

forall

t ∈ (0, δ).

Moreover,thefollowinglimitsexist andareequal

t lim → 0 +

γ j,c + (t) t

! 2

= lim

t → 0 +

γ j,c (t) t

! 2

=: ℓ j,c .

γ + j,c (t)

γ j,c (t) p ℓ j,c t

− p ℓ j,c t

0 t

Figure 1. Theurves

γ ± j,c

ofondition(H6).

Figure 1 illustrates ondition (H6). The fat that (H5) and (1.6) atually imply

(H6)isprovedinSetion4(seeLemma4.1). Wealsonotethatfrom(H6)weinfer

that

lim t → 0 + γ j,c ± (t) = 0

. Moreover,if

W c

isevenin eahomponent,thatis

W c (( − 1) m 1 x 1 , ( − 1) m 2 x 2 , . . . , ( − 1) m N x N ) = c W (x 1 , x 2 , . . . , x N ),

forall

(m 1 , . . . , m N ) ∈ { 0, 1 } N ,

then

γ j,c = − γ j,c +

,forall

j ∈ { 2, . . . , N }

.

(6)

Onthe otherhand,ifthe values

ℓ j,c

arepositive,aneessaryonditionforthe

existeneofanontrivialniteenergysolutionof (NTW

c

)isthat theyareequal.

Lemma 1.7. Let

c > 0

. Assume that

W

satises (H1)(H4) and (H6) with

ℓ j,c > 0

,forall

j ∈ { 2, . . . , N }

. Let

v ∈ E ( R N )

beanontrivialsolutionof (NTW

c

)

in

E ( R N )

. Then

ℓ 1,c = ℓ 2,c = · · · = ℓ N,c .

Nowwearereadytostateourmain resultinitsgeneralform.

Theorem1.8. Let

c > 0

. Assumethat

W

satises (H1)(H4)and (H6),with

(1.15)

ℓ c := ℓ 1,c = ℓ 2,c = · · · = ℓ N,c > 0.

Supposethatthere existonstants

σ 1 , . . . , σ N ∈ R

suhthat (1.16)

c W (ξ) + ℓ c

X N k=2

σ k ξ k ∂ k W c (ξ) − σ 1 ξ 1 ∂ 1 W c (ξ) ≥ 0,

for a.a.

ξ ∈ R N ,

and

(1.17)

X N k=2

σ k + min

− σ 1 − 1, σ 1 − 1

ℓ c + 2 , 2ℓ c σ j + σ 1 − 1

≥ 0,

for all

j ∈ { 2, . . . , N }

. Then nontrivial solutions of (NTW

c

) in

E ( R N )

do not

exist.

Finally,wegivetheorrespondinganalogueofCorollaries1.41.5.

Corollary 1.9. Let

c > 0

. Assumethat

W

satises (H1)(H4), (H6)and (1.15).

Supposethateither (1.10)or

l c ≤ inf

ξ ∈R N

(N − 1)c W (ξ) P N

k=2 | ξ k ∂ k W c (ξ) |

hold. Then nontrivial solutionsof (NTW

c

)in

E ( R N )

do notexist.

1.5. Examples. Inthissubsetionweprovidesomepotentialsofphysialinterest

forwhih theCauhyproblemfor(1.1)isgloballywell-posed(see[13℄).

(I)Giventhe spheriallysymmetri interation ofpartiles, in physial models

itisusualtosupposethat

W

isradialandthensoisitsFouriertransform,namely

W c (ξ) = ρ( | ξ | ),

forsomefuntion

ρ : [0, ∞ ) → R

. Assumingthat

ρ

isdierentiable,weompute (1.18)

ξ k ∂ k c W (ξ) = ρ ( | ξ | ) ξ k 2

| ξ | ,

forall

ξ ∈ R N \ { 0 } .

Then,usingthat

P N

k=2 ξ 2 k = | ξ | 2 − ξ 1 2

andthat

| ξ k | ≤ | ξ |

,weobtainthatonditions

(1.10)and(1.11)arerespetivelysatisedif

(1.19)

max

1, 2

N − 1

≤ inf

r>0

ρ(r)

| ρ (r) | r ,

(7)

and

(1.20)

2ρ(0) < c 2 ≤ 2ρ(0)

1 + inf

r>0

ρ(r)

| ρ (r) | r

.

We onsider now a generalization of the model proposed by Shhesnovih and

Kraenkel[29℄

ρ(r) = 1

(1 + ar 2 ) b/2 , a, b > 0,

sothat

c s := c s (W ) = √ 2.

Itisimmediateto verifythat hypotheses(H1),(H3)(H5)aresatised. Also,sine

W c ∈ L ( R N )

,(H2)isfullledfor

N = 2, 3

. Moreover,byProposition6.1.5in[15℄, weonludethat

W ∈ L 1 ( R N ) ∩ L N ( R N )

for

N ≥ 4

providedthat

b > N − 1

. On

theotherhand,

(1.21)

inf

r>0

ρ(r)

| ρ (r) | r = inf

r>0

1 + ar 2 abr 2 = 1

b .

Therefore, using (1.18)(1.21) and invoking Corollaries 1.4,1.5 and Theorem 1.6,

weonludethatinthefollowingasesthereisnonexisteneofnontrivialsolutions

of (NTW

c

)in

E ( R N )

(a)

N = 2

,

b ≤ 1/2

,

c ∈ (c s , ∞ )

.

(b)

N = 2

,

b > 1/2

,

c ∈ (c s , p

2 + 2/b)

.

()

N = 3

,

b ≤ 1

,

c ∈ (c s , ∞ )

.

(d)

N = 3

,

b > 1

,

c ∈ (c s , p

2 + 2/b)

.

(e)

N ≥ 4

,

b > N − 1

,

c ∈ (c s , p

2 + 2/b)

.

(f)

N = 2

or3,

c = 0

.

(g)

N ≥ 4

,

b > N − 1

,

c = 0

.

Weremarkthat if

b → 0

,

W c → 1

andthen

W → δ

in adistributional sense. Thus theases(a)and()ouldbeseenasageneralizationofTheorem1.1in theases

(i)and(ii).

(II) Let

N = 2, 3

and

W ε = δ + εf, ε ≥ 0,

where

f

isanevenreal-valuedfuntion,suhthat

f, | x | 2 f, | x |∇ f ∈ L 1 ( R N )

. Then

W c ε = 1 + ε f b ∈ C 2 ( R N )

. Sine

(1.22)

x \ j ∂ k f = − (δ j,k f b + ξ k ∂ j f b ),

wehave

k f b k L ( R N ) ≤ k f k L 1 ( R N ) , k ξ k ∂ j f b k L ( R N ) ≤ k f k L 1 ( R N ) + k x j ∂ k f k L 1 ( R N ) .

Then we see that

W

satises onditions(H1)(H5) provided that

ε < k f k L 1 1 ( R N )

andthatthesonispeedgivenby

c s := c s (W ) =

2 + 2ε Z

R N

f 1/2

,

(8)

iswell-dened. Moreover(1.10)is fullledif

(1.23)

ε < 4 k f k L 1 ( R N ) + X N k=1

k x k ∂ k f k L 1 ( R N )

! − 1

.

Therefore, under ondition(1.23), Corollary1.4 implies thenonexistene of non-

trivialsolutionsof (NTW

c

)in

E ( R N )

forany

c ∈ (c s , ∞ ).

(III)Thefollowingpotentialusedin[9,30℄tomodeldipolarforesinaquantum

gasyieldsanexamplein

R 3

wherethespeedofsoundisnotproperlydened. Let

W = aδ + bK, a, b ∈ R ,

where

K

isthesingularkernel

K(x) = x 2 1 + x 2 2 − 2x 2 3

| x | 5 , x ∈ R 3 \{ 0 } .

In the sequel, we will dedue from Lemma 1.7 and Theorem 1.8 that there is

nonexisteneofnontrivialniteenergysolutionsof (NTW

c

)in

E ( R N )

forall

(1.24)

(2 max { a − ˜ b, a } ) 1/2 < c < ∞ ,

with

˜ b = (4πb)/3

,providedthat

a > 0

andeither

(1.25)

a ≥ ˜ b ≥ 0

or

a > − 2˜ b ≥ 0.

Wenowturntotheproofofondition(1.24). Infat,sine(see[9℄)

W c (ξ) = a + ˜ b 3ξ 2 3

| ξ | 2 − 1

, ξ ∈ R 3 \{ 0 } ,

W

satises(H1)(H4)ifoneofthe onditionsin (1.25) holds. However,

W c

isnot

ontinuousattheorigin. Morepreisely,intermsofthefuntiondened in(1.14),

wehavethat

w 2

is onstantequalto

a > 0

and by Lemma 4.1there exist urves

γ 2 ±

with

ℓ 2,c = c 2 /(2a) − 1

. Ontheother hand,

w 3

is notontinuousat theorigin butassuming (1.24)weanexpliitlysolvethealgebraiequation

(x 2 + y 2 ) 2 + 2 w 3 (x, y)(x 2 + y 2 ) − c 2 x 2 = 0

anddeduethat

γ ± 3,c (t) = ± r

− t 2 − a − 2˜ b + q

6˜ bt 2 + (a + 2˜ b) 2 + c 2 t 2 ,

for

| t | < c 2 − 2(a − ˜ b)

. Therefore(H6)holdsand

ℓ 3,c = − 1+(6˜ b+c 2 )/(2(a+2˜ b))

. Note

thatby (1.25),

ℓ 3,c

isawell-denedpositiveonstant. ByLemma1.7,aneessary

onditionsothattheequation(NTW

c

)hasnontrivialsolutionsis

ℓ 3,c = ℓ 2,c

,whih

leadsusto

(c 2 − 3a)b = 0.

Thease

b = 0

hasalreadybeenanalyzed(see(1.13)). If

b 6 = 0

,weobtain

c 2 = 3a

.

Hene

ℓ c := ℓ 2,c = ℓ 3,c = 1/2.

Then, taking

σ 1 = 0

and

σ 2 = σ 3 = 1/2

, (1.17) is

satisedandthel.h.s. of (1.16)reads

a + ˜ b

3 ξ 3 2

| ξ | 2

1 − ξ 2 2 2 | ξ | 2

− 1

+ 3˜ b 2

ξ 2 3

| ξ | 2

1 − ξ 3 2

| ξ 2 |

,

whihis nonnegativeby (1.25). Therefore, byTheorem 1.8, there isnonexistene

ofnontrivialsolutionsof (NTW

c

)in

E ( R N )

, providedthat(1.24) and(1.25)hold.

(9)

As provedin [13℄, the Cauhyproblem is alsoglobally well-posed for other in-

terationssuhasthesoftorepotential

W (x) =

( 1,

if

| x | < a, 0,

otherwise

,

with

a > 0

. However,ourresultsdonotapplytothis kernel,sinethehangesof

signof

c W

willpreventthataninequalitysuhas(1.16)anbesatised. Moreover,

in thisasetheenergyouldbenegativemakingmorediulttheanalysis. Nev-

ertheless,

W c

ispositivenear theoriginand thesonispeedisstillwelldened,so

thatit isanopenquestionto establishwhiharetheexatimpliations ofhange

ofsignoftheFouriertransforminthenonexisteneresults.

1.6. Outline of the proofs and organization of the paper. We reall that

Theorem1.1-(i)followsfrom alassialPohozaevidentity. Gravejatin[16℄proves

Theorem 1.1-(ii) by ombining therespetive Pohozaev identity with an integral

equalityobtainedfromtheFourieranalysisoftheequationsatisedby

1 −| v | 2

. Our

resultsarederivedin thesamespirit. Inthenextsetionweprovethat onditions

(H1)and(H2)implytheregularityofsolutionsof (NTW

c

) . InSetion3weprove

that ondition (H6) allows us to generalize the arguments in [16℄ sothat we an

derivethe integral identity (3.1). The fat that the set

Γ j,c

is desribed by the

urves

γ ± j,c

isaonsequeneoftheMorselemma,asexplainedinSetion4.

In Setion 5 we establish a Pohozaev identity for (NTW

c

) with a remainder

term depending onthederivativesof

W c

. Although this identityanbeformally

obtainedforrapidlydeayingfuntions,itsproofforfuntionsin

E ( R N )

isthemajor

tehnialdiultyofthispaperandreliesonFourieranalysisandthefatthat

W

iseven. Asin[8℄, wethenseein Setion6that Theorem1.6isasstraightforward

onsequeneofthisrelation.

InSetion 6 wealso show that we anreasttheidentities desribed aboveas

a suitable linear system of equations for whih we an invokethe Farkas lemma

to obtain thenonexistene onditionsgiven in Theorems 1.8 and 1.3. Theorol-

laries stated in Subsetion 1.4 then follow by hoosing the values of

σ 1 , . . . , σ N

appropriately.

Notations.Weadoptthestandardnotation

C( · , · , . . . )

torepresentagenerion-

stant that depends only oneah of its arguments. Forany

x, y ∈ R N

,

z, w ∈ C

, wedenotethe inner produtsin

R N

and

C

, respetively,by

x.y = P N

i=1 x i y i

and

h z, w i = Re(zw)

. The Kronekerdelta

δ k,j

takes thevalue oneif

k = j

andzero

otherwise.

F (f )

or

f b

standfortheFouriertransformof

f

,namely

F (f )(ξ) = f b (ξ) =

Z

R N

f (x)e ix.ξ dx,

and

F 1

foritsinverse.

From nowon wex

c ≥ 0

. We denote by

v = v 1 + iv 2

(

v 1

,

v 2

real-valued) a solutionof (NTW

c

)in

E ( R N )

. Wealsosetthereal-valuedfuntions

ρ := | v | = (v 2 1 + v 2 2 ) 1/2 , η := 1 − | v | 2 .

(10)

2. Regularity of solutions

Lemma 2.1. Assume that

W ∈ M 2,2 ( R N )

. Then

v ∈ W loc 2, 4/3 ( R N )

. Suppose

further that

2 ≤ N ≤ 3

. Then

v

is smooth and bounded. Moreover,

η

and

∇ v

belong to

W k,p ( R N )

,for all

k ∈ N

,

2 ≤ p ≤ ∞

.

Proof. Let

x ¯ ∈ R N

and

B r := B(¯ x, r)

theballofenter

x ¯

andradius

r

. Then

(2.1)

k v k L 4 (B 1 ) = k| v | 2 k L 2 (B 1 ) ≤ k| v | 2 − 1 k L 2 ( R N ) + k 1 k L 2 (B 1 ) ≤ E(v) + C(N ).

Onthe other hand,weandeompose

v

as

v = z 1 + z 2 + z 3

, where

z 1 , z 2

and

z 3

arethesolutionsofthefollowingequations

(2.2)

− ∆z 1 = 0,

in

B 1 , z 1 = v,

on

∂B 1 ,

(2.3)

− ∆z 2 = ic∂ 1 v,

in

B 1 , z 2 = 0,

on

∂B 1 ,

(2.4)

( − ∆z 3 = v(W ∗ η),

in

B 1 , z 3 = 0,

on

∂B 1 .

Sine

z 1

isaharmonifuntion,

k z 1 k C k (B 1/2 ) ≤ C(N, k, E(v)),

forall

k ∈ N

. Using theHölder inequality, (2.1)and elliptiregularityestimates, wealsohave

k z 2 k W 2,2 (B 1 ) ≤ C(N, E (v)), k z 3 k W 2,4/3 (B 1 ) ≤ C(N, E (v)) k W c k L (R N ) k η k L 2 (R N ) .

Therefore

k v k W 2,4/3 (B 1/2 ) ≤ C(N, E(v), η, W )

. Furthermore, by the Sobolev em- beddingtheorem wededuethat

k v k L (B 1/2 )

is bounded for

N = 2

and thenthis

bound holds uniformly in

R 2

. If

N = 3

, we onlude that

k v k L 12 (B 1/2 )

is uni-

formly bounded. Then usingthesamedeomposition(2.2)(2.4) intheball

B 1/4

,

idential argumentsprovethat

k v k W 2,12/7 (B 1/4 ) ≤ C(N, E(v), η, W )

, whih bythe

Sobolev embedding theorem in dimension three implies that

k v k L (B 1/4 )

is uni-

formlybounded. Consequently,

v ∈ L ( R N )

for

N = 2, 3

.

Finally,usingagain(2.2)(2.4)andastandardbootstrapargument,weonlude

that

v ∈ W k, ( R N )

forall

k ∈ N

.

Now,setting

w = ∂ j v

,

j ∈ { 1, . . . , N }

,anddierentiating(NTW

c

)withrespet

to

x j

,weobtainforany

λ ∈ R

L λ (w) := − ∆w − ic∂ 1 w + λw = ∂ j v(W ∗ η) + v(W ∗ ∂ j η) + λw,

in

R N .

Sine

∇ v ∈ L ( R N ) ∩ L 2 ( R N )

, we dedue that the r.h.s. belongs to

L 2 ( R N )

.

Then, for

λ > 0

large enough, we an apply the LaxMilgram theorem to the

operator

L λ

to dedue that

w ∈ H 2 ( R N )

. Thus

∇ v ∈ H 2 ( R N )

and a bootstrap

argumentshowsthat

∇ v ∈ H k ( R N )

, forall

k ∈ N

andtherefore,byinterpolation,

∇ v, η ∈ W k,p ( R N )

,forall

p ≥ 2

and

k ∈ N

.

(11)

InLemma 2.1,weneeded todierentiatetheequation (NTW

c

)to improvethe

regularity, whih required that

W ∗ ∇ η

was well-dened. If

N ≥ 4

, proeeding

as in Lemma 2.1, we an only infer that

∇ η ∈ L 4/3 loc ( R N )

so that it is not lear

that wean givea sense to theterm

W ∗ ∇ η

. Onthe other hand,if

N ≥ 3

, the

fat that

∇ v ∈ L 2 ( R N )

impliesthat there exists

z 0 ∈ C

with

| z 0 | = 1

suh that

v − z 0 ∈ L N−2 2N ( R N )

(see e.g. [19, Theorem 4.5.9℄). Moreover, sine (NTW

c

) is

invariantbyahangeofphase,weanassumethat

v − 1 ∈ L N 2N 2 ( R N )

. Therefore,

(2.5)

∇ η = − 2 h v − 1, ∇ v i − 2 h 1, ∇ v i ∈ L N/(N 1) ( R N ) + L 2 ( R N ).

Then itwouldbereasonableto suppose that

W ∈ M N/N − 1,q ( R N )

,for some

q ≥ N/N − 1

. However,thisisnotenoughtoinvoketheelliptiregularityestimatesand

thatisreasonwhyweworkwiththeassumption(1.7)in(H2)if

N ≥ 4

. Weremark

thattoestablishpreiseonditionson

W

thatensuretheregularityofsolutionsof

(NTW

c

)in higherdimensionsgoesbeyondthesopeofthispaper.

Lemma2.2. Let

N ≥ 4

. Assumethat

W

satises (H2). Then

v

isboundedand

smooth. Moreover,

η

and

∇ v

belong to

W k,p ( R N )

,for all

k ∈ N

,

2 ≤ p ≤ ∞

.

Proof. From (1.7), by duality (see e.g. [15℄) we infer that

W ∈ M 1,N ( R N ) ∩ M 1,2N/(N +2) ( R N )

. Then, from the RieszThorin interpolation theorem and the fatthat

(1/2, (N − 2)/(2N))

and

((N − 1)/N, (N − 2)/(2N ))

belongtotheonvex

hullof

1 2 , 1

2

,

N − 1 N , 0

,

N − 2 2N , 0

,

1, 1

N

,

1, N + 2 2N

,

weonludethat

(2.6)

W ∈ M 2,2N/(N − 2) ( R N ) and W ∈ M N/(N − 1),2N/(N − 2) ( R N ).

As mentioned before, we anassume that

˜ v := v − 1 ∈ L N 2N 2 ( R N )

. Then using

(H2), (2.5)and(2.6),weareledto

(2.7)

W ∗ η, W ∗ ∇ η ∈ L ( R N ) ∩ L 2N/(N 2) ( R N ).

Nowwereast(NTW

c

)as

(2.8)

L λ (˜ v) := − ∆˜ v − ic∂ 1 v ˜ + λ˜ v = ˜ v((W ∗ η) + λ) + W ∗ η,

in

R N ,

for some

λ > 0

. By (2.7), the r.h.s. of (2.8) belongs to

L 2N/(N 2) ( R N )

. Then

hoosing

λ

largeenough,weanapplyelliptiregularityestimatestotheoperator

L λ

toonludethat

v ˜ ∈ W 2,2N/(N 2) ( R N )

. Then

∂ j,k η = − 2( h v − 1, ∂ j,k v i + h ∂ j v, ∂ k v i + h 1, ∂ j,k v i ) ∈ L N/(N 1) ( R N )+L 2N/(N 2) ( R N ),

for any

1 ≤ j, k ≤ N

. Therefore, by (1.7) and (2.6),

W ∗ ∂ j,k η ∈ L ( R N ) ∩ L 2N/(N 2)

. Thus the r.h.s. of (2.8) belongs to

W 2,2N/(N 2) ( R N )

, so that

˜ v ∈ W 4,2N/(N 2) ( R N )

. A bootstrap argument yields that

v ˜ ∈ W k,2N/(N 2) ( R N )

, for

any

k ∈ N

. BytheSobolevembeddingtheorem, weonludethat

v ∈ W k, ( R N )

forany

k ∈ N

. ThentheonlusionfollowsasinLemma2.1.

Lemma2.3. Let

W ∈ L 1 ( R N )

if

2 ≤ N ≤ 3

and

W ∈ L 1 ( R N ) ∩ L N ( R N )

if

N ≥ 4

.

Then

W

fullls (H2).

(12)

Proof. Sine

W ∈ L 1 ( R N )

,bytheYounginequalitywehave

k W ∗ f k L p ( R N ) ≤ k W k L 1 ( R N ) k f k L p ( R N ) ,

forany

p ∈ [1, ∞ ].

Then, taking

p = 2

, weonlude that (H2) holdsfor

2 ≤ N ≤ 3

. For

N ≥ 4

, we

have

W ∈ L 1 ( R N ) ∩ L N ( R N )

. Inpartiular,

W ∈ L 2N/(N +2) ( R N )

andthe Young

inequalityimpliesthat

k W ∗ f k L ( R N ) ≤ k W k L N ( R N ) k f k L N/(N 1) ( R N ) , k W ∗ f k L (R N ) ≤ k W k L 2N/(N+2) ( R N ) k f k L 2N/(N−2) ( R N ) .

Therefore(H2)issatised.

Corollary 2.4. Assume that

W

satises (H2). Then

v

is smooth and bounded.

Moreover,

η

and

∇ v

belong to

W k,p ( R N )

,for all

k ∈ N

,

2 ≤ p ≤ ∞

,and

(2.9)

ρ(x) → 1, ∇ v(x) → 0,

as

| x | → ∞ .

Furthermore, there existsasmooth liftingof

v

. Morepreisely, there exist

R 0 > 0

andasmoothreal-valuedfuntion

θ

denedon

B(0, R 0 ) c

,with

∇ θ ∈ W k,p (B(0, R 0 ) c )

,

for all

k ∈ N

,

2 ≤ p ≤ ∞

,suhthat

(2.10)

ρ ≥ 1

2

and

v = ρe

on

B(0, R 0 ) c .

Proof. Therst partisexatlyLemmas 2.1 and2.3. Inpartiular,

v

and

∇ v

are

uniformly ontinuous on

R N

. Then, sine

1 − | v | 2 ∈ L 2 ( R N )

and

∇ v ∈ L 2 ( R N )

,

we obtain (2.9). The existene of the lifting satisfying (2.10) follows as in [25,

Proposition2.5℄. From(2.10)wealsodeduethat

|∇ v | 2 = |∇ ρ | 2 + ρ 2 |∇ θ | 2

on

B(0, R 0 ) c .

Sine

ρ ≥ 1/2

on

B(0, R 0 ) c

, we infer that

∇ θ ∈ W k,p (B(0, R 0 ) c )

, for all

k ∈ N

,

2 ≤ p ≤ ∞

.

InvirtueofCorollary2.4,weintroduethefuntion

φ ∈ C ( R N )

,

| φ | ≤ 1

,suh

that

φ = 0

on

B(0, 2R 0 )

and

φ = 1

on

B(0, 3R 0 ) c

. Inthisway,weanassumethe

funtion

φθ

iswell-dened on

R N

. Thiswill beusefulin thenextsetiontowork withglobalfuntions intermsof

θ

. Infat,weend thissetionwiththefollowing

result.

Lemma2.5. Assumethat

W

satises (H2). Then

(2.11)

G := v 1 ∇ v 2 − v 2 ∇ v 1 − ∇ (φθ),

on

R N ,

belongsto

W k,p ( R N )

,for all

k ∈ N

and

1 ≤ p ≤ ∞

.

Proof. ByCorollary2.4,

G ∈ C ( R N )

andmoreover

G = − η ∇ θ

on

B(0, 3R 0 ) c .

Sine

∇ θ ∈ W k,p (B(0, R 0 ) c )

and

η ∈ W k,p (B(0, R 0 ) c )

, for all

k ∈ N

,

2 ≤ p ≤ ∞

,

theonlusionfollows.

(13)

3. An integral identity

Theaimofthissetionistoprovethefollowingintegralidentity.

Proposition3.1. Let

c > 0

. Supposethat (H2) and (H6) hold with

ℓ j,c > 0

, for

some

j ∈ { 2, . . . , N }

. Then

(3.1)

Z

R N

( |∇ v | 2 + η(W ∗ η)) = − c ℓ j,c

1 + ℓ j,c

Z

R N

(v 1 ∂ 1 v 2 − v 2 ∂ 1 v 1 − ∂ 1 (φθ)).

We note that sine

W

satises (H2), all the resultsof Setion 2 hold. On the

otherhand,from(NTW

c

)wededuethat

η = 1 − | v | 2

satises

(3.2)

∆η = − F + 2W ∗ η − 2c∂ 1 (φθ).

where

F := 2 |∇ v | 2 + 2η(W ∗ η) + 2cG 1 .

and

G = (G 1 , . . . , G N )

wasdenedin(2.11). Consideringrealandimaginaryparts in(NTW

c

)andmultiplyingthemby

v 2

and

v 1

,respetively,itfollowsthat (3.3)

div(G) = v 1 ∆v 2 − v 2 ∆v 1 − ∆(φθ) = c

2 ∂ 1 η − ∆(φθ).

Therefore,from(3.2)and(3.3),weonludethat

(3.4)

2 η − 2∆(W ∗ η) + c 211 2 η = − ∆F + 2c∂ 1 (div G),

in

R N .

Sineweareassuming(H2), byCorollary2.4andLemma2.5,wehavethat

F, G ∈ W k,1 ( R N ) ∩ W k,2 ( R N )

,for all

k ∈ N

,so that (3.4)standsin

L 2 ( R N )

. Takingthe

Fouriertransformin equation(3.4)andsetting

R(ξ) := | ξ | 4 + 2c W (ξ) | ξ | 2 − c 2 ξ 2 1

and

H (ξ) := | ξ | 2 F(ξ) b − 2c X N j=1

ξ 1 ξ j G b j (ξ),

weget

(3.5)

R(ξ) η(ξ) = b H(ξ),

in

L 2 ( R N ).

Lemma 3.2. Let

c > 0

. Suppose that (H2) and (H6) hold. Then for all

j ∈ { 2, . . . , N }

,

(3.6)

H (te 1 + γ ± j,c (t)e j ) = 0,

for all

t ∈ (0, δ),

where

δ

isgiven by (H6).

Proof. Wex

j ∈ { 2, . . . , N }

andweprove(3.6)for

γ j,c +

,sinetheprooffor

γ j,c

is

analogous. To simplify the notation, we put

γ := γ j,c +

. As statedbefore,

F, G ∈ W k,1 ( R N ) ∩ W k,2 ( R N )

, for all

k ∈ N

. In partiular

F, G ∈ L 1 ( R N )

, so that

F b

,

G b ∈ C( R N )

. Thus

H

isaontinuousfuntion on

R N

.

Let

δ > 0

givenby(H6). Arguingbyontradition,wesupposethatthere exist

t 0 ∈ (0, δ)

andaonstant

A > 0

suhthat

| H ( ˜ ξ) | ≥ A

, where

ξ ˜ = t 0 e 1 + γ(t 0 )e j

.

Bythe ontinuity of

H

, there exists

r > 0

suh that

| H (ξ) | ≥ A

, for all

ξ ∈ V r

,

where

V r = B( ˜ ξ, r) ∩ { αe 1 + βe j : α, β ∈ R } .

(14)

Thus

V r

is atwo-dimensionalset andsine

t 0 > 0

, weanhoose

r

smallenough

suhthat

0 ∈ / V r

. Then(3.5)yields

(3.7)

|b η(ξ) | 2 ≥ A 2

(R(ξ)) 2 ,

forall

ξ ∈ V r \ Γ j,c .

Welaimthat

(3.8)

I :=

Z

V r \ Γ j,c

dξ 1 dξ j

(R(ξ)) 2 = + ∞ .

Sinebyhypothesis

Γ j,c ∩ B (0, δ)

hasmeasurezero,(3.7)and(3.8)ontraditthat

b

η ∈ L 2 ( R N )

.

Toprove(3.8),sine

V r

isatwo-dimensionalset, weidentifyitasasubsetof

R 2

andsothat wewrite

e 2

insteadof

e j

. Then,sine

Γ j,c ∩ B(0, δ)

hasmeasurezero,

I =

Z

V r

dξ 1 dξ 2

(R(ξ)) 2 .

Toomputetheintegralwestraightenouttheurve

γ

. Namely,weintroduethe

hangeof variables

ξ 1 = ν 1 =: Φ 1 (ν 1 , ν 2 ),

ξ 2 = ν 2 + γ(ν 1 ) =: Φ 2 (ν 1 , ν 2 ).

Sine

γ

is a

C 1

-funtion, sois

Φ

. Moreover,there is someset

U r

suh that

V r = Φ(U r )

and

| det(JΦ(ν)) | = 1

for all

ν ∈ U r

. Setting

F (ν) := R(Φ(ν))

,

ν ∈ U r

,the

hangeof variablestheorem yields

(3.9)

I =

Z

U r

dν 1 dν 2

(F (ν)) 2 .

Furthermore,sine

F ∈ C 1 (U r )

and

F (ν 1 , 0) = 0

for all

(ν 1 , 0) ∈ U r

, the Taylor

theoremimpliesthatforany

(ν 1 , ν 2 ) ∈ U r

,thereissome

¯ ν ∈ U r

suhthat

(3.10)

F(ν 1 , ν 2 ) = F(ν 1 , 0) + ∂F

∂ν 2 (¯ ν)ν 2 = ∂F

∂ν 2 (¯ ν)ν 2 ,

Onthe otherhand,by (H2),

c W ∈ L ( R N )

andby (H3),

∇ W ∈ L (V r )

, so that

k c W k W 1,∞ (V r ) < ∞

. Thus

k∇ F k L (U r ) ≤ C(r, γ)(1+ k c W k W 1,∞ (V r ) )

andfrom(3.10)

weonludethat

(3.11)

| F (ν) | ≤ C(r, γ)(1 + k W c k W 1, (V r ) ) | ν 2 | ,

forall

ν ∈ U r .

From(3.9)and(3.11),taking

ν ˜ = (˜ ν 1 , ˜ ν 2 ) ∈ U r

suhthat

ξ ˜ = Φ(˜ ν)

and

ε > 0

small

enough,weonludethat

I ≥ C(r, γ, W c ) Z

U r

dν 1 dν 2

ν 2 2 ≥ C(r, γ, W c ) Z ν ˜ 1 +ε

˜ ν 1 − ε

Z ε

− ε

dν 2 dν 1

ν 2 2 = + ∞ ,

whihonludestheproof.

Finally,wegivetheproofofidentity (3.1).

Proofof Proposition3.1. ByLemma 3.2,setting

ξ ± (t) = te 1 + γ j,c ± (t)e j ,

wehave

(t 2 + (γ j,c ± (t)) 2 ) F b (ξ ± (t)) − 2ct 2 G b 1 (ξ ± (t)) − 2ctγ j,c ± (t) G b j (ξ ± (t)) = 0, t ∈ (0, δ).

(15)

Dividingby

t 2

andpassingtothelimit

t → 0 +

,

(1+ℓ j,c ) F b (0) − 2c G b 1 (0) − 2c p

ℓ j,c G b j (0) = (1+ℓ j,c ) F b (0) − 2c G b 1 (0)+2c p

ℓ j,c G b j (0) = 0.

Therefore,sine

ℓ j,c > 0

,

G b j (0) = 0

and

(1 + ℓ j,c ) F b (0) = 2c G b 1 (0)

,whihispreisely

(3.1).

AsaonsequeneofProposition3.1, weobtainLemma1.7.

Proofof Lemma 1.7. From(3.1),setting

J (v) = Z

R N

( |∇ v | 2 + η(W ∗ η))

and

P (v) = Z

R N

(v 1 ∂ 1 v 2 − v 2 ∂ 1 v 1 − ∂ 1 (φθ)),

weinferthat

(3.12)

ℓ j,c (J (v) + cP (v)) = − J (v).

Sine

v

is nononstantand

W c ≥ 0

,wehavethat

J (v) > 0

. Thenwededue from

(3.12)that

J(v) + cP (v) 6 = 0

and

ℓ j,c = − J(v) J(v) + cP (v) .

Sinether.h.s. oftheequalitydoesnotdepend on

j

, theonlusion follows.

4. The set

Γ j,c

underthe ondition (H5)

InSetion3wehaveseenthatidentity(3.1)isaonsequeneofthestrutureof

theset

Γ j,c

. Morepreisely,itreliesonthefatthat(H6)providestheexisteneof

δ > 0

andtwourves

γ j,c ±

suh that

{ (t, y ± (t)) : t ∈ ( − δ, δ) } ⊆ Γ j,c .

If

W c

isoflass

C 2

inaneighborhoodoftheoriginand

α c := c 2

(c s (W )) 2 − 1 > 0,

we an use the Morse lemma to justify the existene of the urves

γ j,c ±

and to

onludethatset

Γ j,c

onsistsofexatlythesetwourvesneartheorigin. Therefore

theset

Γ j,c

lookslikeFigure2andondition(H6)isfullled.

Lemma4.1. Assumethat (H1) and (H5) hold. Assumealso that

α c > 0

. Then,

for eah

j ∈ { 2, . . . , N }

, there exist

δ > 0

and funtions

y ± ∈ C 1 (( − δ, δ)) ∩ C 2 (( − δ, δ) \ { 0 } )

suhthat

(4.1)

Γ j,c ∩ B(0, δ) = { (t, y ± (t)) : t ∈ ( − δ, δ) } .

Moreover,

(4.2)

lim

t → 0 + y ± (t)/t = ± √ α c ,

y +

isstritlyinreasingand

y

isstritlydereasing. Inpartiular,(H6)issatised

with

l j,c = α c

.

(16)

γ j,c + (t)

γ j,c (t) t

Figure 2. Theset

Γ j,c

neartheoriginfor

W c

oflass

C 2

.

Proof. Letusset

R j (ν) := | ν | 4 + 2 w j (ν ) | ν | 2 − c 2 ν 1 2 , ν = (ν 1 , ν 2 ) ∈ R 2 .

Inviewof(H5),

R j ∈ C 2 (B(0, δ 0 ))

,forsome

δ 0 > 0

. Sine

w j

iseven,wehavethat

∂ 1 w j (0, 0) = ∂ 2 w j (0, 0) = 0

. Thenweobtain

R j (0, 0) = 0

,

∇ R j (0, 0) = 0

,

(4.3)

2 R j

∂ν 1 2 (0, 0) = − 4α c w j (0, 0) < 0, ∂ 2 R j

∂ν 2 2 (0, 0) = 4 w j (0, 0) > 0, ∂ 2 R j

∂ν 1 ∂ν 2

(0, 0) = 0.

Therefore bythe Morselemma (see e.g. [26, Theorem II℄) there exist twoneigh-

borhoods of the origin

U, V ⊂ R 2

and a loal dieomorphism

Φ : U → V

suh

that

(4.4)

R j (Φ 1 (z)) = − 2α c w j (0, 0)z 2 1 + 2 w j (0, 0)z 2 2 ,

forall

z = (z 1 , z 2 ) ∈ V.

Moreover,denoting

Φ = (Φ 1 , Φ 2 )

wehavefor

1 ≤ j, k ≤ 2

(4.5)

∂Φ j

∂ν k

(ν) → δ j,k ,

as

| ν | → 0.

From(4.4)wededue that near theoriginthe set ofsolutions of

R j = 0

is given

bythelines

{ (t, ± √

α c t) : t ∈ ( − δ, δ) } ,

wherewetake

δ > 0

suhthatthesetisontainedin

V

. Sine

Φ

isadieomorphism weonludethat

(4.6)

Γ j,c ∩ B(0, δ) = { (x ± 1 (t), x ± 2 (t)) : t ∈ ( − δ, δ) } ,

where

Φ 1 (x ± 1 , x ± 2 ) = t,

(4.7)

Φ 2 (x ± 1 , x ± 2 ) = ± √ α c t.

(4.8)

Moreover,dierentiatingrelation (4.7)with respet to

t

andusing (4.5), weinfer

that

(x ± 1 ) (t) → 1

as

t → 0

. Therefore we anreast(4.6) asin (4.1) with

y ±

(17)

C 1 (( − δ, δ)) ∩ C 2 (( − δ, δ) \ { 0 } )

. Furthermore,dierentiating(4.8)andusingagain (4.5)weonludethat

(y ± ) (0) = ± √ α c .

Sine

y ± ∈ C 1 (( − δ, δ))

, taking a possible smaller value

δ

, this implies (4.2) and

that

y +

and

y

arestritlyinreasinganddereasingon

( − δ, δ)

,respetively.

5. A Pohozaevidentity

InthissetionweestablishthefollowingPohozaevidentity.

Proposition5.1. Assumethat (H1)(H3)hold. Then

E(v) = Z

R N

| ∂ 1 v | 2 + 1 4(2π) N

Z

R N

ξ 1 ∂ 1 W c |b η | 2 dξ,

(5.1)

E(v) = Z

R N

| ∂ j v | 2 − c 2

Z

R N

(v 1 ∂ 1 v 2 − v 2 ∂ 1 v 1 − ∂ 1 (φθ)) + 1 4(2π) N

Z

R N

ξ j ∂ j W c |b η | 2 dξ,

(5.2)

for all

j ∈ { 2, . . . , N } .

Notethat byLemma 2.5,

G 1 = v 1 ∂ 1 v 2 − v 2 ∂ 1 v 1 − ∂ 1 (φθ) ∈ L 1 ( R N )

, thus every

integralin(5.1)and(5.2)isnite. AsmentionedinSetion1,intheasethat

W

is

theDiradeltafuntionthisresultiswell-known(see[8,6,16,25℄). Thestandard

tehniqueis to introdue afuntion

χ ∈ C ( R )

, with

χ(x) = 1

for

| x | < 1

and

χ(x) = 0

for

| x | > 2

,and

χ n (x) := χ(x/n)

. Then,multiplying(NTW

c

)by

x j χ n ∂ j v ¯

andtakingrealpart,weareledto

(5.3)

h ic∂ 1 v + ∆v, x j χ n ∂ j v i − 1

2 (W ∗ η)x j χ n ∂ j η = 0,

on

R N ,

wherewehaveusedthat

h v, ∂ j v i = − 1 2 ∂ j η.

Conerning(5.3),wereallthefollowingresult.

Lemma5.2 ([8,6, 16,25℄). Let

ϕ = ϕ 1 + ϕ 2 ∈ E ( R N ) ∩ C ( R N )

. Assumethat

there exist

R > 0

and asmooth real-valuedfuntion

θ ˜

dened on

B(0, R ) c

, with

∇ θ ˜ ∈ L 2 (B(0, R ) c )

,suhthat

| ϕ | ≥ 1

2

and

ϕ = | ϕ | e i θ ˜

on

B(0, R 0 ) c .

Let

φ ˜ ∈ C ( R N )

,suh that

φ ˜ = 0

on

B(0, 2R )

and

φ ˜ = 1

on

B (0, 3R ) c

. Then

for all

j ∈ { 1, . . . , N }

,wehave

n lim →∞

Z

R N

h i∂ 1 ϕ, x j χ n ∂ j ϕ i = 1

2 (1 − δ 1,j ) Z

R N

(ϕ 1 ∂ 1 ϕ 2 − ϕ 2 ∂ 1 ϕ 1 − ∂ 1 ( ˜ φ θ)), ˜

(5.4)

n lim →∞

Z

R N

h ∆ϕ, x j χ n ∂ j ϕ i = − Z

R N

| ∂ j ϕ | 2 + 1 2 Z

R N

|∇ ϕ | 2 ,

(5.5)

n lim →∞ − 1 2 Z

R N

x j χ n (1 − | ϕ | 2 )∂ j (1 − | ϕ | 2 ) = 1 4 Z

R N

(1 − | ϕ | 2 ) 2 .

(5.6)

Références

Documents relatifs

We also prove that a free boundary hypersurface separates a region where u = 0 and a region where u &gt; 0, and that this free boundary can be globally parametrized as a

Another method has been introduced in [18] in the case δ = 0 (see also [4]): Once an asymptotic profile is derived formally for (1), the existence of a solution u(t) which blows-up

We further investigate the dynamics of the Dysthe equations by means of a highly ac- curate Fourier-type pseudo-spectral method, which is needed in order validate the newly

Threshold phenomenon and traveling waves for heterogeneous integral equations and epidemic models..

We consider the problem of existence and stability of solitary traveling waves for the one dimen- sional discrete non linear Schrödinger equation (DNLS) with cubic nonlinearity,

Nonlinear Schrödinger equations, standing waves, orbital stability, instability, blow-up, variational methods..

In this paper, we have studied the existence of traveling wave solutions and spreading properties for single-layer delayed neural field equations when the kinetic dynamics are

Contrary to the previous subcritical case, the method for proving the necessity of this condition is based upon a duality-convexity argument, while the sufficiency uses the fact